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Inequality: Model vs. Data

■ We have covered two classes of incomplete market models: 
• Idiosyncratic shock to return of savings (Moll, 2014, with many predecessors) 
• Idiosyncratic shock to labor income (Belwley-Hugget-Aiyagari) 

■ These models naturally generate inequality in income, wealth, and consumption 

■ Are they consistent with the data? 

■ We focus on top inequality (  top 10%) because 
(i) This is where the theory has strong predictions 
(ii) This might be on its own interest as they drive the aggregate

≈
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Top 10% Wealth Share
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Consumption, Wealth, and Income 
Inequality in the Data 
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Data

■ Panel Study of Income Dynamics (PSID) 2004-2021 

■ Wealth refers to net worth = assets - liabilities  

■ Labor income: gross of taxes, benefits & employee payroll deduction 

■ Capital income: dividends, interests, business income, rents, capital gains, etc 

■ Consumption: total expenditure including various categories
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Complmentary CDF
■ We are interested in the relationship between 

1. Level of  (consumption, wealth, and income) 
2. Ranking of  in the distribution: 

 
 
 
 

■ Moreover, we look at log-log relationships 

■ This answers the following question: 
“If  increases by 1%, how much does the ranking increase in percentage terms?”

x
x

x
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Prob(x̃ > x) = 1 − F(x)

Complementary CDF



Consumption Distribution in 2004
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Figure 1. Pareto tail estimation of consumption in the 2004 PSID wave.
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(b) Top 10%

relationship departs from linearity at the very top of the sample—we thus need a method

to assess whether such a departure should be interpreted as inevitable finite-sample noise or

is informative about actual underlying changes in the shape of the distribution. To address

these issues, we employ a purely data-driven procedure based on the methodology of Clauset

et al. (2009) to (i) identify a best-fitting Pareto tail for a finite data set; (ii) statistically test

the null hypothesis that the distribution indeed displays a Pareto tail; and (iii) statistically

test whether an alternative distribution—e.g., lognormal or exponential— gives a better fit.

Estimating the Asymptotic Pareto Distribution. Throughout this section, we con-

sider a generic sample of survey data {xi}ni=1 with sample weights {!i}ni=1, where
Pn

i=1 !i = 1.

To assess whether the distribution of X has a Pareto tail and estimate the corresponding

coe�cient ⇣X , we proceed as follows. As mentioned above, this hypothesis implies an ap-

proximately linear relationship between ln F̄ (xi) and ln xi for large enough values of xi, say

xi � x. The slope of this linear relationship gives the tail coe�cient �⇣X . For any given x,

we can thus estimate ⇣X via maximum-likelihood (MLE) or ordinary least squares (OLS) as

follows:

⇣̂
MLE
X (x) =

Pn
i=1 !i1{xi�x}Pn

i=1 !i ln(x/xi)1{xi�x}
, ⇣̂

OLS
X (x) =

Pn
i=1 !i ln(x/xi) ln F̄ (xi)1{xi�x}Pn

i=1 !i(ln(x/xi))21{xi�x}
. (1)

Notice that these estimators depend on the choice of x. Choosing a value that is too low

may result in fitting a power-law model to non-power-law data, while a too high value may

discard valid data points. To find the optimal x, we compute the Kolmogorov-Smirnov (KS)
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Figure 1. Pareto tail estimation of consumption in the 2004 PSID wave.
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(b) Top 10%

relationship departs from linearity at the very top of the sample—we thus need a method

to assess whether such a departure should be interpreted as inevitable finite-sample noise or

is informative about actual underlying changes in the shape of the distribution. To address

these issues, we employ a purely data-driven procedure based on the methodology of Clauset

et al. (2009) to (i) identify a best-fitting Pareto tail for a finite data set; (ii) statistically test

the null hypothesis that the distribution indeed displays a Pareto tail; and (iii) statistically

test whether an alternative distribution—e.g., lognormal or exponential— gives a better fit.

Estimating the Asymptotic Pareto Distribution. Throughout this section, we con-

sider a generic sample of survey data {xi}ni=1 with sample weights {!i}ni=1, where
Pn

i=1 !i = 1.

To assess whether the distribution of X has a Pareto tail and estimate the corresponding

coe�cient ⇣X , we proceed as follows. As mentioned above, this hypothesis implies an ap-

proximately linear relationship between ln F̄ (xi) and ln xi for large enough values of xi, say

xi � x. The slope of this linear relationship gives the tail coe�cient �⇣X . For any given x,

we can thus estimate ⇣X via maximum-likelihood (MLE) or ordinary least squares (OLS) as

follows:

⇣̂
MLE
X (x) =

Pn
i=1 !i1{xi�x}Pn

i=1 !i ln(x/xi)1{xi�x}
, ⇣̂

OLS
X (x) =

Pn
i=1 !i ln(x/xi) ln F̄ (xi)1{xi�x}Pn

i=1 !i(ln(x/xi))21{xi�x}
. (1)

Notice that these estimators depend on the choice of x. Choosing a value that is too low

may result in fitting a power-law model to non-power-law data, while a too high value may

discard valid data points. To find the optimal x, we compute the Kolmogorov-Smirnov (KS)
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Top 10% Consumption Distribution in 2004

■ log-rank approximately log-linear: 
 

■ What is this distribution? 
— Pareto:  

■ This is called “power law”

Pr(x̃ > x) = (x/x)−ζ
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Figure 1. Pareto tail estimation of consumption in the 2004 PSID wave.
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(b) Top 10%

relationship departs from linearity at the very top of the sample—we thus need a method

to assess whether such a departure should be interpreted as inevitable finite-sample noise or

is informative about actual underlying changes in the shape of the distribution. To address

these issues, we employ a purely data-driven procedure based on the methodology of Clauset

et al. (2009) to (i) identify a best-fitting Pareto tail for a finite data set; (ii) statistically test

the null hypothesis that the distribution indeed displays a Pareto tail; and (iii) statistically

test whether an alternative distribution—e.g., lognormal or exponential— gives a better fit.

Estimating the Asymptotic Pareto Distribution. Throughout this section, we con-

sider a generic sample of survey data {xi}ni=1 with sample weights {!i}ni=1, where
Pn

i=1 !i = 1.

To assess whether the distribution of X has a Pareto tail and estimate the corresponding

coe�cient ⇣X , we proceed as follows. As mentioned above, this hypothesis implies an ap-

proximately linear relationship between ln F̄ (xi) and ln xi for large enough values of xi, say

xi � x. The slope of this linear relationship gives the tail coe�cient �⇣X . For any given x,

we can thus estimate ⇣X via maximum-likelihood (MLE) or ordinary least squares (OLS) as

follows:

⇣̂
MLE
X (x) =

Pn
i=1 !i1{xi�x}Pn

i=1 !i ln(x/xi)1{xi�x}
, ⇣̂

OLS
X (x) =

Pn
i=1 !i ln(x/xi) ln F̄ (xi)1{xi�x}Pn

i=1 !i(ln(x/xi))21{xi�x}
. (1)

Notice that these estimators depend on the choice of x. Choosing a value that is too low

may result in fitting a power-law model to non-power-law data, while a too high value may

discard valid data points. To find the optimal x, we compute the Kolmogorov-Smirnov (KS)

10

log Pr(x̃ > x) ≈ − ζ log x + const



Top 10% Labor Income Distribution in 2004
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Figure 10. Labor income: log-log plots and Pareto tail coe�cient estimates.
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Top 10% Wealth Distribution in 2004
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Figure 12. Wealth: log-log plots and Pareto tail coe�cient estimates.
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Forbes 500 Rich List
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Figure 13. Wealth: log-log plots and Pareto tail coe�cient estimates from the PSID augmented
by the Forbes rich list.
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Top 10% Capital Income Distribution in 2004
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Figure 16. Capital income: log-log plots and Pareto tail coe�cient estimates.
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Power Laws in Economics

“Paul Samuelson (1969) was once asked by a physicist for a law in 
economics that was both nontrivial and true… Samuelson answered, ‘the 
law of comparative advantage.’ 
 
A modern answer to the question posed to Samuelson would be that a 
series of power laws count as actually nontrivial and true laws in 
economics.” 

— Gabaix (2016)
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Ranking of Pareto Tail

■ Ranking of Pareto tails: 

1. Consumption 
2. Labor income 
3. Wealth 
4. Capital income 

 
from less to more unequal

14

Figure 4. Pareto tail estimates of the consumption, labor income, wealth, and capital income dis-
tributions for non-adjusted variables (left panel) and for under-reporting and under-representation
adjusted variables (right panel).

1

2

3

4

0.7 0.8 0.9
x (as a quantile of X)

Pa
re

to
 ta

il 
(ζ

)

Capital income
Consumption
Labor income
Wealth

1

2

3

4

0.7 0.8 0.9
x (as a quantile of X)

Pa
re

to
 ta

il 
(ζ

)
and ⇣̂ra = 1.12. The ranking and relative magnitudes of these coe�cient estimates are

broadly preserved by the under-reporting and under-representation adjustments. The me-

dian Pareto coe�cient estimate for consumption declines slightly from 3.13 in the unadjusted

data to 3.02 in the adjusted series. Similarly, that of labor income declines from 2.50 to 2.30,

that of wealth declines from 1.42 to 1.35, and that of capital income declines from 1.24 to

1.16. In addition to slightly increasing the measured concentration of consumption, income,

and wealth, these adjustments lead to more precise estimates.15

In sum, while it is well-known in the literature that the tail of the labor income distri-

bution is strictly thinner than that of wealth, our main novel findings are that, using the

same sample of households: (i) the distribution of consumption has a strictly thinner tail

than labor income and, a fortiori, wealth; and (ii) the distribution of capital income has a

thicker tail than wealth.16,17

15Using nonlinear least squares (NLS) estimation leads to similar results; see Appendix A.3.
16Our preferred construction of the variables takes part of the durable goods (vehicle repayments and

housing services) as a component of consumption. An alternative definition in which vehicle repayments and
leases are not part of consumption expenditure yields a very similar MLE coe�cient estimate, namely 3.05.

17Philanthropic donations exhibit significant concentration, reflected by a Pareto tail similar to that of
wealth at 1.6. When we exclude them from our measurement of consumption, we obtain a slight increase in
the average consumption Pareto tail estimate, which rises to 3.08. This minor change is due to the relatively
small share of donations in total consumption, even at the upper end of the consumption distribution.

18



Consumption, Wealth, and Income 
Inequality in the Model 
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Bewley-Hugget-Aiyagari

■ We will take labor income distribution as an input to the model, 
 
 
 
where  is the shape parameter, and  is the scale parameter 

■ Can it generate cons. , wealth , and capital income  inequality in the data? 

■ Throughout, assume 

ζy y

(c) (a) (ra)

β(1 + r) < 1
16

V(a, y) = max
c, a′￼≥ −ϕ

c1−γ

1 − γ
+ β𝔼y′￼

V(a′￼, y′￼)

s.t. c + a′￼ = (1 + r)a + y

y′￼ = {
y with prob. p
ỹ ∼ Pareto(ζy, y) with prob. 1 − p



Power Laws in Bewley-Hugget-Aiyagari
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Failure of Canonical Models

■ See Stachursk and Toda (2019) and Gaillard et al. (2024) for proofs 

■ Tail behavior of  inherits the tail behavior of  in BHAa, c, ra y
18

Consider the canonical incomplete market model described earlier. Suppose that 
the stationary distribution of  features asymptotic power law with Pareto tail : 
 
 
 
Then, the stationary distribution features

y ζy

lim
y→∞

log Pr(ỹ > y)
log y

= − ζy

lim
a→∞

log Pr(ã > a)
log a

≡ −ζa

= lim
c→∞

log Pr(c̃ > c)
log c

≡ −ζc

= lim
ra→∞

log Pr(r̃a > ra)
log(ra)

≡ −ζra

= − ζy .



Intuition
Why  ? 

■ Loosely speaking, this is because  

1.  (in BHA, the richest households = high labor income for a while) 
2. a sum of Pareto asymptotically follows Pareto with the same tail 

Why ? 

■ This is because  as  

■ As , precautionary saving motive disappears and acts on permanent income 

Why ? 

■ This quite mechanically follows since  is a constant

ζa = ζy

a ∝ sum of y

ζa = ζc

c ∝ a a → ∞

a → ∞

ζa = ζra

r
19



Consumption Policy Linear in Wealth

20



Return Heterogeneity
■ In the data, heterogeneity in return plays a much more important role 

• See Hubmer et al. (2024) for the most recent evidence from Norway 

■ Let us add idiosyncratic shocks to return like we did in Moll (2014): 
 
 
 
 
 
where  is drawn independently over time and across households z ∈ {z1, …, zK}

21

V(a, y, z) = max
c, a′￼≥ −ϕ

c1−γ

1 − γ
+ β𝔼z′￼,y′￼

V(a′￼, y′￼, z′￼)

s.t. c + a′￼ = (1 + r z )a + y



With Return Heterogeneity

22



Return Heterogeneity Leads to Concentrated Wealth

■ See Beare and Toda (2022) and Gaillard et al. (2024) for proofs 

■ Return heterogeneity provides a powerful force for wealth inequality 
• Unlike labor income, return keeps multiplying wealth

23

Consider the model with return heterogeneity described earlier. 

The stationary distribution, if it exists, features 

1. For sufficiently high  or ,  

2.

𝔼[z] Var(z) ζa < ζy

ζc = ζra = ζa



Intuition

■ Even with return heterogeneity,  as  
• Consumption is an asymptotically linear function of wealth 
• Consequently, the tail of  inherits the tail behavior of  

■ Capital income is  
• A product of random variables follows Pareto with the thicker tail of the two 
• Here,  is bounded, hence  asymptotically follows Pareto with tail 

c ∝ a a → ∞

c a

rza

z rza ζa
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Solving the Puzzle
■ Two extensions: 

1. nonhomothetic wealth in the utility 
2. scale-dependent return  

■ Bellman equation: 
 
 
 
 

• Assume , and  for technical reasonsγ > 1,ν ≤ γ ν ∉ [1 − η,1]
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V(a, y, z) = max
c, a′￼≥ −ϕ

c1−γ

1 − γ
+ κ

(a′￼)1−ν

1 − ν
+β𝔼z′￼,y′￼

V(a′￼, y′￼, z′￼)

s.t. c + a′￼ = (1+ ̂r(a) z)a + y
̂r(a) ≡ r̄aη



With Wealth-in-Utility & Scale Dependent Return
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ζc ≠ ζa ≠ ζra

■    

■   

ν < γ − η ⇒ ζc > ζa

η > 0 ⇒ ζra < ζa
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Consider the model with wealth-in-utility and scale dependent return described 
earlier.  

The stationary distribution, if it exists, features 

1.  

2.

ζc =
γ

ν + η
ζa

ζra =
1

1 + η
ζa



Why ?ζc > ζa

■ When , consumption has a thinner tail than wealth 

■ MU of consumpion, , diminishes faster than MU of wealth,  

■ Consumption is non-homothetic and concave in wealth 
• Doubling the wealth less than doubles the consumption 

■ Consumption distribution is more equal than wealth distribution

ν ≪ γ

c−γ a−ν
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Consumption Policy Concave in Wealth
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Why ?ζra < ζa
■ When , capital income has a fatter tail than wealth 

■ Capital income is convex in wealth 
• Doubling the wealth more than doubles capital income 

■ Capital income distributed even more unequally than wealth

η > 0

30

wealth

capital income



Conclusion

■ Bewley-Hugget-Aiyagari is a workhorse model in macroeconomics 

■ However, the model faces a challenge in jointly matching the four tails of inequality 

■ The data strongly favors 
1. non-homothetic wealth-in-utility: 

rich households save more because they are rich 
2. scale-dependent return: 

rich households earn higher return from their wealth because they are rich
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