When to Accept a Job Offer? Search with Job Heterogeneity

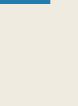
Masao Fukui

2024 Spring

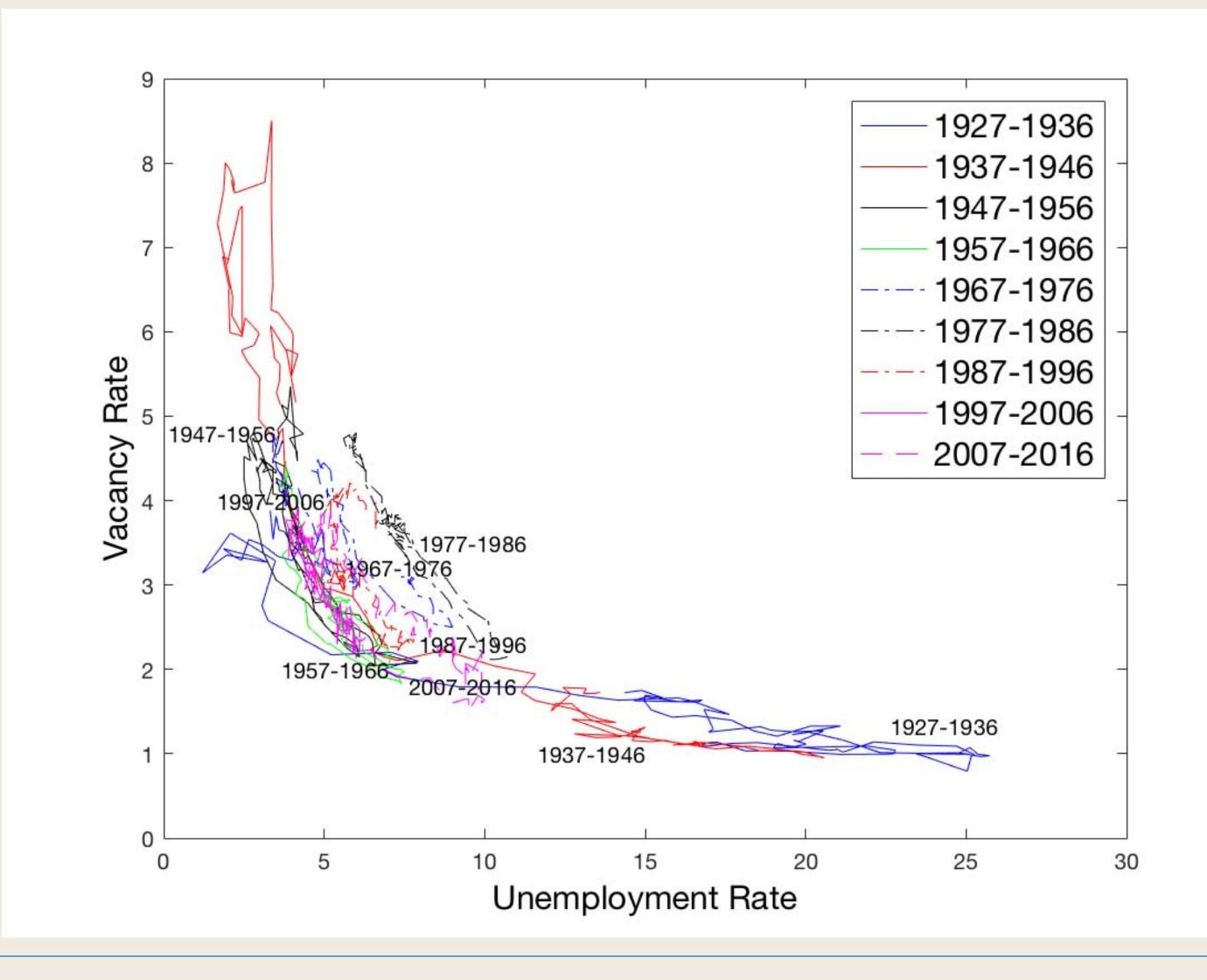
704 Macroeconomic Theory II Lecture 4

Search and Matching in the Long-Run

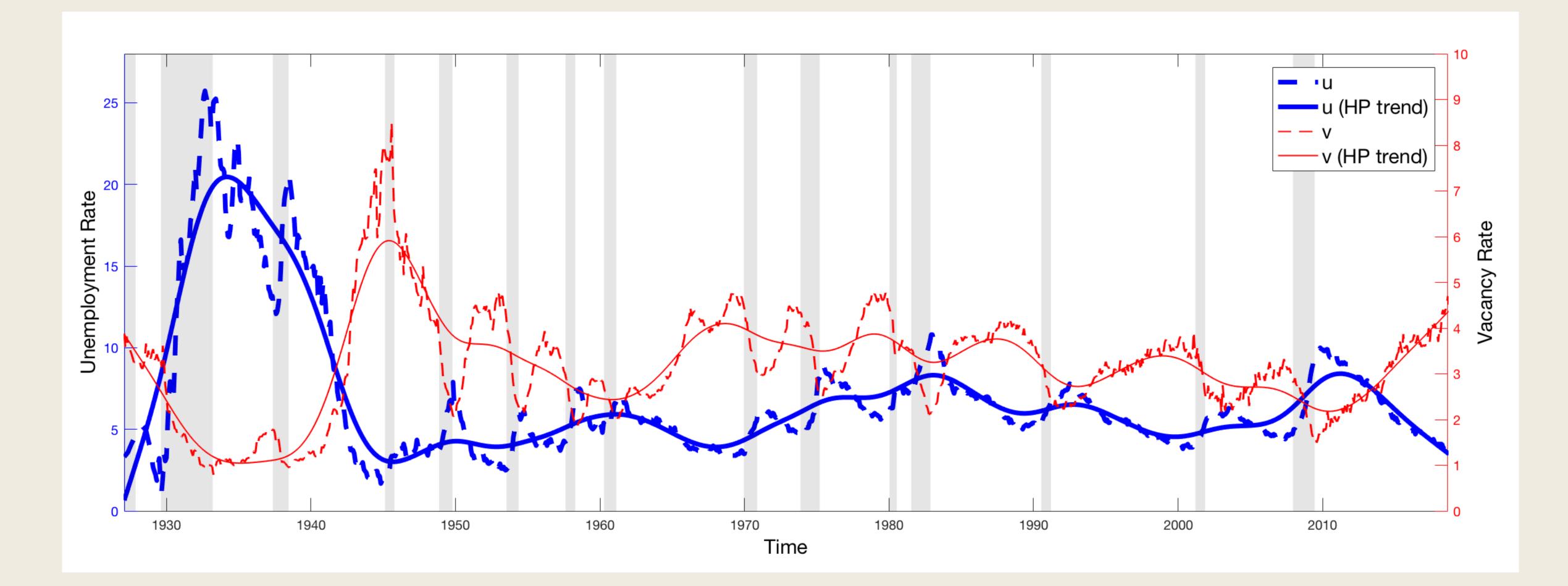
- Previous lecture focused on short-run labor market dynamics
- Now shift our focus to long-run
- Is DMP a good model for long-run labor market dynamics?



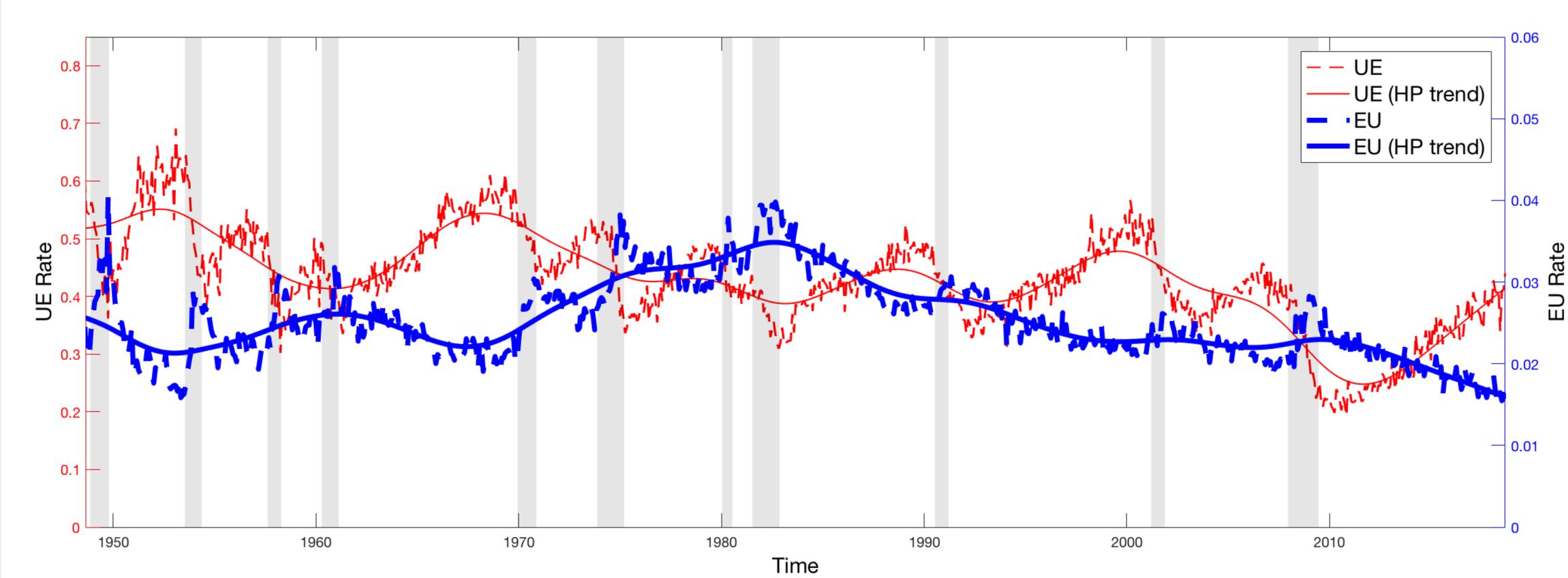
Beveridge Curve in the Long-run



Unemployment and Vacancy Rate



UE and EU Rates



"Puzzle" of DMP Paradigm

- Suppose a matching function is $A_t M(u_t, v_t)$
- We have seen
 - 1. No secular movement in the Beveridge curve

- 2. No secular trend in u_t or v_t
- 3. No secular trend in $EU_t = s_t$ (or $UE_t \equiv A_t f(v_t/u_t)$)
- Telephone? Fax? Mobile phone? PC? Internet? Air travel? All irrelevant for finding a match? – "Puzzle"

 $\frac{u_t}{1 - u_t} = \frac{S_t}{A_t f(v_t/u_t)}$

Together, these facts imply there is no improvement in matching technology A_t

Balanced Growth in Unemployment Rate

- Martellini & Menzio (2020) solve the puzzle with a simple idea
- When it becomes easier to meet, workers...
 - 1. are more likely to find the job
 - 2. become pickier because hunting for a better job offer is easier
- Under certain conditions, these two forces exactly offset \Rightarrow no changes in u
- The second force is missing in DMP because jobs are homogenous
- We first introduce job heterogeneity in a partial equilibrium setup
- This model is called McCall's (1970) model of job search

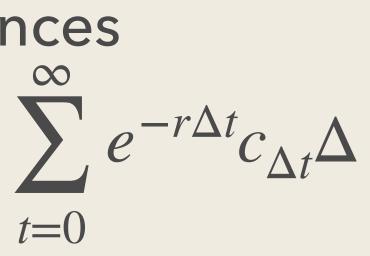
McCall's Search Model

Environment

Time: $t = \Delta, 2\Delta, ...,$

Workers are risk neutral with preferences

- $c_t = w$ if employed
- $c_t = b$ if unemployed
- When unemployed, workers receive a job offer with a probability $1 e^{-f\Delta}$
- The wage of job-offer is exogenously drawn from $w \sim G(w)$ iid over time
- Workers decide whether to accept or reject the offer (no recall)
- After accepting the offer, the worker loses the job with probability $1 e^{-s\Delta}$



Bellman Equations

Value functions:

$$U = b\Delta + e^{-r\Delta} \left[(1 - e^{-f\Delta}) \int \max\{E(w), U\} dG(w) + e^{-f\Delta}U \right]$$
$$E(w) = w\Delta + e^{-r\Delta} \left[e^{-s\Delta} E(w) + (1 - e^{-s\Delta})U \right]$$

Take the continuous-time limit $\Delta \rightarrow 0$: $rU = b + f \int \max dt$

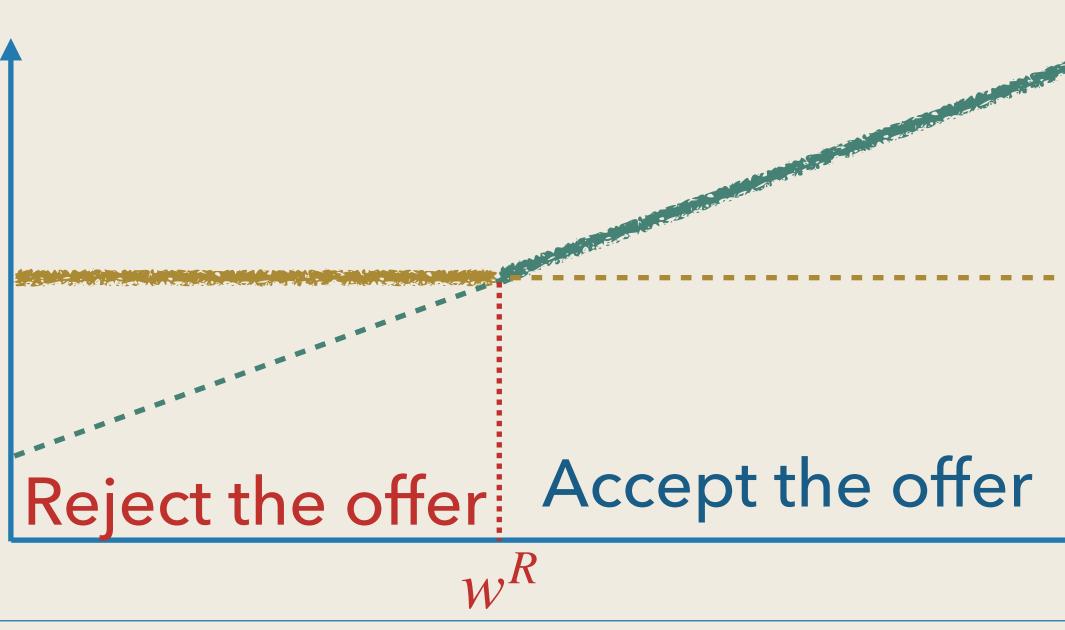
rE(w) = w + s(U - E(w))

$$x{E(w) - U,0}dG(w)$$

Reservation Wage Determination

- Combining the previous two value functions
 - $rU = b + f \int \max\{\frac{w + sU}{r + s} U, 0\} dG(w)$

• Workers accept the job offer if $w \ge w^R$, and reservation wage w^R satisfies



- $\frac{w^R + sU}{m} = U$ r + s

w + sUr + s

 $\blacktriangleright W$

Reservation Wage

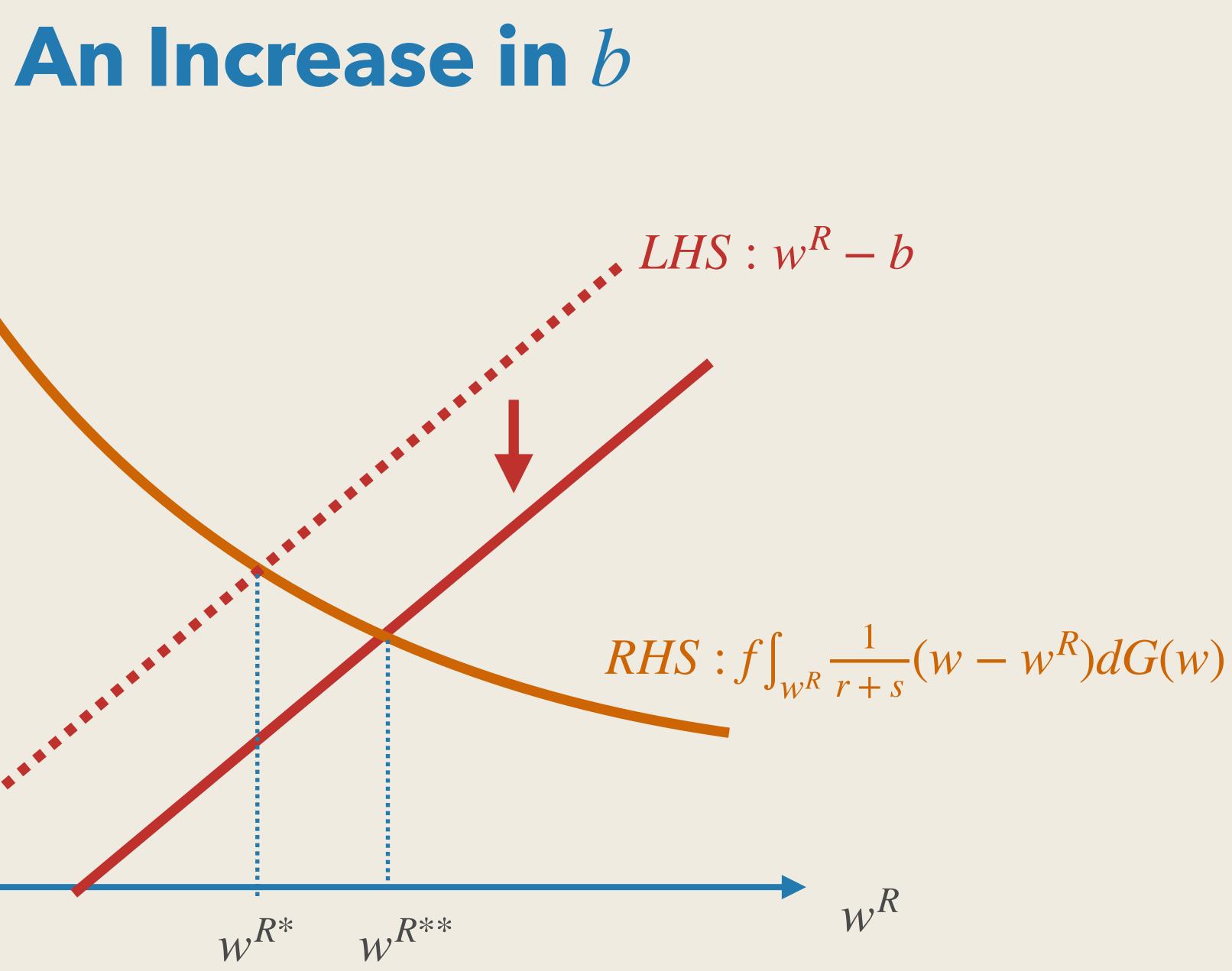
- Combining the previous two equations to eliminate U: $w^R - b = f \int_{w^R} dx$
 - LHS: benefit of accepting a wage offer w^R
 - RHS: cost of accepting an offer w^R = foregoing future better offer • At the optimum, two should be equated

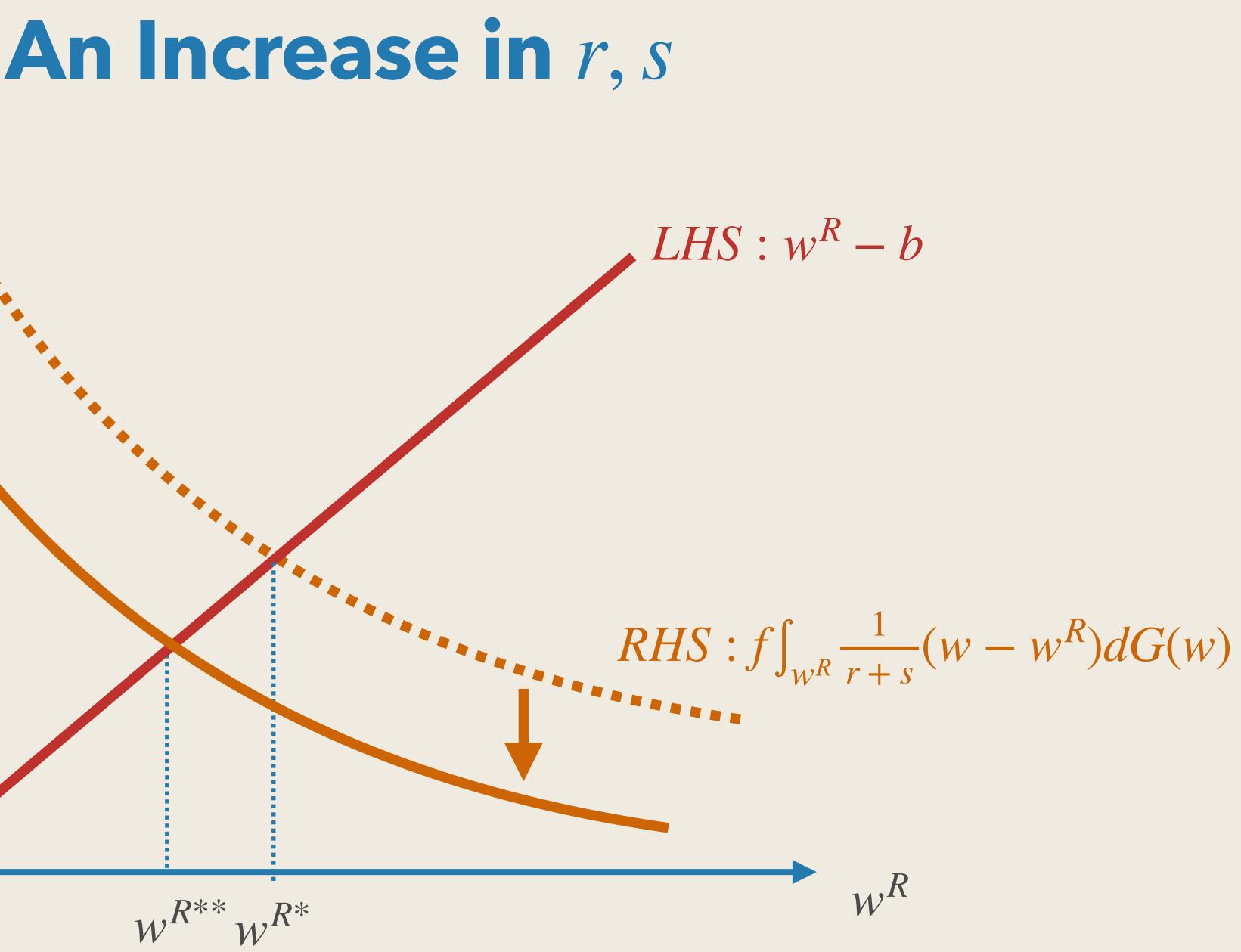
$$\frac{1}{r+s}(w-w^R)dG(w)$$

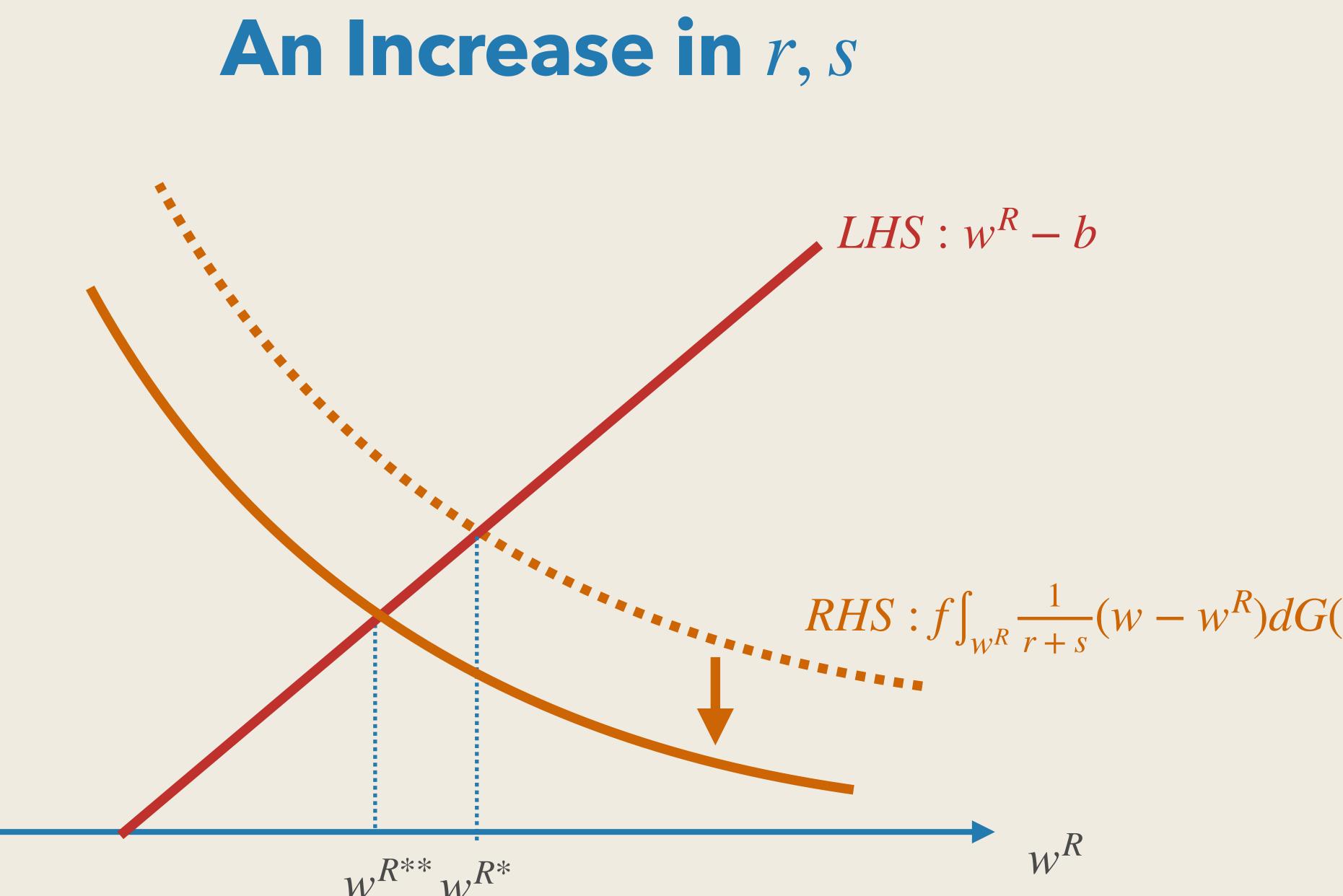
 $LHS: w^R - b$

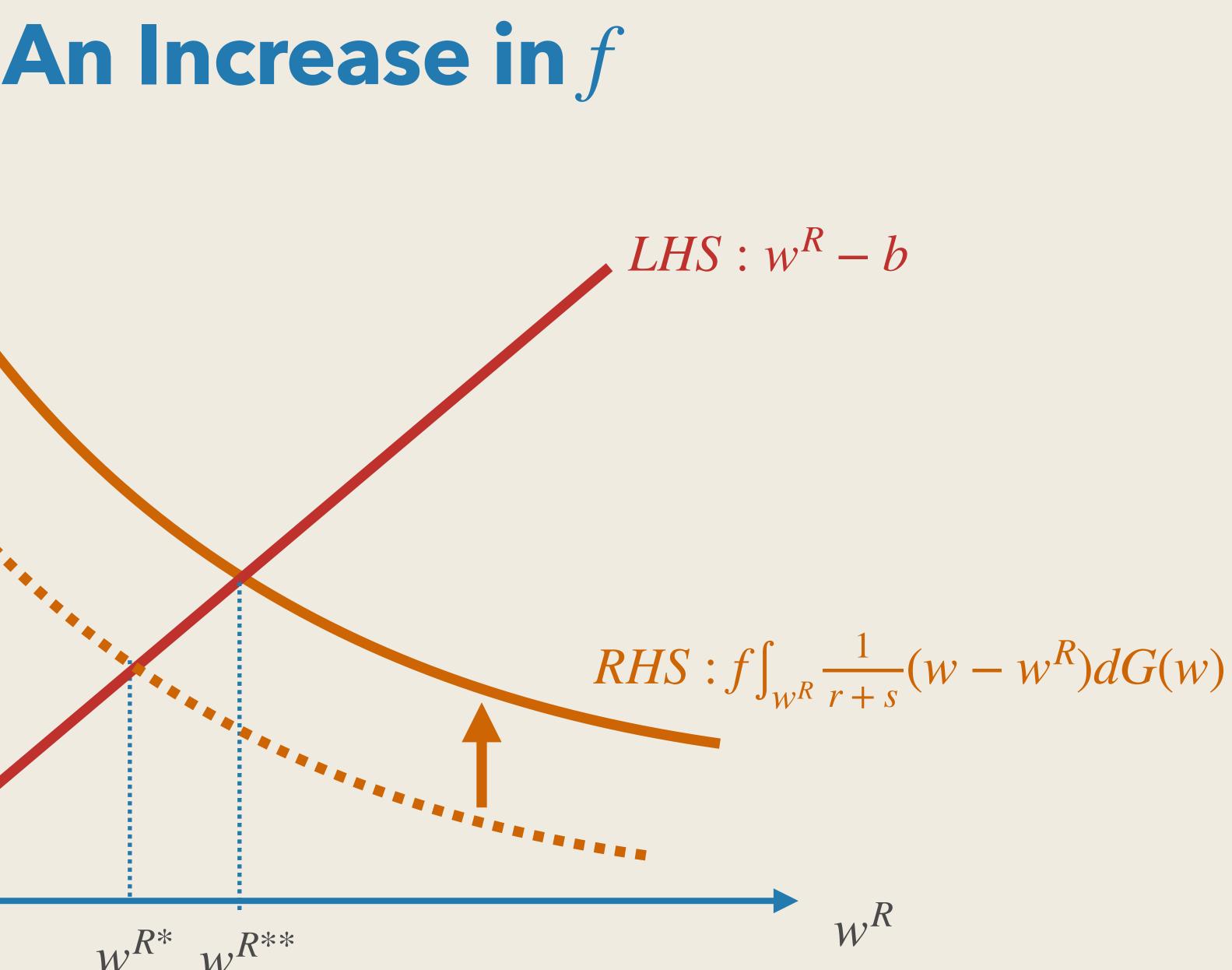
 $RHS: f \int_{W^R} \frac{1}{r+s} (w - w^R) dG(w)$

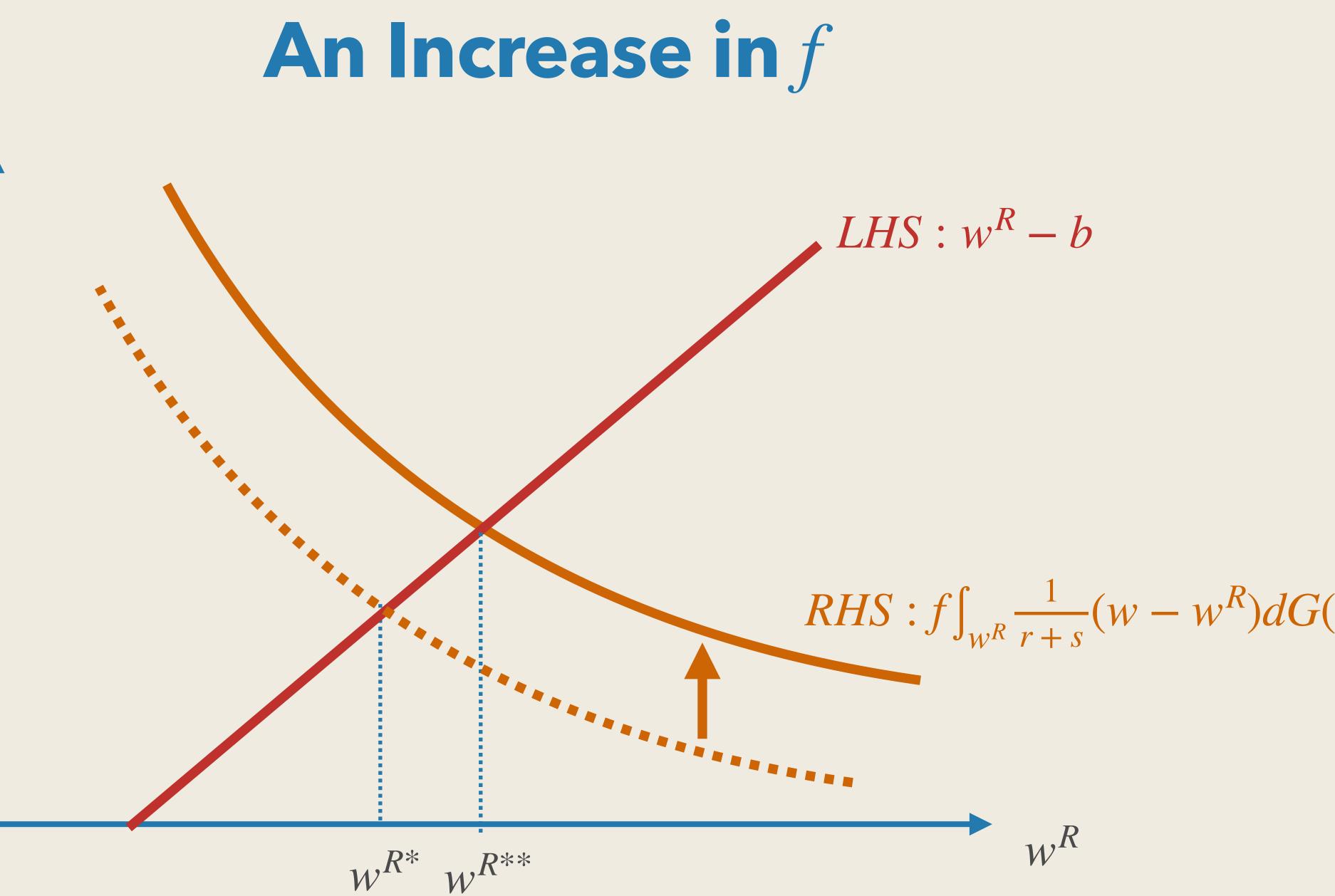
 w^R











Changes in Wage Offer Distribution

- How do the changes in G affect the job search behavior?
- Rewrite (1) as

$$w^{R} - b = f \int_{w^{R}} \frac{1}{r+s} (w - w^{R}) dG(w)$$

$$\Rightarrow \quad w^{R} - b = f \int \frac{1}{r+s} (w - w^{R}) dG(w) - f \int^{w^{R}} \frac{1}{r+s} (w - w^{R}) dG(w)$$

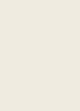
- Applying integration by parts, $\int^{w^R} w dG(w) = w^R G$
- Plugging back,

$$w^{R} - b = f \int \frac{1}{r+s} (w - w^{R}) dG(w) + f \frac{1}{r+s} \int^{w^{R}} G(w) dw$$

$$\frac{r+s+f}{r+s}w^R - b = f\frac{1}{r+s}\mathbb{E}[w]$$

$$G(w^R) - \int^{w^R} G(w) dw$$

 $+f\frac{1}{r+s}\int^{w^R}G(w)dw$



Mean-Preserving Spread

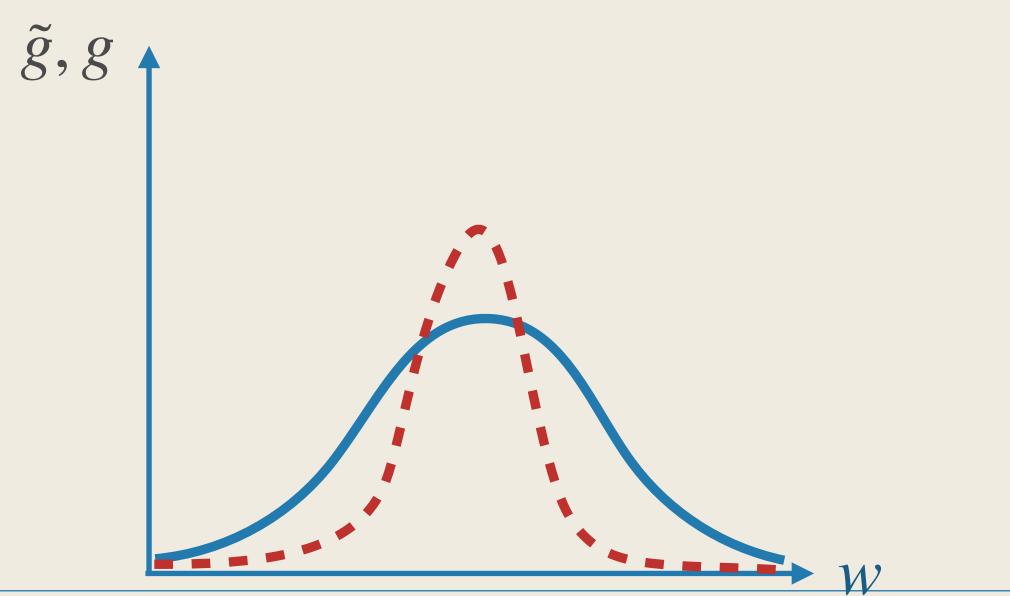
• We say distribution \tilde{G} is a mean-preserving spread of G iff

1.
$$\mathbb{E}_{\tilde{G}}[w] = \mathbb{E}_{G}[w]$$

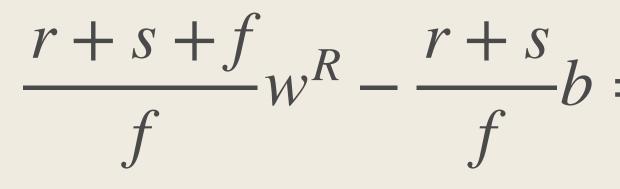
2. $\int^{\bar{w}} \tilde{G}(w) dw > \int^{\bar{w}} G(w) dw$ for all \bar{w}

Intuitively, the mean is the same but the variance is higher \tilde{G}, G \tilde{G}, \tilde{G}

W



Reservation wage condition is now



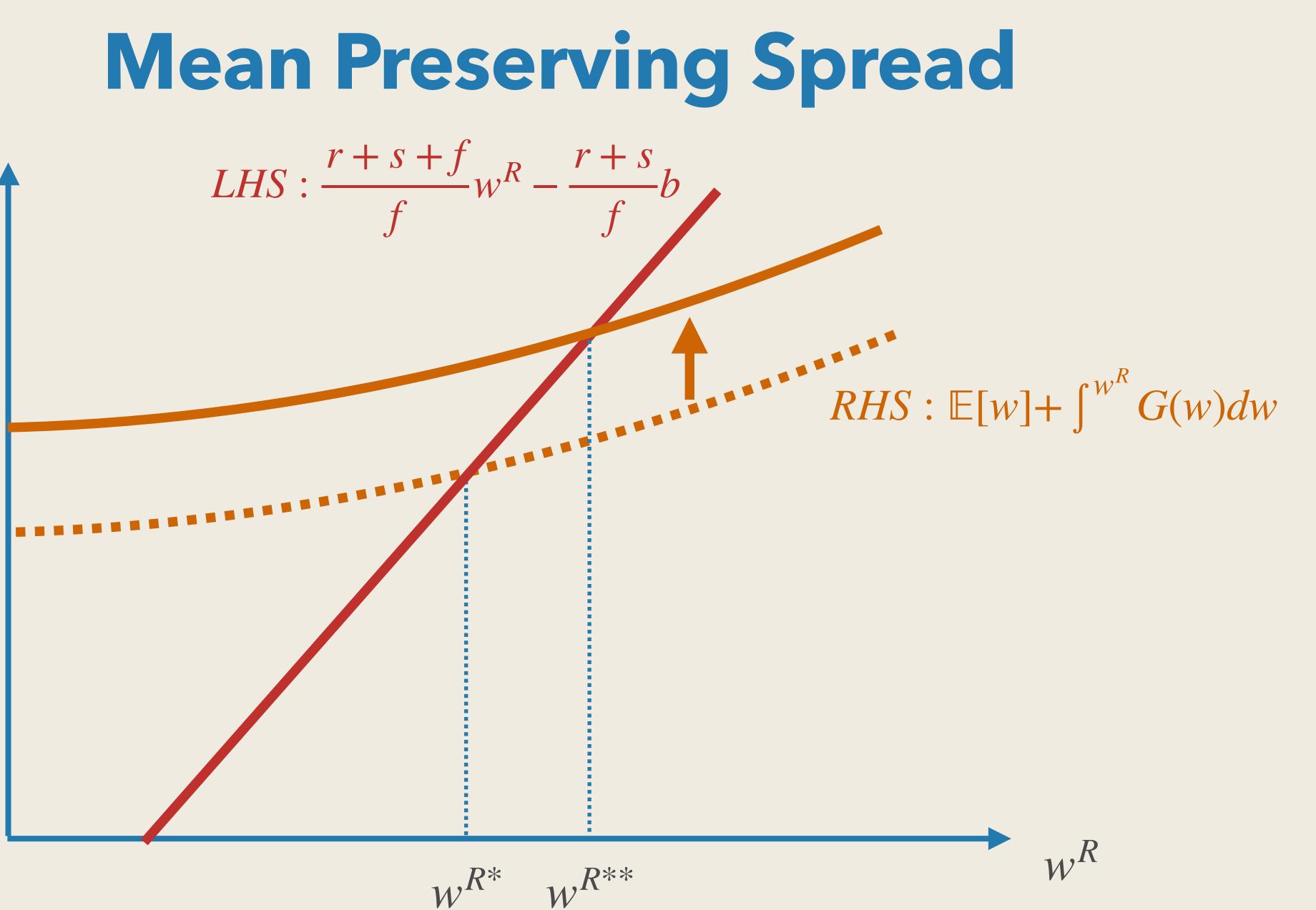
h(0) = 0, h'(v)

• When G shifts from G to G, how does reservation wage change?

More Variance → **Reservation Wage** ↑

$$= \mathbb{E}[w] + \int^{w^{R}} G(w) dw$$
$$\underbrace{=}_{h(w^{R})}$$

$$w^R) = G(w^R) \in [0,1]$$



- You will accept the job offer only if the wage is high enough ("option value")
- Therefore, you only care about the right tail of the wage distribution
- More variance/risk \rightarrow more chances of a very good wage offer \rightarrow search more
- Now go back to the original question... How can an increase in f has no effect on labor market dynamics?

Intuition

The rate at which workers transition from U to E is What happens if f increases? $\frac{d \ln UE}{d = 1 -$ $d\ln f$ • Under what condition, $\frac{d \ln UE}{d \ln f} = 0$?

UE Rate

 $UE = f(1 - G(w^R))$

$$\frac{G'(w^R)w^R}{1 - G(w^R)} \frac{d\ln w^R}{d\ln f}$$

Pareto Distribution

- We guess and verify that the following economy features such a property:
 - 1. Wage distribution follows Pareto distribution,
 - G(w) =
 - 2. Outside option b is proportional to the average wage in the economy, $b = \bar{b}\mathbb{E}[w | w \ge w^R]$ $= \bar{b} \frac{1}{\alpha - 1} w^R$

$$1 - (w/w)^{-\alpha}$$

UE Rate Does not Depend on *f* Plug the conditions 2 into (1), $w^R - b = -\frac{r}{r}$ **Solving for** w^R : $w^R = \frac{1}{(r+s)(1-s)}$ The UE rate is $UE = (\alpha - 1)(r$

$$\frac{f}{1} \frac{1}{\alpha - 1} \frac{w^{\alpha}(w^R)^{1 - \alpha}}{w^{\alpha}(w^R)}$$

$$\frac{f}{-\bar{b}\alpha/(\alpha-1))}\frac{1}{\alpha-1} \int \frac{1}{\omega} \frac{w}{\omega}$$

$$(1 - \bar{b}\alpha/(\alpha - 1))$$

Main Result

1. has no effect on the UE rate, $\frac{d \ln UE}{d \ln f} = 0$ 2. increases the average wage: $\frac{d \ln \mathbb{E}[w \mid w \ge w^R]}{d \ln f} > 0$

If it becomes easier to meet, workers become pickier.

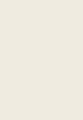
- This offsets the direct effect, leaving no effect on the unemployment rate • ... yet workers find a better match and the average wage increases

- If (i) wage distribution follows Pareto with tail parameter α ; and (ii) UI benefit, b, is proportional to the average wage in the economy, an increase in job-finding rate, f,

McCall + DMP

DMP with Job Heterogeneity

- Now we endogenize the wage distribution
- Firm produces z unit of output per worker, where z is match quality and $z \sim G(z)$
- Assume match quality follows Pareto distribution, $G(z) = 1 (z/\underline{z})^{-\alpha}$
- Firm posts vacancy at cost $c = \overline{c}\overline{z}$ where \overline{z} is the average output in the economy
- Unemployed workers receive UI benefits of $b = \bar{b}\bar{z}$
- When v and u meet, draw match quality z, and decide whether to form the match
- Wages are set according to Nash bargaining with worker bargaining power γ
- The matching function is CRS and given by AM(u, v)



Steady State Equilibrium

- The firm's value of filled job with match quality z satisfies (r+s)J(z) = z - w(z) + sV
- The employed worker's value
 (r -
- The unemployed worker's value
 - $rU = b + Af(\theta) \int \max\{E(z) U, 0\} dG(z)$
- The value of vacancy is $rV = -c + Aq(\theta) \int \max\{J(z) - V, 0\} dG(z)$
- Free entry: V = 0

(r+s)E(z) = w(z) + sU

Reservation Match Quality • Define $S(z) \equiv E(z) + J(z) - U - V$. Then S(z) =

Nash bargaining implies

• Therefore the reservation match quality z^R satisfies $S(z^R) = 0$ or

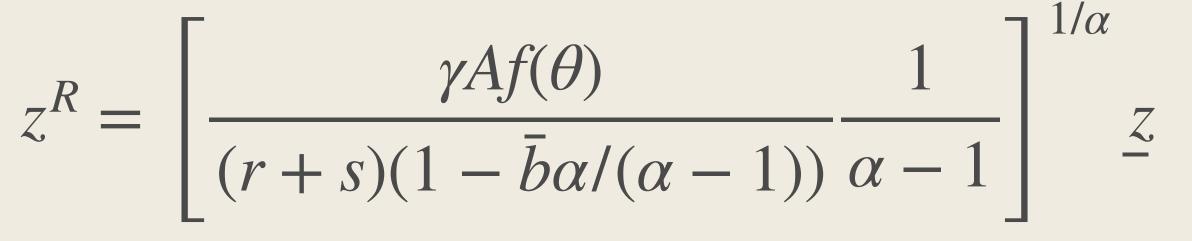
$$=\frac{z}{r+s}-\frac{r}{r+s}U$$

 $E(z) = U + \gamma S(z)$

 $rU = b + Af(\theta) \int \max\{\gamma S(z), 0\} dG(z)$

 $z^{R} = rU$

- Steady-state equilibrium (z^R, θ) solves $z^{R} - b = \gamma A f$
 - $\beta(1-\gamma)Aq(\theta)$
- Using $b = \overline{b}\mathbb{E}[z | z \ge z^R]$ and $c = \overline{c}\mathbb{E}[z]$ $\theta = \beta \frac{1 - \gamma (\alpha - 1 - \alpha b)}{\gamma \quad \alpha \bar{c}}$



Steady State (θ, z^{R})

$$f(\theta) \int_{z^R} \frac{1}{r+s} (z-z^R) dG(z)$$

$$\int_{z^R}^{\infty} \frac{1}{r+s} (z-z^R) dG(z) = c$$

$$z \ge z^{R}$$
], and $G(z) = 1 - (z/z)^{-\alpha}$

$$UE = Af(\theta)(1 - G(z^R))$$

$$\frac{d \ln UE}{d \ln A} = 1 - \frac{d \ln f(\theta)}{d \ln A} + \frac{G'(z^R)z^R}{1 - G(z^R)} \frac{d}{d}$$

Balanced Growth in the Labor Market

If (i) match quality distribution follows Pareto with tail parameter α ; and (ii) UI benefit, b, and vacancy cost, c, are proportional to the average output in the economy, an increase in matching technology, A,

1. has no effect on (u, v, θ, UE)

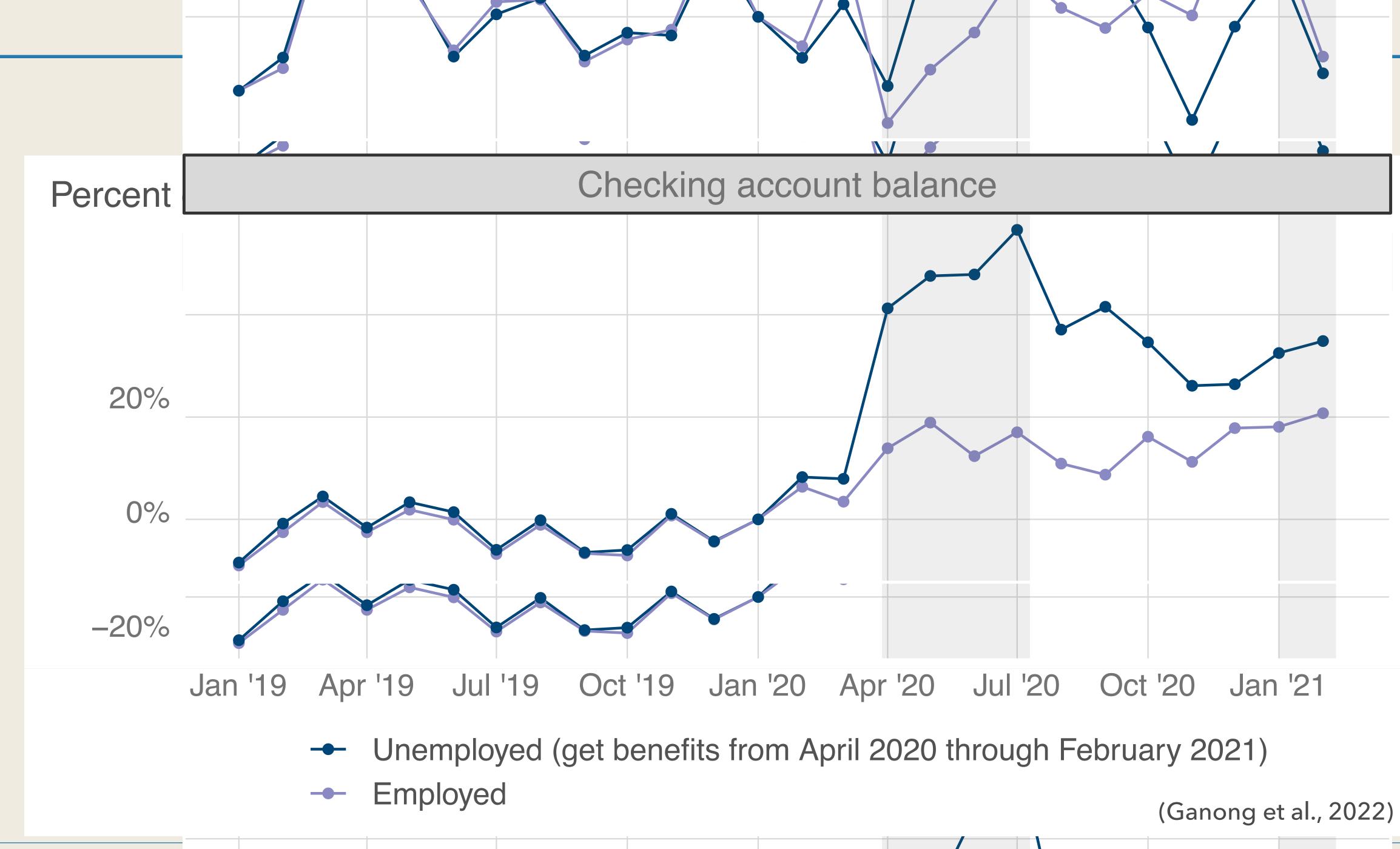
2. increases the output in the economy

Yet, it increases output in the economy

An improvement in matching technology does not show up in the labor market

Mirco Consequences of Increasing UI Benefits

Ganong, Greig, Noel, Sullivan, and Vavra, 2022

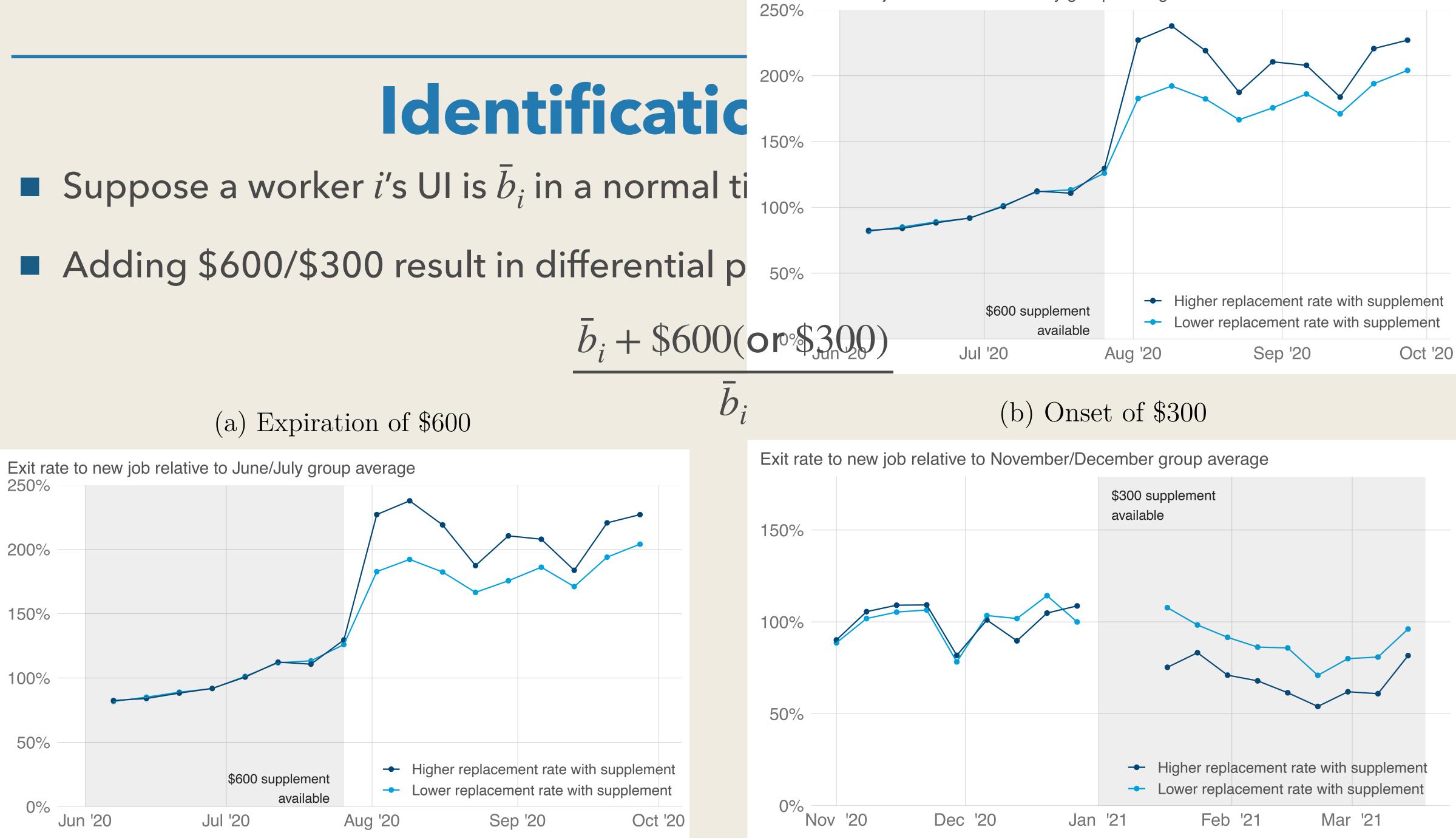




Micro Effect of UI Benefit

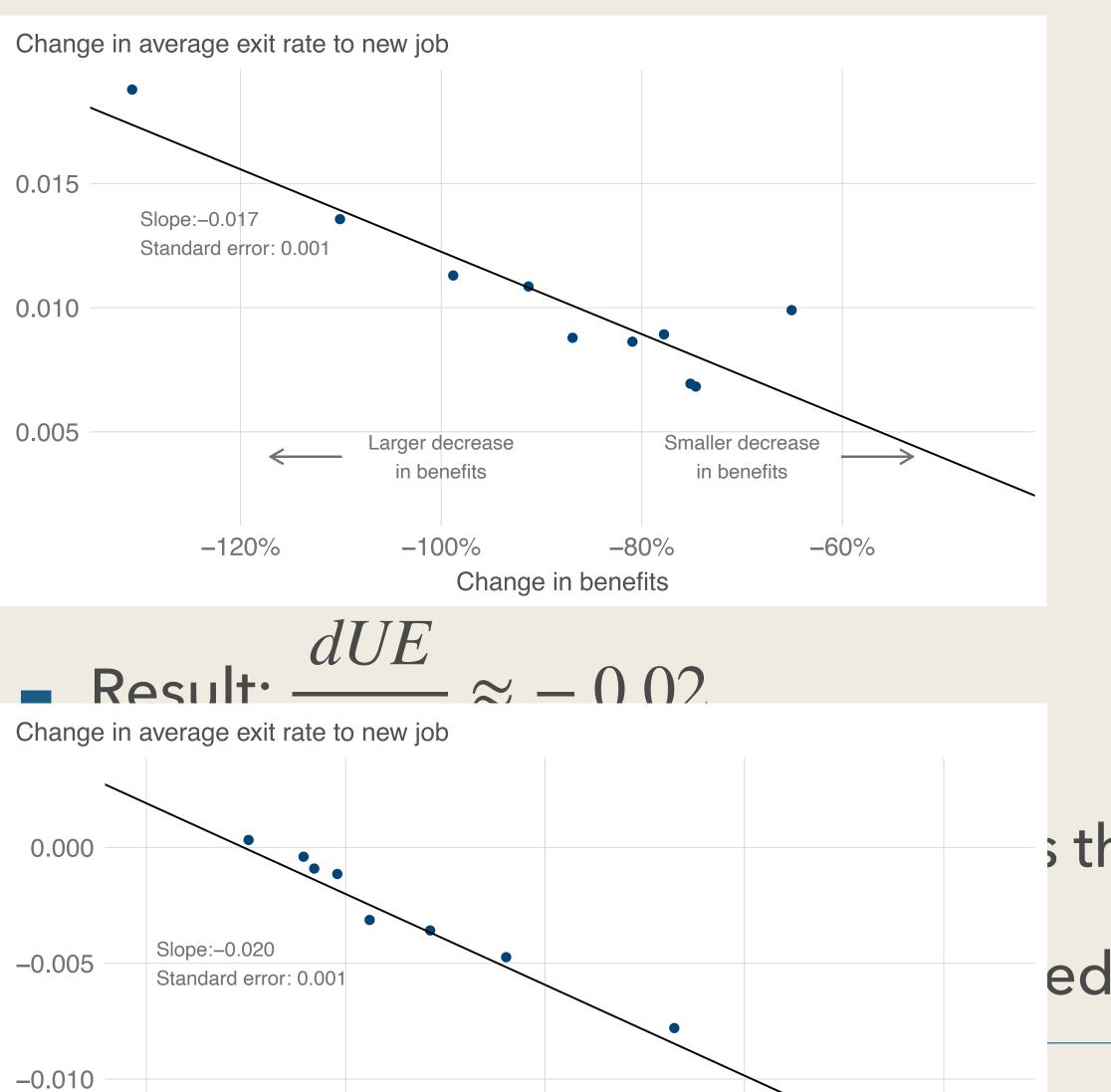
- What is the micro consequence of UI benefit expansion?
 - micro: individual worker's response to an increase in UI
 - macro: economy-wide response to an increase in UI
- Let us go back to McCall's model.
- How does the increase in UI benefit affect the $UE \equiv f(1 G(w^R))$ rate?

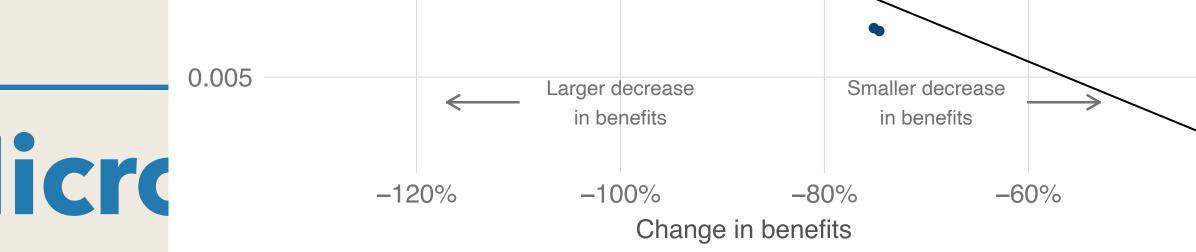
$$\frac{dUE}{d\ln b} = -fG'(w^R)w^R\frac{d\ln w^R}{d\ln b} < 0$$

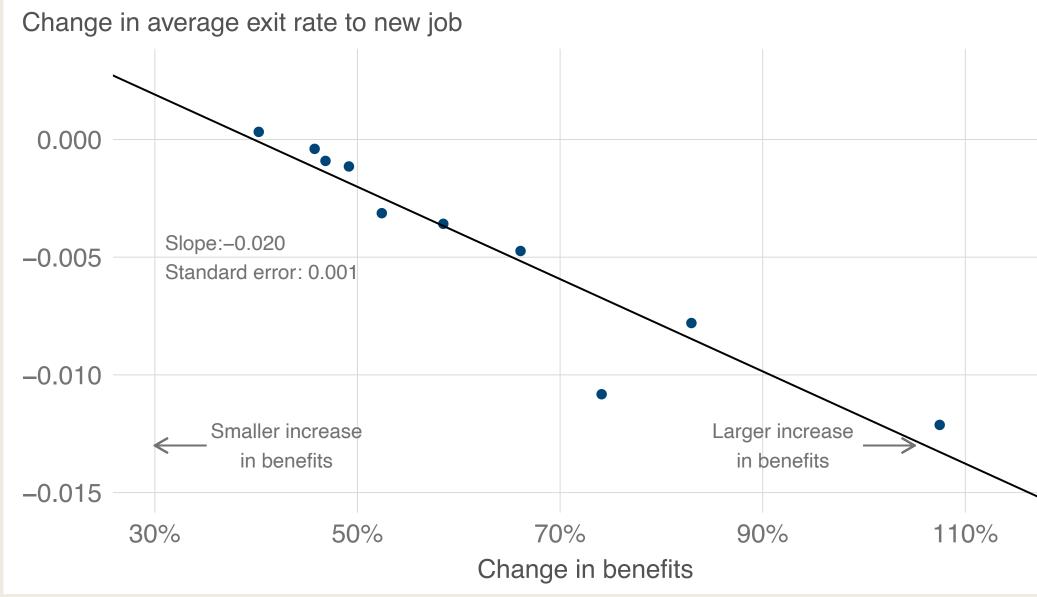


Small Micro

(a) Expiration of \$600







s the job-finding rate by 0.02 percentage points ed employment by 0.6% – small effect

Macro Consequences of Increasing UI Benefits

Chodorow-Reich, Coglianese, and Karabarbounius (2019)

- - At the macro level, f changes
- Not necessarily. Now consider McCall + DMP with exogenous (b, c)

$$\frac{dUE}{d\ln b} = -f(\theta)G'(w^R)w^R\frac{d\ln w^R}{d\ln b} + (1 - G(w^R))f'(\theta)\theta\frac{d\ln\theta}{d\ln b}$$

micro (-) macro (-)

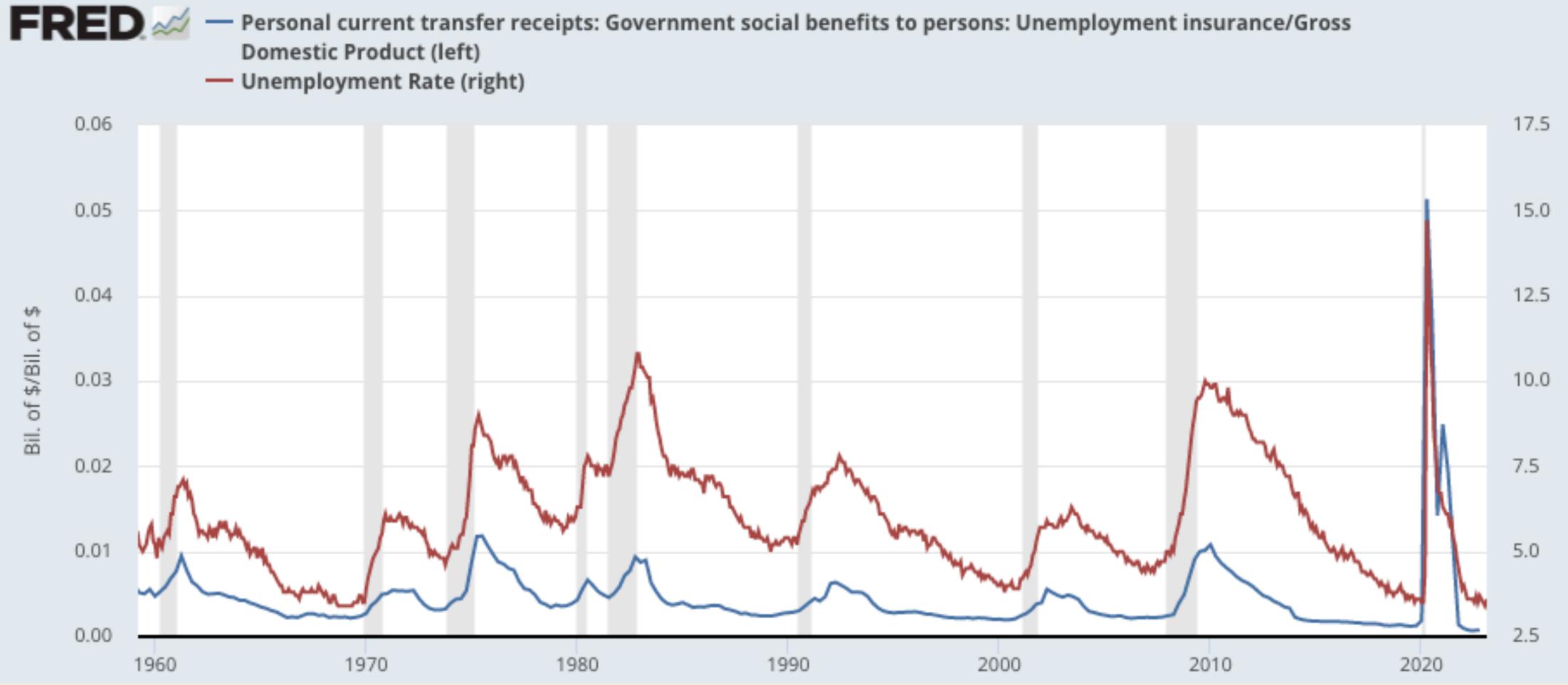
- How large is the macro effect? Much harder question to answer empirically Suppose we run time-series regression:
 - What are the problems?

Macro Effect

Does the previous result imply the macro impact of UI expansion is small as well?

 $y_t = \alpha + \beta \ln b_t + \epsilon_t$

UI Benefit and Unemployment Rate



Measurement Error Approach

		Louisiana	Wisconsin
Real-time data	Unemployment rate (moving average)	5.9%	6.9%
	duration of benefit extensions	14 weeks	28 weeks
Revised data	Unemployment rate (moving average)	6.9%	6.9%
	duration of benefit extensions	28 weeks	28 weeks
	UI error	-14 weeks	0 weeks

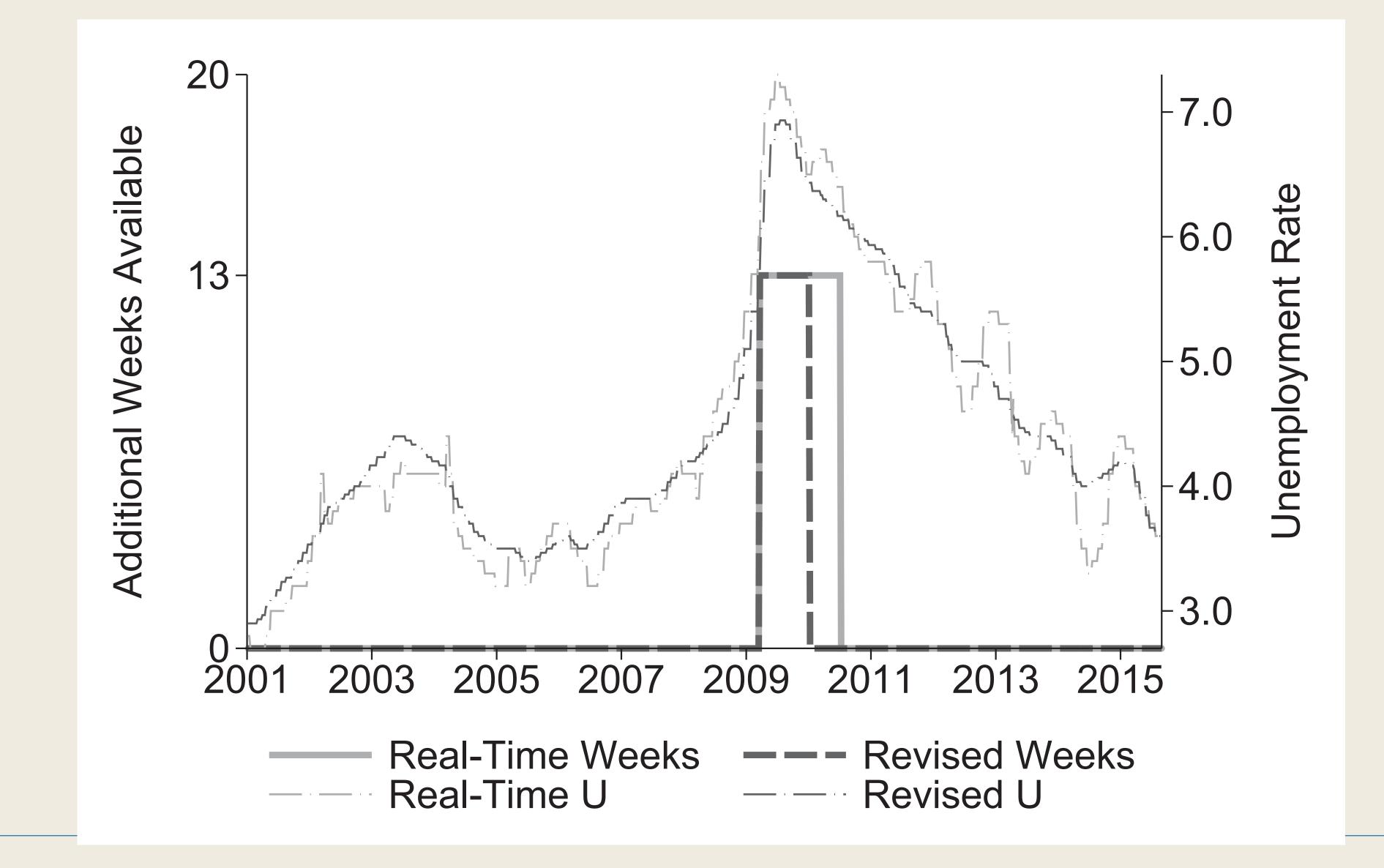
The duration of UI benefits is determined through real-time estimates of unemp. rate

Contain measurement errors with revision later on

Measurement error plausibly orthogonal to underlying economic fundamentals

APRIL 2013 EXAMPLE

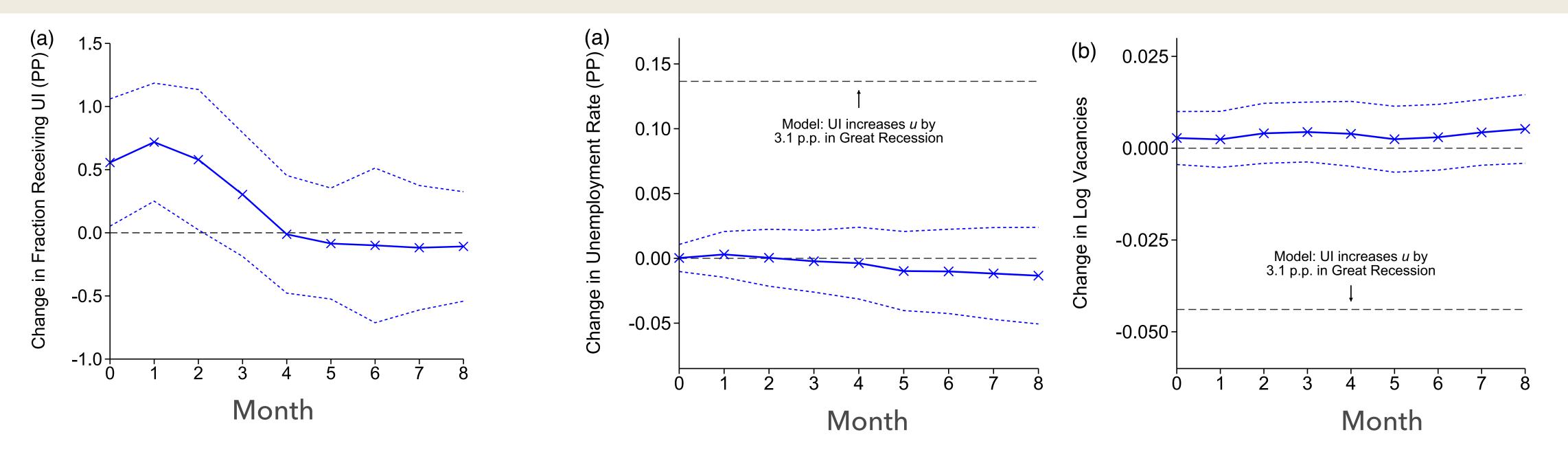
Extended Benefits and Unemployment in Vermont



Small Macro Effect

$y_{t+h} - y_{t-1} = \beta_h \times (\text{UI Benefit Increase from Measurement Error}) + \gamma' \mathbf{X}_{t,h} + \epsilon_{t,h}$

Fraction Receiving UI Unemployment Rate



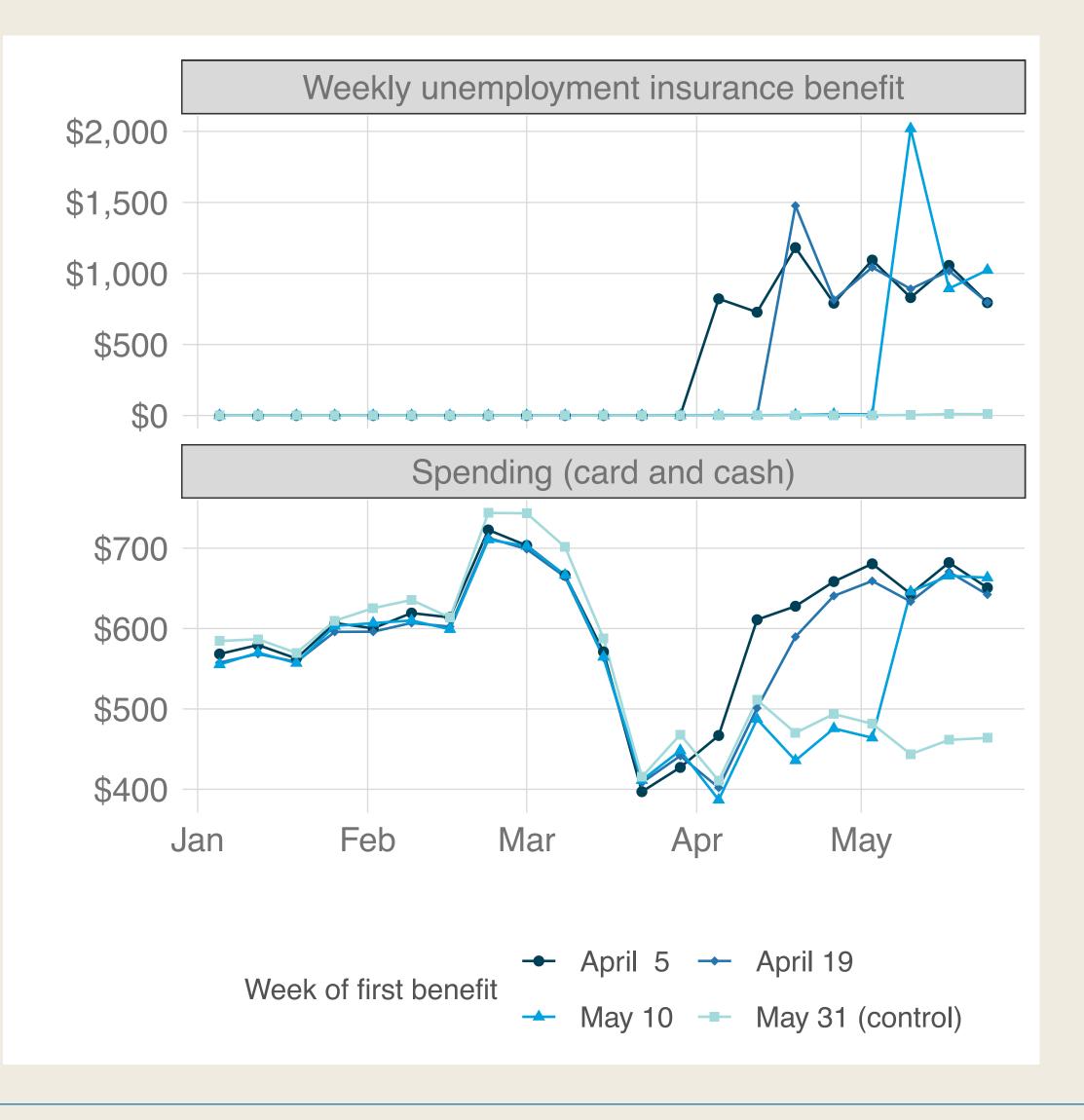
Vacancies



Keynsian Channel of Ul Benefit

- DMP paradigm robustly predicts an increase in UI benefits increases unemployment
- Why don't we see it in the data? What is wrong with DMP?
- Ul can have no effect or even decrease unemployment with... incomplete market + nominal rigidity
- I ul expansions stimulate consumption \Rightarrow aggregate demand $\uparrow \Rightarrow$ job creation \uparrow

Spending Response to COVID UI Benefit



- Households spend 30-40% of the UI Benefit Expansions within one month
- \$600 supplement has increased aggregate spending by 3% (in PE)
- With nominal rigidity, we expect this would increase vacancy creation
- See Kekre (2022) for DMP + HANK

