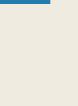
Efficiency in DMP Model

704 Macroeconomics II Topic 4

Masao Fukui

- We built a model of unemployment and studied the positive implications
- Today, we focus on the normative implications
- Is the equilibrium efficient? Is unemployment too high or too low?

Is Unemployment Efficient?



Constrained Efficient Allocation

Constrained Efficiency

- Consider the canonical DMP model as in lecture 2
- We want to study how a benevolent planner would allocate resources
- If the planner could get rid of search frictions, would do so
 - neither interesting nor realistic
- Instead, we treat search friction as part of technology
- Use the concept of constrained efficiency: Planner's problem taking search friction as given

Planning Problem

- $\max_{\substack{\{C_t, v_t, u_{t+1}\}}} \sum_{t=1}^{t}$
- s.t. $C_t = z_t(1 u_t)$ $u_{t+1} u_t = s(1 u_t)$
- Here, b is treated as home production
- With linear preferences, maximizing consumption = maximizing output
 - Transfers immaterial: everyone has the same marginal utility of consumption
- The last constraint captures "constrained" efficiency
 - Without it, $u_t = v_t = 0$ iff $z_t > b$ (again, neither interesting nor realistic)

$$\sum_{t=0}^{\infty} \beta^{t} C_{t}$$

$$-u_t + bu_t - cv_t$$

$$-u_t - f(v_t/u_t)u_t, \quad u_0 \text{ given}$$

Reducing the Constraints

Planner's problem simplifies to a standard dynamic optimization:

$$\max_{\{v_t, u_{t+1}\}} \sum_{t=0}^{\infty} \beta^t [z_t(1 - u_t) + bu_t - cv_t]$$

s.t.
$$u_{t+1} - u_t = s(1)$$

Can solve using

- Lagrangian method
- Dynamic programming

 $-u_t) - M(v_t, u_t), \quad u_0 \text{ given}$

The Bellman equation is

$$\Omega(u, z) = \max_{u', v} z(1 - u)$$

 $c = -\beta \frac{\partial M(\iota)}{\partial t}$

$$\frac{\partial \Omega(u,z)}{\partial u} = -z + b + \beta \left(1 - s - \frac{\partial M(u,v)}{\partial u}\right) \mathbb{E}\left[\frac{\partial \Omega(u',z')}{\partial u'}\right]$$

Recursive Formulation

u) + $bu - cv + \beta \mathbb{E} \Omega(u', z')$

s.t. u' - u = s(1 - u) - M(v, u)

$$\frac{u,v)}{v} \mathbb{E} \left[\frac{\partial \Omega(u',z')}{\partial u'} \right]$$



■ Under CRS matching function, $M = (\partial_{A})$

$$\frac{\partial M(u,v)}{\partial v} = \frac{1}{v} M(u,v) - \frac{\partial M(u,v)}{\partial u} u \frac{1}{v}$$
$$= \frac{1}{v} M(u,v) - \frac{\partial \ln M(u,v)}{\partial \ln u} \frac{M(u,v)}{u} u \frac{1}{v}$$
$$\underbrace{\frac{\partial \ln u}{\exists \alpha}}_{\equiv \alpha}$$

 $= q(\theta)(1 - \alpha)$

Algebra

$\partial M(u,v)$ $\partial \ln M(u,v) M(u,v)$ ר 1

<i>d</i> ln <i>u</i>	U
$\equiv \alpha$	$\equiv f(\theta)$
$f(\theta)$	

$$\partial_u M$$
) $u + (\partial_v M)v$, so

Planner's Solution vs. Equilibrium • Defining the planner's surplus from a job as $S_t^{SP} \equiv -\partial_u \Omega(u_t, z_t)$

- The planner's solution $\{S_t^{SP}, \theta_t^{SP}\}$ solves
- $S_t^{SP} = z_t b + \beta(1 s \alpha_t f(\theta_t^{SP})) \mathbb{E}S_{t+1}^{SP}$ $c = (1 - \alpha_t)\beta q(\theta_t^{SP})\mathbb{E}_t S_{t+1}^{SP}$ Recall in the decentralized equilibrium, $\{S_t^{DE}, \theta_t^{DE}\}$ solves $S_t^{DE} = z_t - b + \beta(1 - s - \gamma f(\theta_t^{DE})) \mathbb{E}S_{t+1}^{DE}$ $c = (1 - \gamma)\beta q(\theta_t^{DE}) \mathbb{E}_t S_{t+1}^{DE}$
- Planner and eqm share the same stock-flow equation: $u_{t+1} u_t = -f(\theta_t)u + s(1 u)$
- Find the difference?

9

Hosios (1990) Condition Decentralized equilibrium is constrained efficient if and only if $\alpha_t = \gamma$

- Under Cobb-Douglas, $M(u, v) = \bar{m}u^{\alpha}v^{1-\alpha}$, efficiency is achieved when $\alpha = \gamma$
- Holds only in a knife-edge case
- To understand, it is useful to break down into two margins
 - 1. Investment margin: Is vacancy creation incentive efficient given the value of matches?
 - 2. Valuation margin: Given market tightness, are the matches valued correctly?

Investment Margin

$c = (1 - \alpha_t)\beta q(\theta_t^{SP})\mathbb{E}_t S_{t+1}^{SP}$

- If matches are valued correctly ($S_{t+1}^{SP} = S_{t+1}^{DE}$), is market tightness θ_t efficient?
- When a firm creates a vacancy, it creates a social surplus of $\frac{\partial M(u,v)}{\partial v}S = (1 \alpha)q(\theta)S$ • Less than $q(\theta)S$ because it lowers the meeting prob. of other firms

- Firm's private incentive to create a job is $(1 \gamma)q(\theta)S$
 - Less than $q(\theta)S$ because workers capture part of rents (hold-up problem)
 - Firms cannot capture full surplus ⇒ force toward too little vacancy creations
- When $1 \gamma = 1 \alpha$, these two forces exactly cancel

$$c = (1 - \gamma)\beta q(\theta_t^{DE}) \mathbb{E}_t S_{t+1}^{DE}$$

11

Valuation Margin $S_t^{SP} = z_t - b + \beta(1 - s - \alpha_t f(\theta_t^{SP})) \mathbb{E}S_{t+1}^{SP}$ $S_t^{DE} = z_t - b + \beta(1 - s - \gamma f(\theta_t^{DE})) \mathbb{E}S_{t+1}^{DE}$

- When the match separates, it creates a social surplus of $\frac{\partial M(u,v)}{\partial u}S = \alpha_t f(\theta)S$
- Lower than $f(\theta)S$ because it congests the market
- When the match separates, it creates a private surplus of $\gamma f(\theta) S$
 - Lower than $f(\theta)S$ because workers can only get a fraction of surplus
- When $\alpha_t = \gamma$, private and social valuation are aligned

If market tightness is the same ($\theta_t^{SP} = \theta_t^{DE}$), is the valuation of the job S_t efficient?

Despite there being two sources of inefficiency, one condition ensures efficiency

This is magical to me

Magic of Hosios Condition

Unemployment Too High or Too Low?

Focus on the steady state.

Then

$$c = \beta q(\theta^{DE}) \frac{z - b}{1 - \beta(1 - s - \gamma f(\theta^{DE}))}$$

 $\gamma < \alpha \Leftrightarrow \theta^{DE}$

- **No clear empirical guidance on the choice of** γ and α
- Often suggested: $\gamma \ll \alpha$, which means unemployment is too low!
- Can restore efficiency with income tax or tax on vacancy cretion

vs.
$$c = \beta q(\theta^{SP}) \frac{z - b}{1 - \beta(1 - s - \alpha f(\theta^{SP}))}$$

$$> \theta^{SP} \Leftrightarrow u^{DE} < u^{SP}$$

Random vs. Directed Search

- There is an alternative way of modeling search friction: directed search
 - Pioneered by Moen (1997), and popularized by Menzio and Shi (2011)
- Firms post wages and workers direct what jobs to search (can apply only one)
- In this class of models, the equilibrium is always efficient
- Reality is clearly a mix of random vs. directed search
- How much are searches in the real world directed? How can we tell from the data?
 - See Lentz, Maibom, and Moen (2024) for a recent attempt

