Unemployment Facts 704 Macroeconomic Theory II Topic 1

Masao Fukui

2024 Spring

Lecture:

Tuesdays, Thursdays, 11-12:15, in CDS 463

Instructor:

- Masao Fukui (<u>mfukui@bu.edu</u>)
- Office hours: Mon 2:45-5:45pm in Room 400

TA:

- Shraddha Mandi (<u>mandis@bu.edu</u>)
- Office hours: 12:30-2:30 in room 413
- Sections: Tu 3:30-4:45 in CAS 116

Grades:

- 40% problem sets
- 60% final exam

There will be 4 problem sets

- Strongly encouraged to work in a group
- But each student must hand in their own write-up.
- Strongly encouraged to write in LaTeX
- Write as if you were writing a paper and submitting it to a journal. Don't paste the screenshot of Stata output window!

The first problem set is already posted. Due March 29th.

Frictionless models (Neoclassical growth, RBC)

1. Goods market friction: Price stickiness (NK)

First half: labor market frictions

Second half: financial market frictions

2. Labor market friction: Seach & matching

3. Financial market friction

What is Unemployment?

Why Study Unemployment?

- Unemployment is often a central focus in business cycles
- - Krueger-Meuller (2012)
- Why care about unemployment? Ganong-Noel (2018) Individual: lower income, consumption, and emotional well-being • Aggregate: Potentially under-utilization of resources
- Questions:
 - 1. Why is there unemployment? Why does it fluctuate?
 - 2. Is unemployment inefficient?
 - 3. What policies should we implement?
- But before theorizing, we need to define and measure unemployment

Defining Unemployment

330 million Less than 16 y/o armies, prisons **Jobless but not** Not in labor force looked for work 100 million in the past 4 weeks **Jobless and looked**

Total US population Non-institutional civillian population 260 million 160 million Unemployed

Civillian labor force

Employed 150 million

for work in the past 10 million

4 weeks

Labor Force Participation Rate

Male: declining trend

- aging
- longer education
- wealth effect
- leisure tech

Female: rising trend

- social norm
- home production technology
- service sector

Prime Age Labor Force Participation Rate

Labor Force Participation Rate: 25-54 yrs old

Unemployment Rate by Gender

Unemployment Rate by Gender

Female less cyclical before COVID

Flows Into and Out of Unemployment

- Unemployment represents a stock of workers
 - Determined through a balance between inflows and outflows
- Useful to break down the role of inflows vs. outflows
 - Disciplines the model we should be writing down

Labor Market Flows over Time

Labor Market Flows before COVID

E to N

N to U

Not in the Labor Force

We will abstract from individuals not in the labor force

- One justification is that the labor force participation is not very cyclical • Active research on how flows in to and out of N matters.

Stock-Flow Model

Basic stock-flow accounting equation:

Is unemployment fluctuations due to fluctuations in f_t or s_t ?

$separation = \underbrace{s_t(1 - u_t)}_{separation} - \underbrace{f_t u_t}_{job-finding}$ (inflow into U) (outflow from U)

Separation rate, s

Approximate Unemployment Rate

In the steady state,

 \bar{u} :

- Out of steady state, no such simple formula
- But if transitions are "fast enough", we can approximate

 $\mathcal{U}_t \approx$

- Unemployment is "as if" steady-state with contemporaneous flow Can use this approximate formula to unpack the role of inflows vs. outflows

$$= \frac{\bar{s}}{\bar{s} + \bar{f}}$$

$$\neq \frac{s_t}{s_t + f_t} \equiv \hat{u}_t$$

Approximation is Excellent

How Much Fluctuations in
$$u$$
 due to s
Rewrite $\hat{u}_t = s_t/(s_t + f_t)$ as
 $\frac{\hat{u}_t}{1 - \hat{u}_t} = \frac{s_t}{f_t}$
Taking log of both sides, the variance of $\log(\hat{u}_t/(1 - \hat{u}_t))$ can be decomposed
Var $\left[\log \frac{\hat{u}_t}{1 - \hat{u}_t}\right] = \operatorname{Cov}\left[\log \frac{\hat{u}_t}{1 - \hat{u}_t}, \log s_t\right] + \operatorname{Cov}\left[\log \frac{\hat{u}_t}{1 - \hat{u}_t}, -\log f_t\right]$
flutuations due to s
Fluctuations due to s
Consider the following OLS regression
 $\log s_t = \alpha + \beta \log(\hat{u}_t/(1 - \hat{u}_t)) + c_t$
Then $\beta = \frac{\operatorname{Cov}(\log s_t, \log \hat{u}_t/(1 - \hat{u}_t))}{\operatorname{Var}(\log \hat{u}_t/(1 - \hat{u}_t))} \Rightarrow$ Variance share!

or *f* **?**

posed into

Variance Decomposition through Regression

log s vs log u

- log f vs log u

Variance Decomposition

Decomposition:

- Job-finding: 51%
- Job-separation: 49%
- This is in line with Fujita-Ramey (2009)
- In contrast, using different data/methodology, Shimer (2012) argued
 - Job-finding: 90%
 - Job-separation: 10%
- Consensus nowadays is 50:50

Literature has been mostly focusing on job-finding due to hysterisis from Shimer

Unpacking Job-finding Rate

Matching Friction

- Dominant views until 1970s:
 - wage rigidity \Rightarrow labor supply > labor demand
- Diamond-Mortensen-Pissarides (DMP) paradigm:
 - Workers look for a job. Firms look for workers.
 - But it takes time to find a match
- Assume that the number of matches in each period is given by

- M: matching function, u_t : unemployment, v_t : vacancies
- *M* is nonnegative, increasing, and concave in both arguments
- Reduced form way to capture various frictions (e.g., physical and informational)

Why can't workers find a job immediately? Why does job-finding rate fluctuate?

 $m_t = M(u_t, v_t)$

Deriving Beveridge Curve

- Not empirically settled. Interesting area to explore.
- The job-finding probability can be written as

$$f_t = \frac{M(u_t, v_t)}{u_t}$$

• $\theta_t \equiv v_t/u_t$ is labor market tightness

- - Popularly referred to as "**Beveridge curve**"

It is convinient to assume M is constant returns to scale (e.g., $M(u, v) = \overline{m}u^{1-\alpha}v^{\alpha}$)

$$= M(1, v_t/u_t) \equiv \hat{f}(\theta_t)$$

If Plug the above expression into the approx. unemp. rate formula ($s_t = f_t u_t / (1 - u_t)$): $s_t = M\left(\frac{v_t}{n_t}, \frac{u_t}{1 - u_t}\right), \quad n_t \equiv 1 - u_t$ • A relationship between vacancy rate, v_t/n_t , and unemp. rate, u_t (for given s_t)

Assuming s is a constant

vacancy rate, v_t/n_t

Beveridge Curve $s = M\left(\frac{v_t}{n_t}, \frac{u_t}{1 - u_t}\right)$

Low-vacancy ⇒ low job-finding rate ⇒ high unemployment

How does Beveridge curve look in the data?

• Before that, what is "vacancy" in the data?

BLS Job Openings and Labor Turnover Survey (JOLTS) definition:

- 1. A specific position exists and there is work available for that position
- 2. The job could start within 30 days
- 3. There is active recruiting for workers from outside the establishment location

Vacancy in the Data

Empirical Beveridge Curve

Empirical Beveridge Curve

Empirical Beveridge Curve

Soft-Landing or Hard-Landing?

14%

Which Beveridge curve are we on? 8% 7% 6% ob vacancy rate 5% 3% 2% 1% 4% 6% 8% 10% 12% Unemployment rate Post-COVID: Apr 2020–Oct 2022 Pre-COVID: Jan 2001–Mar 2020

https://www.minneapolisfed.org/article/2022/us-job-matching-holds-up-keeping-a-soft-landing-in-sight

Blanchard & Summers: We are on B. If the Fed brings down v to pre-COVID level, we will see a massive increase in u. \Rightarrow hard-landing

Mongey: We are on C. Reducing v doesn't increase *u* much. \Rightarrow soft-landing

Who was Right?

What Can Beveridge Curve Tell?

- As predicted by DMP paradigm, there appears to be a negative correltaion ... with ongoing outward shifts in the relationship
 - For any given u_t , we have more vacancies now than before
- Suppose the matching function is time-varying and now given by

 \bar{m}_t : match efficiency shock

 $M_t(v_t, u_t) = \bar{m}_t(v_t)^{\alpha}(u_t)^{1-\alpha}$

Beveridge Curve

- Taking log, the Beverage curve (expressed in logs) is now
 - $\log(v_t/n_t) = \tilde{m}_t$
 - where $\tilde{m}_t \equiv (1/\alpha) \left[\log s_t \log \bar{m}_t \right]$
- Any shock to s_t or \bar{m}_t will show up as the shifts in the empirical Beveridge curve
- If \tilde{m}_t is correlated with u_t , the empirical Beveridge curve lacks structural interpretation • Just as in corr(q, p) tells us neither supply nor demand curve In my view, this is an important open question

- Still, corr(v, u)<0 is suggestive that v is an important determinant of u</p>

$$t - \frac{1 - \alpha}{\alpha} \log \frac{u_t}{1 - u_t}$$

Job-Finding and Market Tightness

Another way to see the prediction of DMP paradigm is (under Cobb-Douglas) $\log f_t = \log \hat{f}(\theta_t) = \log \bar{m} + (1 - \alpha)\log(v_t/u_t)$

 $\log f_t = 0.25 \times \log(v_t/u_t) + const + \epsilon_t$

Taking Stock

Taking Stock

- Unemployment rate fluctuates between 5-10p.p.
- On average, 30% of workers find a job every month; 2% of workers loose their job
- Job-finding and separation play roughly equally important role in fluctuations in u
- DMP paradigm views unemployment as the outcome of matching frictions
- Next lecture: understand the determinants of v_t

Appendix: Cross-Country Perspective

