Consumption, Wealth, and Income Inequality Gaillard, Hellwig, Wangner, and Werquin (2024)

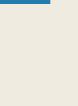
704 Macroeconomics II Topic 8

Masao Fukui

Inequality: Model vs. Data

- We have covered two classes of incomplete market models:

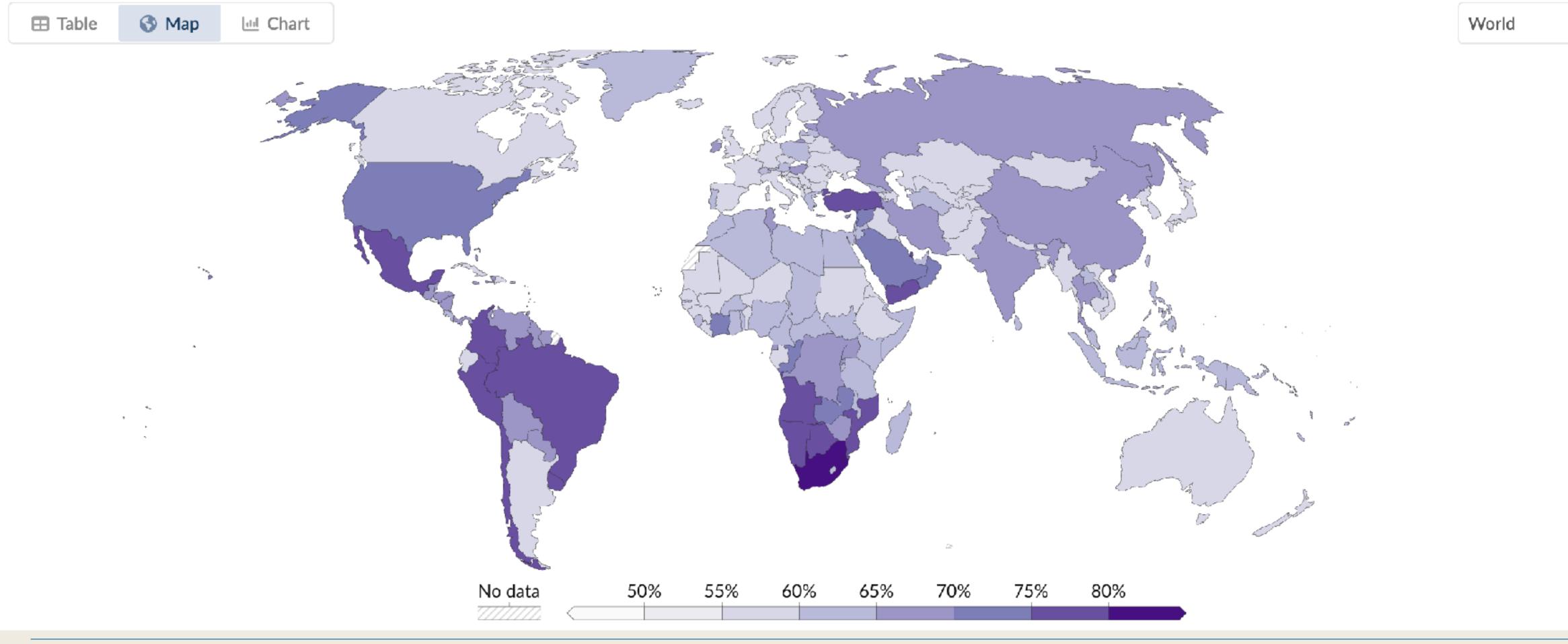
 - Idiosyncratic shock to return of savings (Moll, 2014, with many predecessors) Idiosyncratic shock to labor income (Belwley-Hugget-Aiyagari)
- These models naturally generate inequality in income, wealth, and consumption
- Are they consistent with the data?
- We focus on **top** inequality (\approx top 10%) because (i) This is where the theory has strong predictions (ii) This might be on its own interest as they drive the aggregate

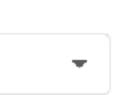


Top 10% Wealth Share

Wealth share of the richest 10%, 2023

The share of wealth owned by the richest 10% of the population. Wealth is defined as the total value of non-financial and financial assets (housing, land, deposits, bonds, equities, etc.) held by households, minus their debts.





Consumption, Wealth, and Income Inequality in the Data

- Panel Study of Income Dynamics (PSID) 2004-2021
- Wealth refers to net worth = assets liabilities
- Labor income: gross of taxes, benefits & employee payroll deduction
- Capital income: dividends, interests, business income, rents, capital gains, etc
- Consumption: total expenditure including various categories

- We are interested in the relationship between
 - 1. Level of x (consumption, wealth, and income)
 - 2. Ranking of x in the distribution:

$$Prob(\tilde{x} > x) =$$

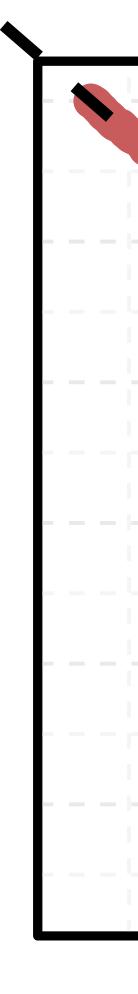
- Moreover, we look at log-log relationships
- This answers the following question: "If x increases by 1%, how much does the ranking increase in percentage terms?"

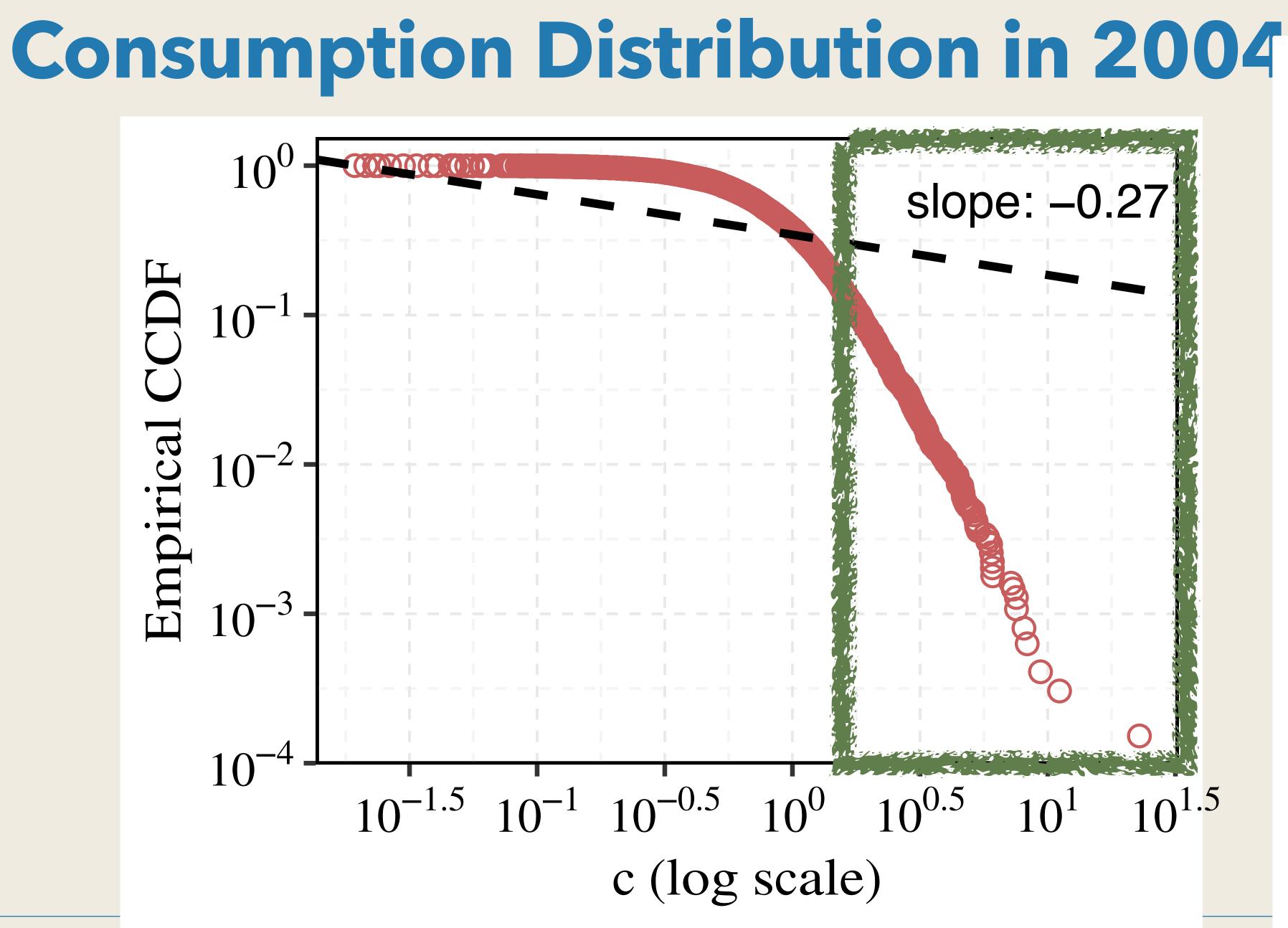
Complmentary CDF

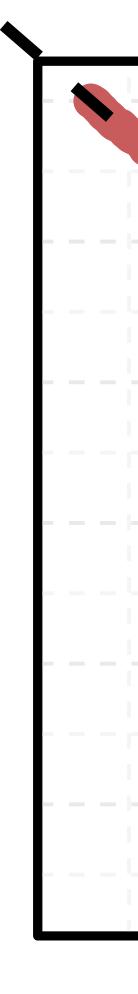
1 - F(x)

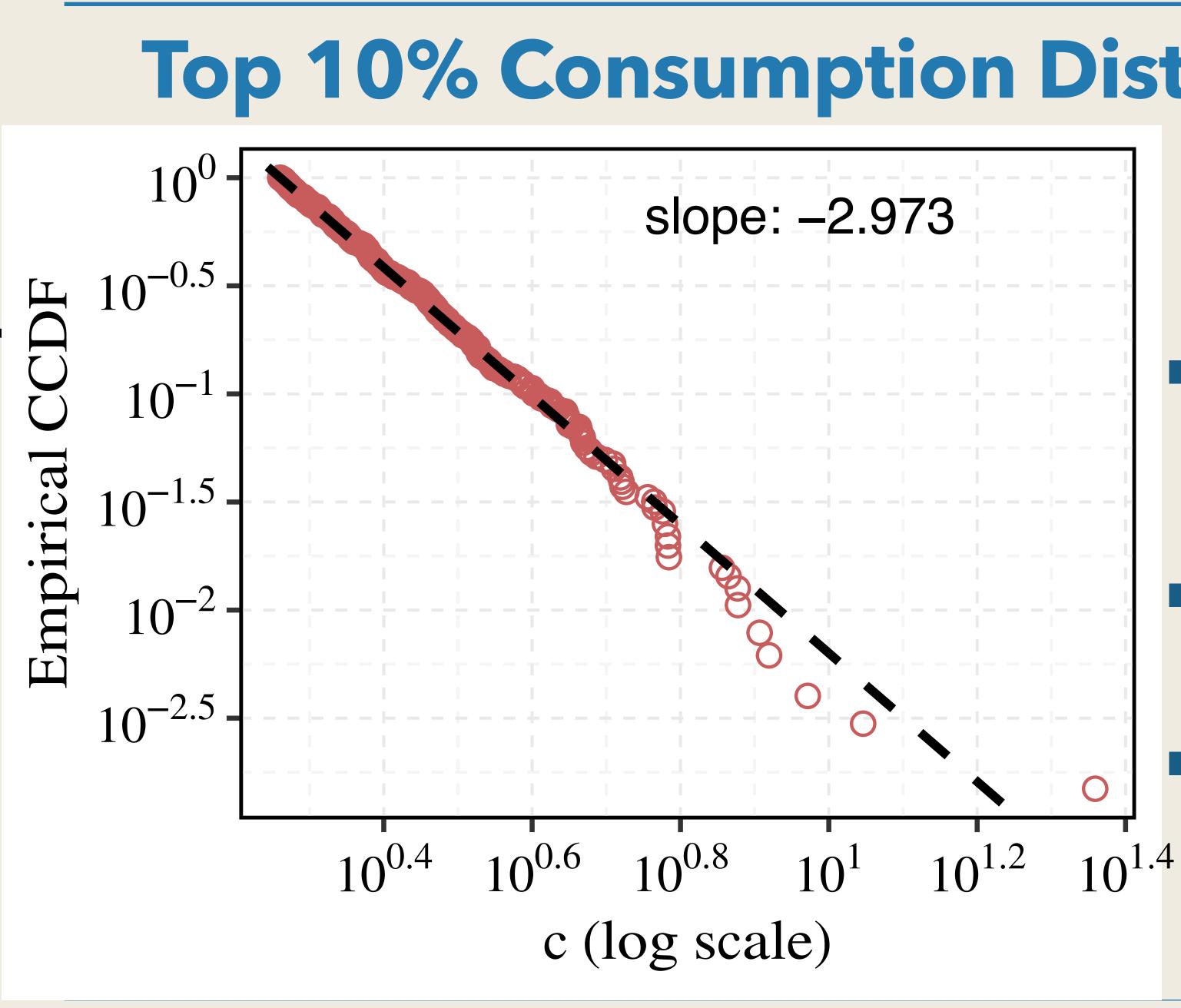
Complementary CDF



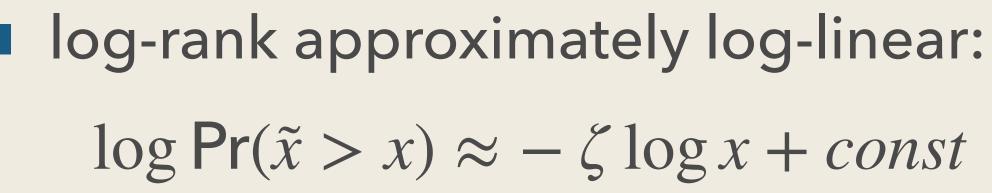








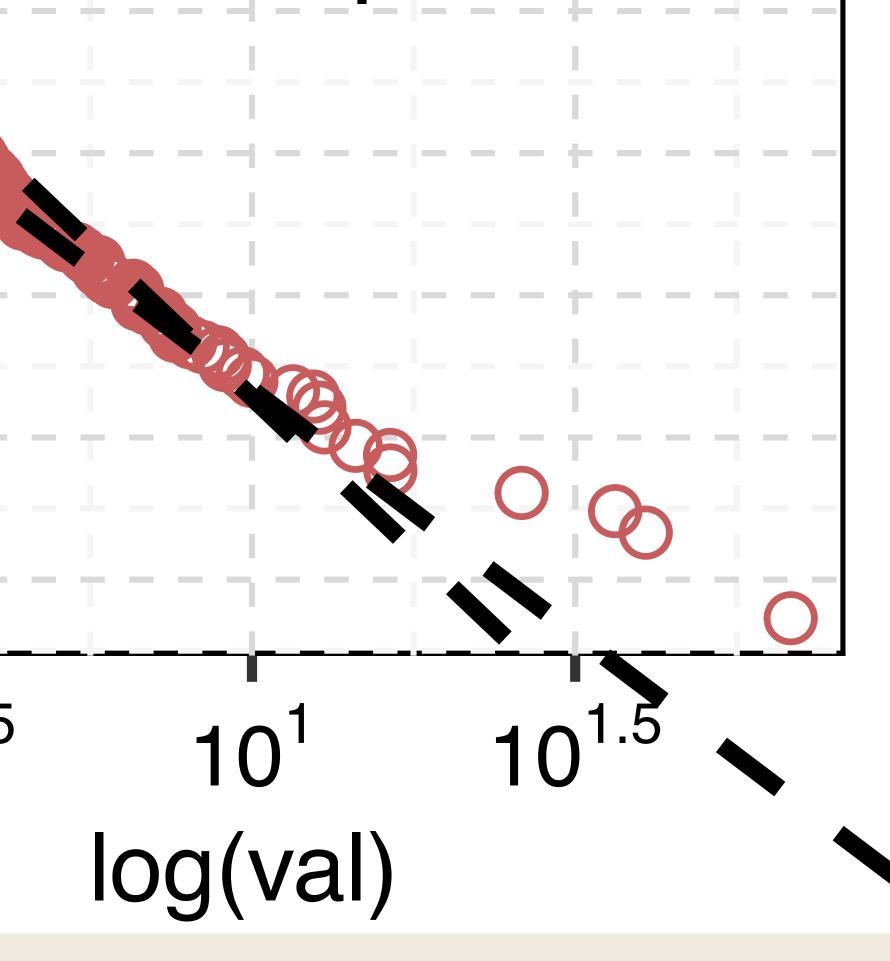
Top 10% Consumption Distribution in 2004

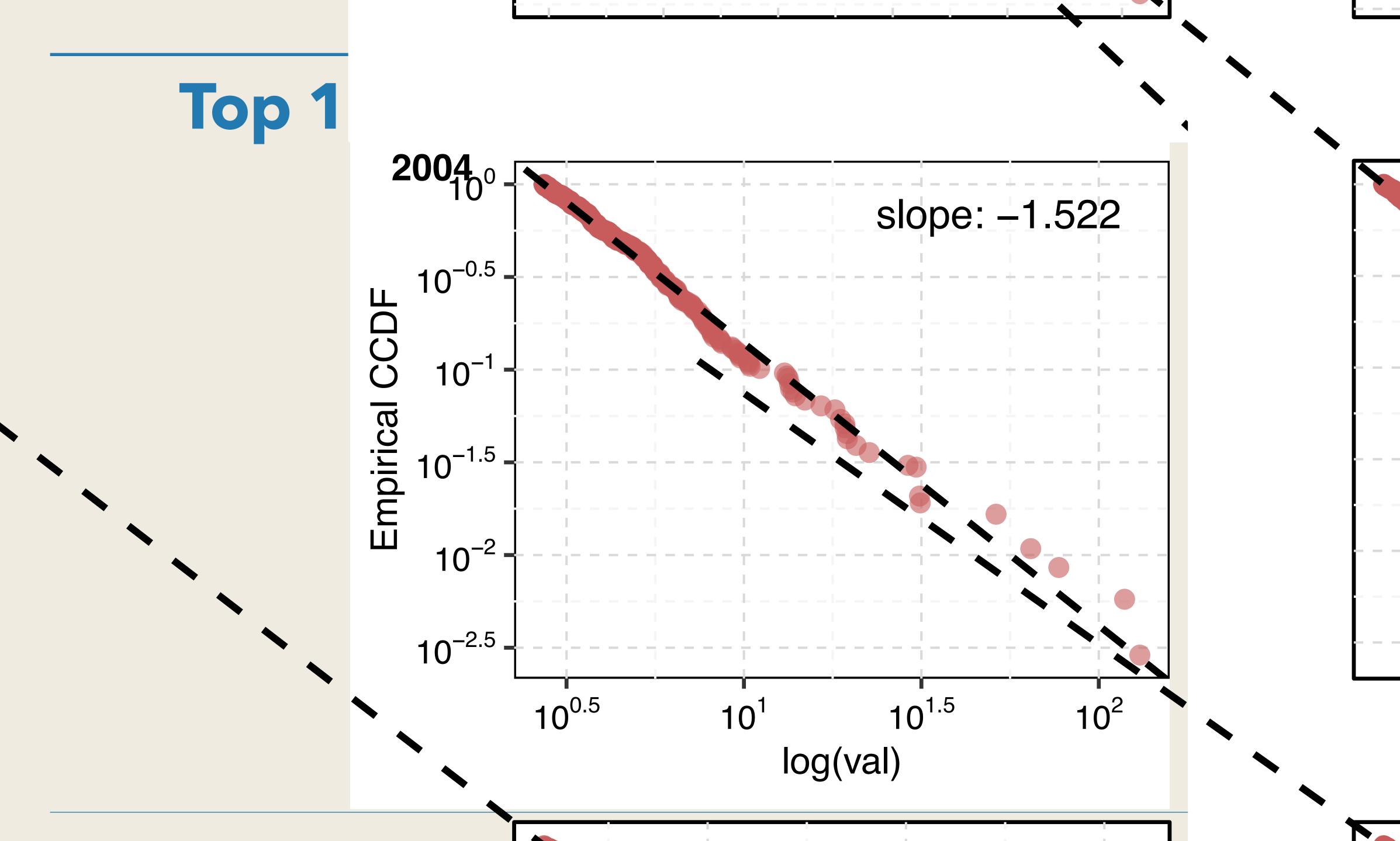


What is this distribution? – Pareto: $Pr(\tilde{x} > x) = (x/\underline{x})^{-\zeta}$

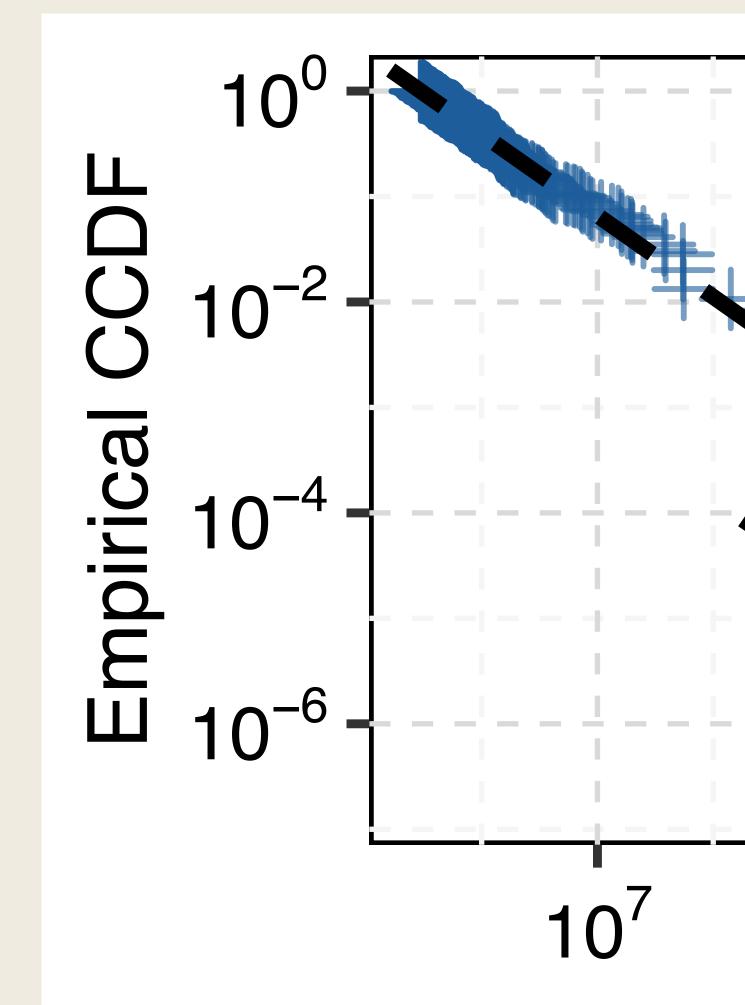
This is called "power law"

Top 10% Labor Income Distribution in 2004 10⁰ 0-0.5 slope: -2.162 10 Empirical -1.5 10⁻² -2.5 $10^{0.5}$ **10**^{1.5} 10'

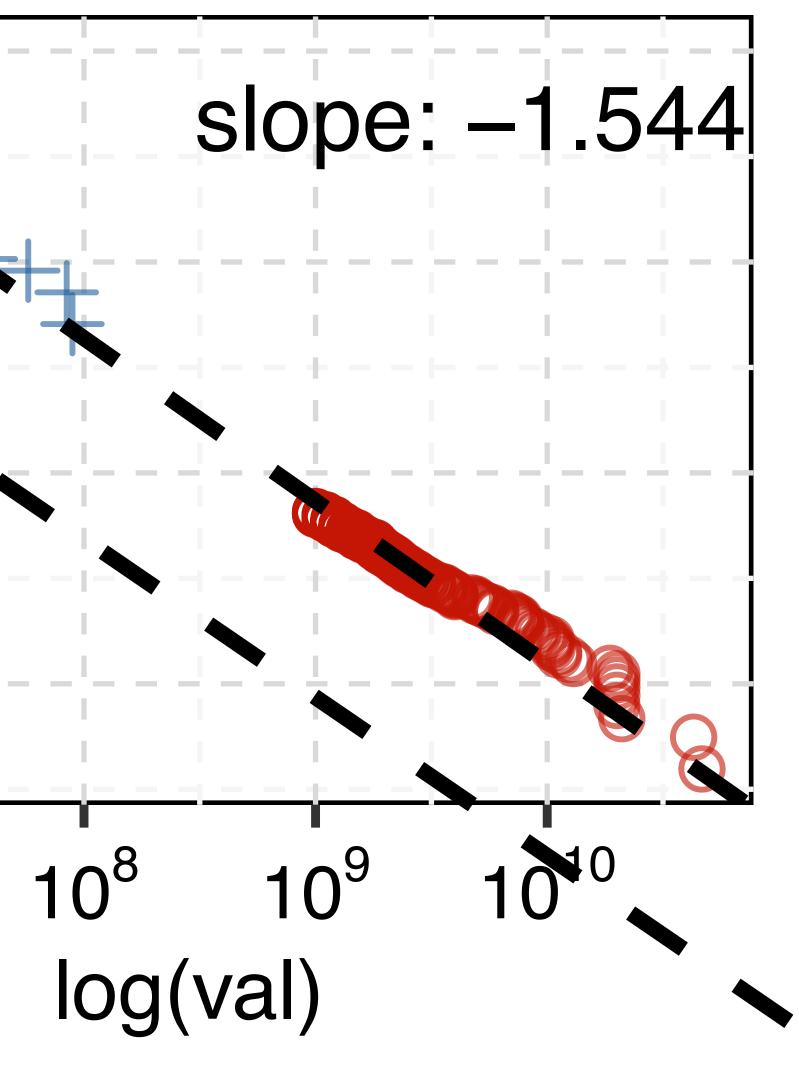


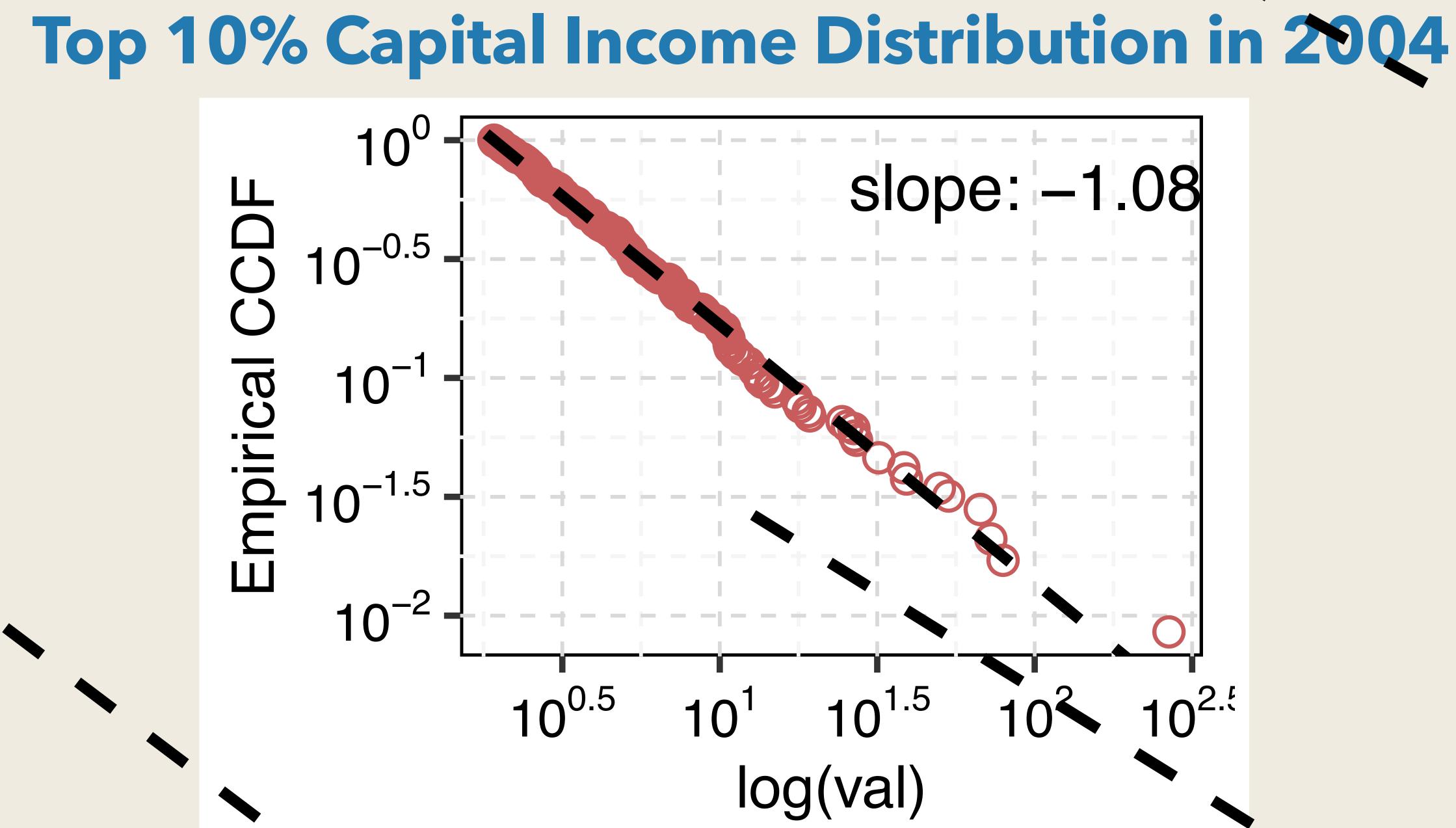


_	_	_	_	
_	_	_		
	_			
_	_	_	_	
_	_	_	_	
_	_	_		



Forbes 500 Rich List





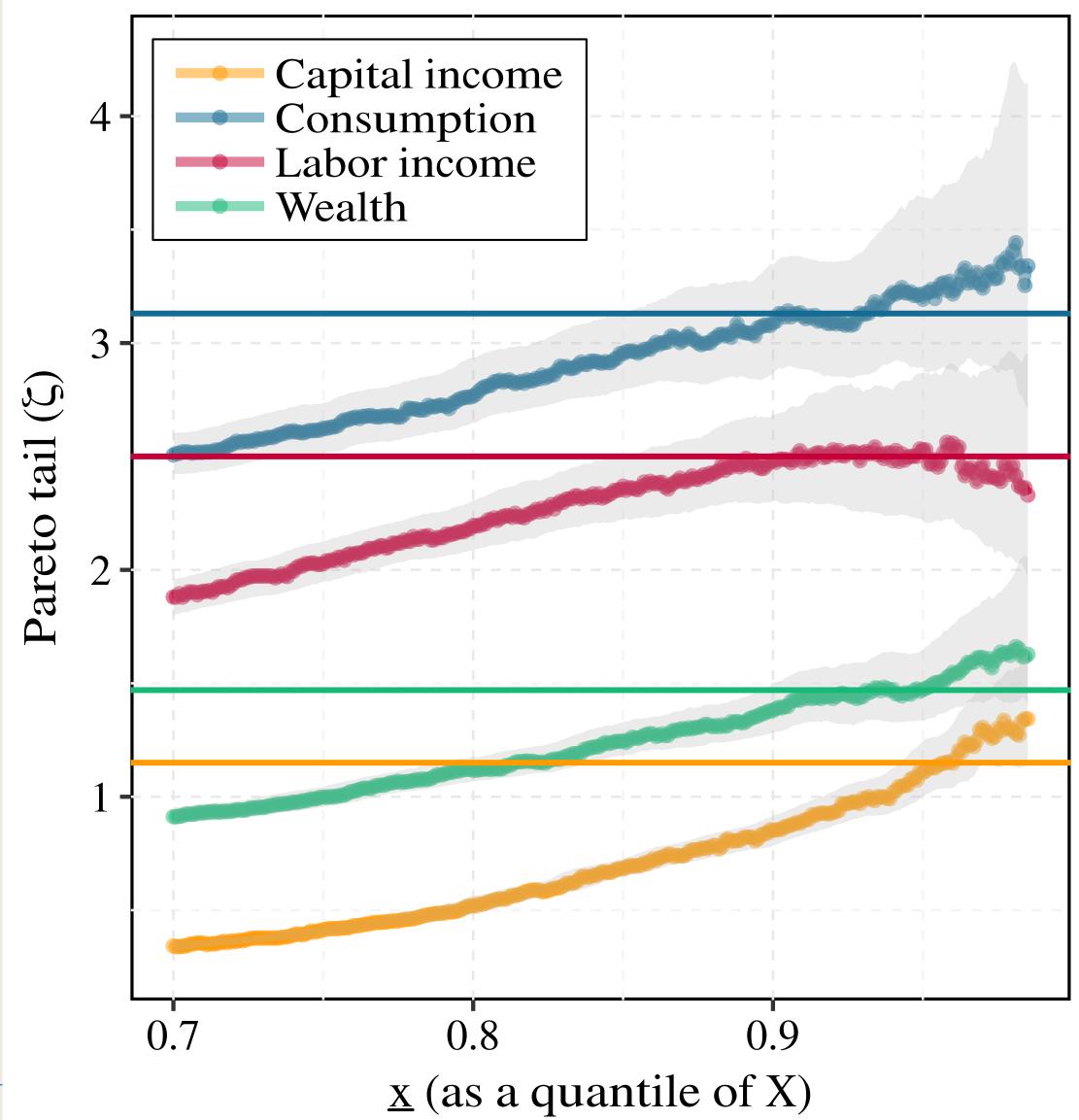
Power Laws in Economics

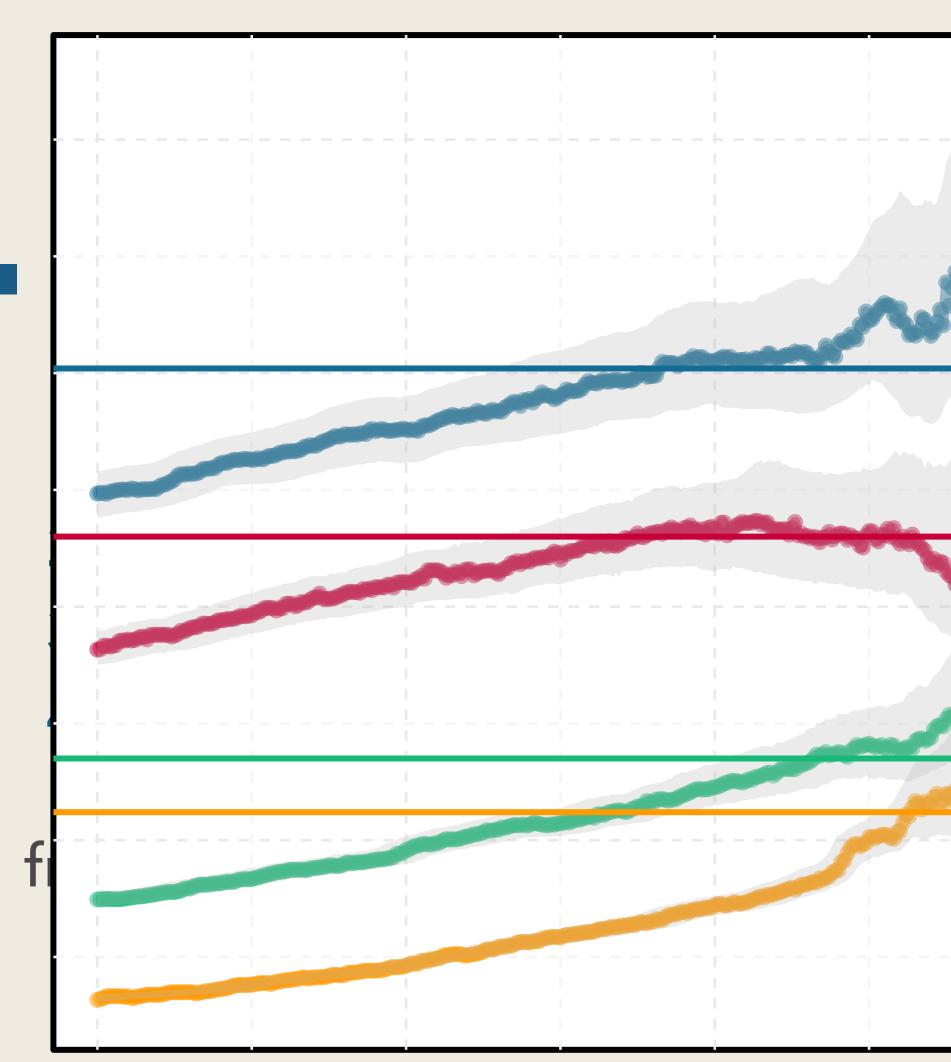
"Paul Samuelson (1969) was once asked by a physicist for a law in economics that was both nontrivial and true... Samuelson answered, 'the law of comparative advantage.'

A modern answer to the question posed to Samuelson would be that a series of power laws count as actually nontrivial and true laws in economics."

Gabaix (2016)

Ranking of Pareto Tail





Consumption, Wealth, and Income Inequality in the Model

Bewley-Hugget-Aiyagari

 $V(a, y) = \max_{c, a' \ge -}$

s.t.

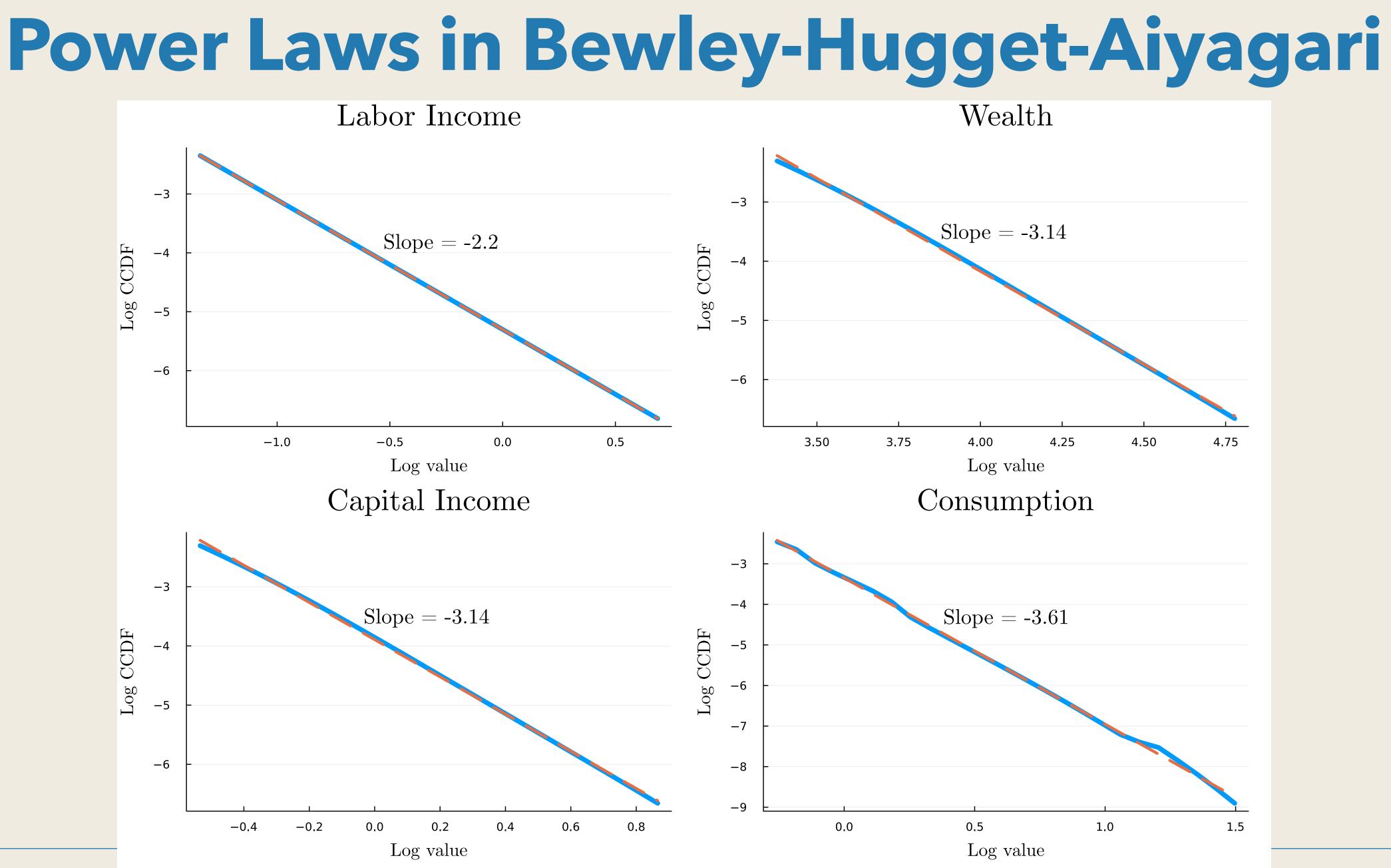
We will take labor income distribution as an input to the model, $y' = \begin{cases} y & \text{with prob. } p \\ \tilde{y} \sim \mathsf{Pareto}(\zeta_y, \underline{y}) & \text{with prob. } 1 \end{cases}$ where ζ_y is the shape parameter, and y is the scale parameter Throughout, assume $\beta(1 + r) < 1$

$$c + a' = (1 + r)a + \gamma$$

$$(\zeta_y, y)$$
 with prob. $1 - p$

Can it generate cons. (c), wealth (a), and capital income (ra) inequality in the data?

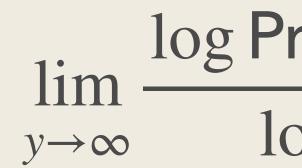
16



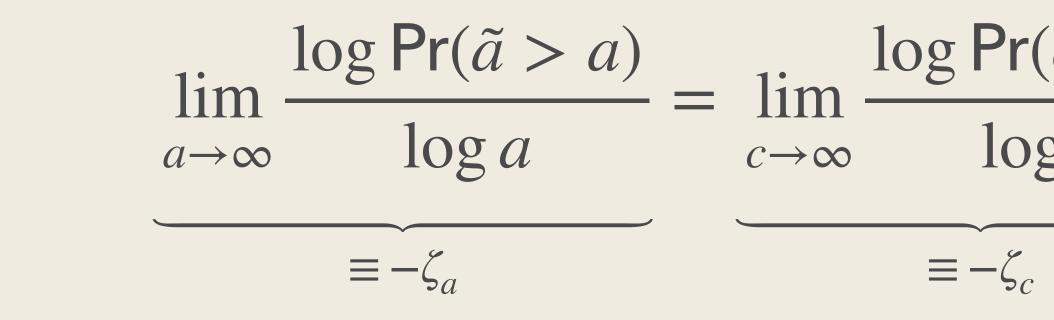


Failure of Canonical Models

the stationary distribution of y features asymptotic power law with Pareto tail ζ_y :



Then, the stationary distribution features



See Stachursk and Toda (2019) and Gaillard et al. (2024) for proofs

Tail behavior of a, c, ra inherits the tail behavior of y in BHA

Consider the canonical incomplete market model described earlier. Suppose that

$$\frac{\operatorname{Pr}(\tilde{y} > y)}{\operatorname{og} y} = -\zeta_y$$

$$\frac{(\tilde{c} > c)}{gc} = \lim_{ra \to \infty} \frac{\log \Pr(\tilde{ra} > ra)}{\log(ra)} = -\zeta_y.$$
$$= -\zeta_{ra}$$

18

Why
$$\zeta_a = \zeta_y$$
?

- Loosely speaking, this is because

 - 2. a sum of Pareto asymptotically follows Pareto with the same tail

Why
$$\zeta_a = \zeta_c$$
?

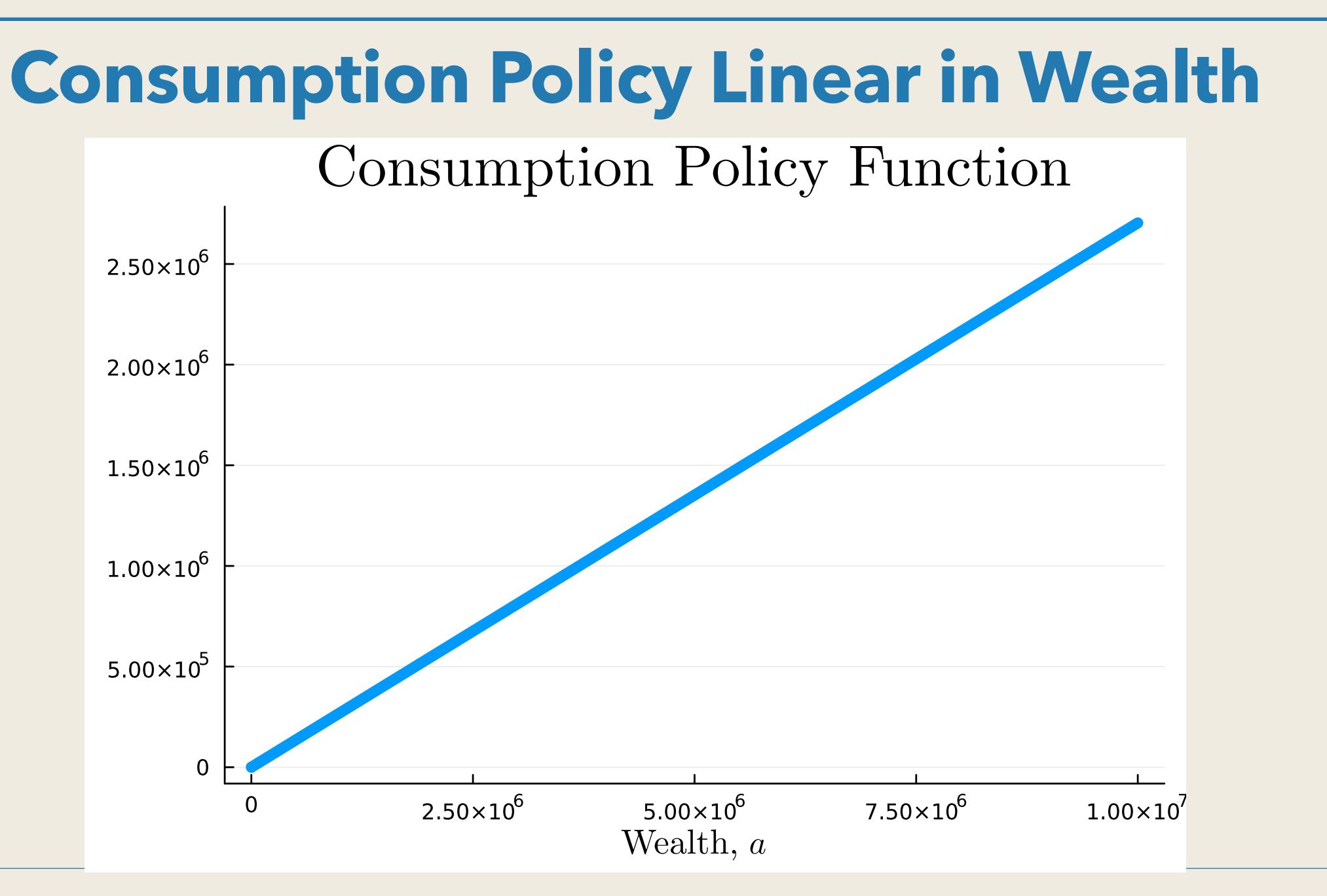
- This is because $c \propto a$ as $a \to \infty$

Why $\zeta_a = \zeta_{ra}$?

This quite mechanically follows since r is a constant

1. $a \propto \text{sum of y}$ (in BHA, the richest households = high labor income for a while)

• As $a \to \infty$, precautionary saving motive disappears and acts on permanent income



Return Heterogeneity

In the data, heterogeneity in return plays a much more important role

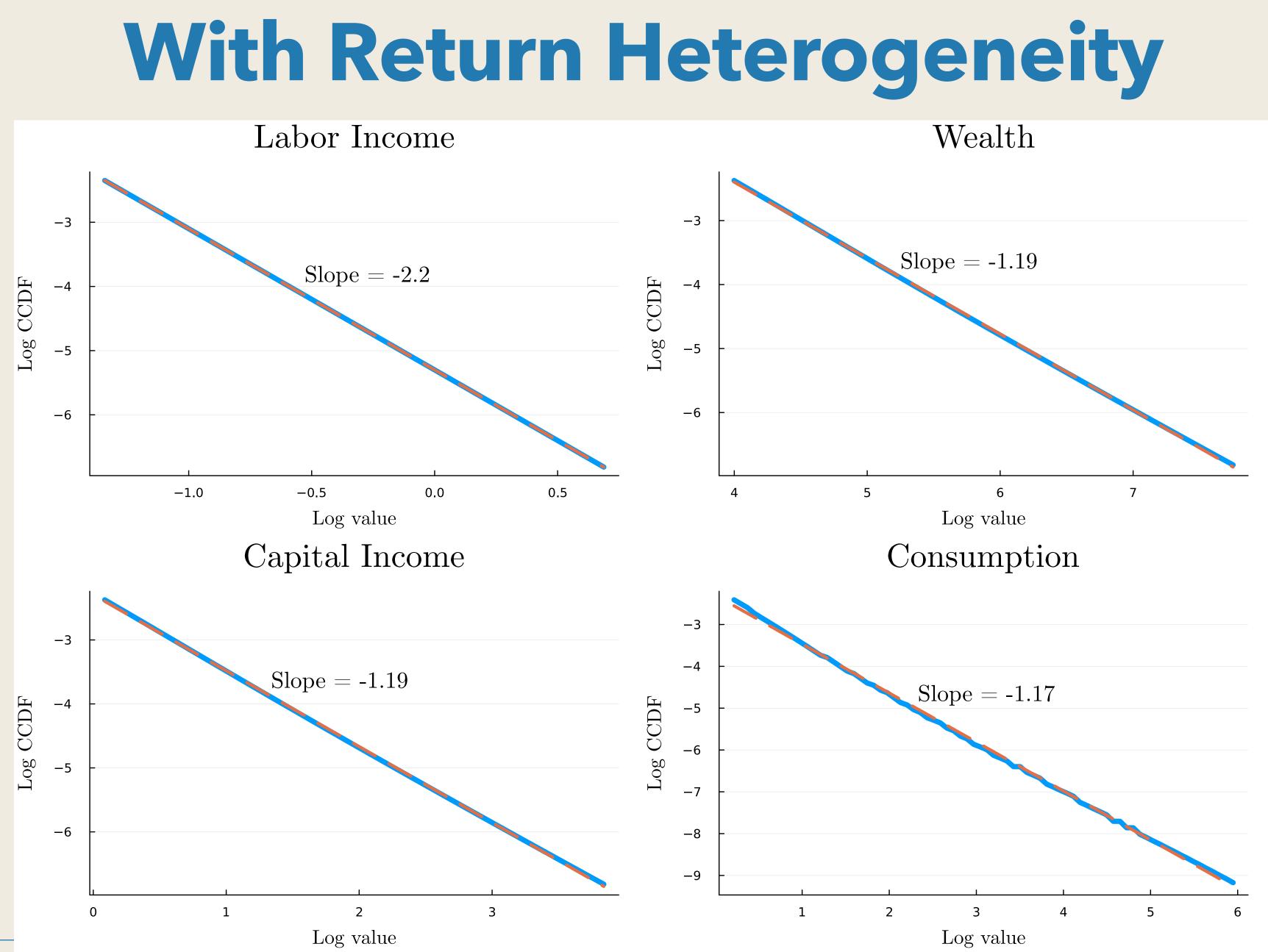
See Hubmer et al. (2024) for the most recent evidence from Norway

Let us add idiosyncratic shocks to return like we did in Moll (2014):

$$V(a, y, z) = \max_{c, a' \ge -\phi} \frac{c^{1-\gamma}}{1-\gamma} + \beta \mathbb{E}_{z', y'} V(a', y', z')$$

s.t. $c + a' = (1 + rz)a + y$

where $z \in \{z_1, ..., z_K\}$ is drawn independently over time and across households



Return Heterogeneity Leads to Concentrated Wealth

- Consider the model with return heterogeneity described earlier.
- The stationary distribution, if it exists, features
- **1.** For sufficiently high $\mathbb{E}[z]$ or Var(z), $\zeta_a < \zeta_v$

2.
$$\zeta_c = \zeta_{ra} = \zeta_a$$

- See Beare and Toda (2022) and Gaillard et al. (2024) for proofs
- Return heterogeneity provides a powerful force for wealth inequality Unlike labor income, return keeps multiplying wealth

Even with return heterogeneity, $c \propto a$ as $a \rightarrow \infty$

- Consumption is an asymptotically linear function of wealth
- Consequently, the tail of c inherits the tail behavior of a

Capital income is rza

- A product of random variables follows Pareto with the thicker tail of the two • Here, z is bounded, hence rza asymptotically follows Pareto with tail ζ_a

Intuition

Two extensions:

- 1. nonhomothetic wealth in the utility
- 2. scale-dependent return
- Bellman equation:

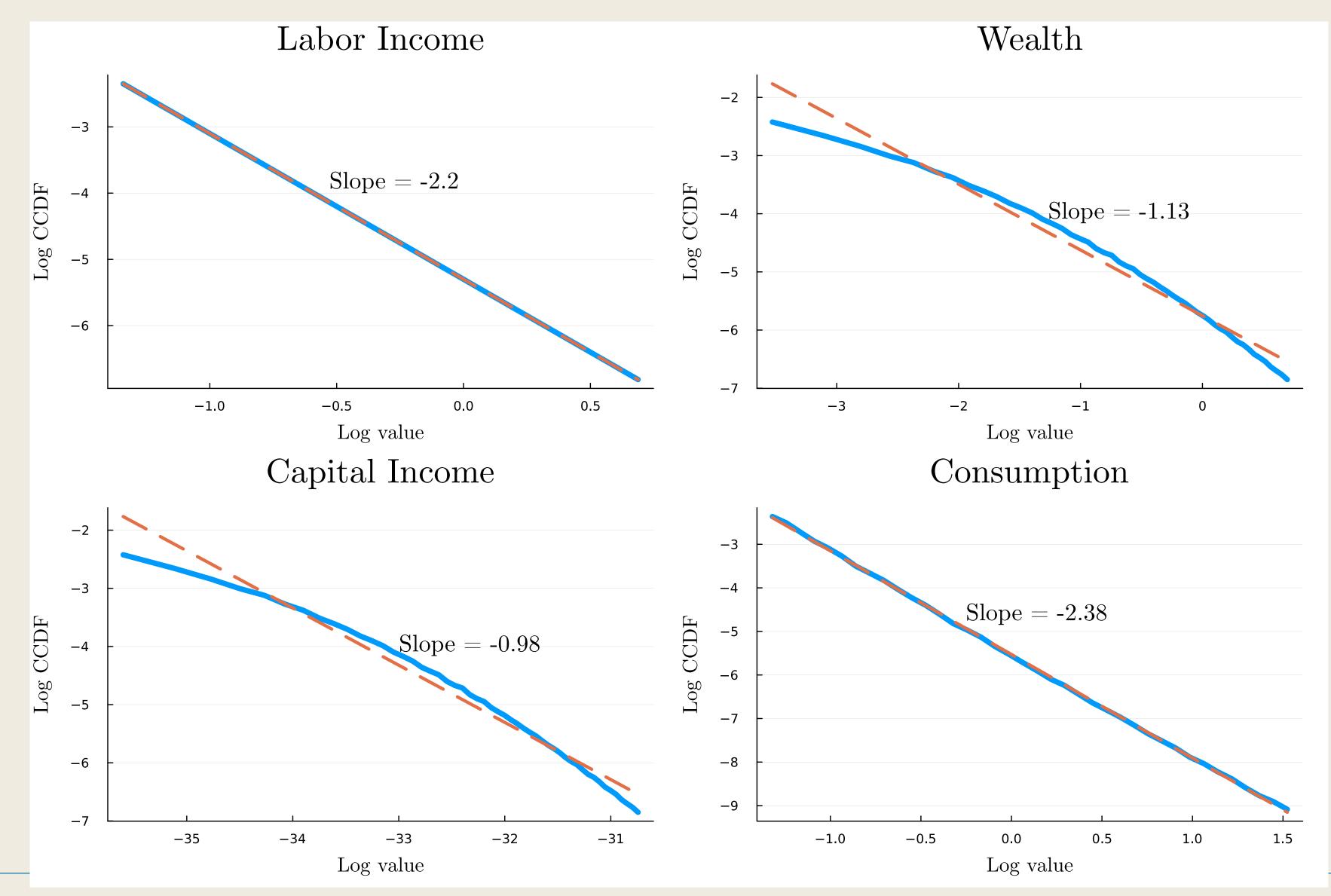
$$V(a, y, z) = \max_{c, a' \ge -\phi} \frac{c^{1-\gamma}}{1-\gamma} + \kappa \frac{(a')^{1-\nu}}{1-\nu} + \beta \mathbb{E}_{z', y'} V(a', y', z')$$

s.t. $c + a' = (1 + \hat{r}(a) z)a + y$
 $\hat{r}(a) \equiv \bar{r}a^{\eta}$

• Assume $\gamma > 1, \nu \leq \gamma$, and $\nu \notin [1 - \eta, 1]$ for technical reasons

Solving the Puzzle

With Wealth-in-Utility & Scale Dependent Return



Consider the model with wealth-in-utility and scale dependent return described earlier.

The stationary distribution, if it exists, features

1.
$$\zeta_c = \frac{\gamma}{\nu + \eta} \zeta_a$$

$$2. \ \zeta_{ra} = \frac{1}{1+\eta} \zeta_a$$

$$\nu < \gamma - \eta \Rightarrow \zeta_c > \zeta_a$$

 $\eta > 0 \Rightarrow \zeta_{ra} < \zeta_a$

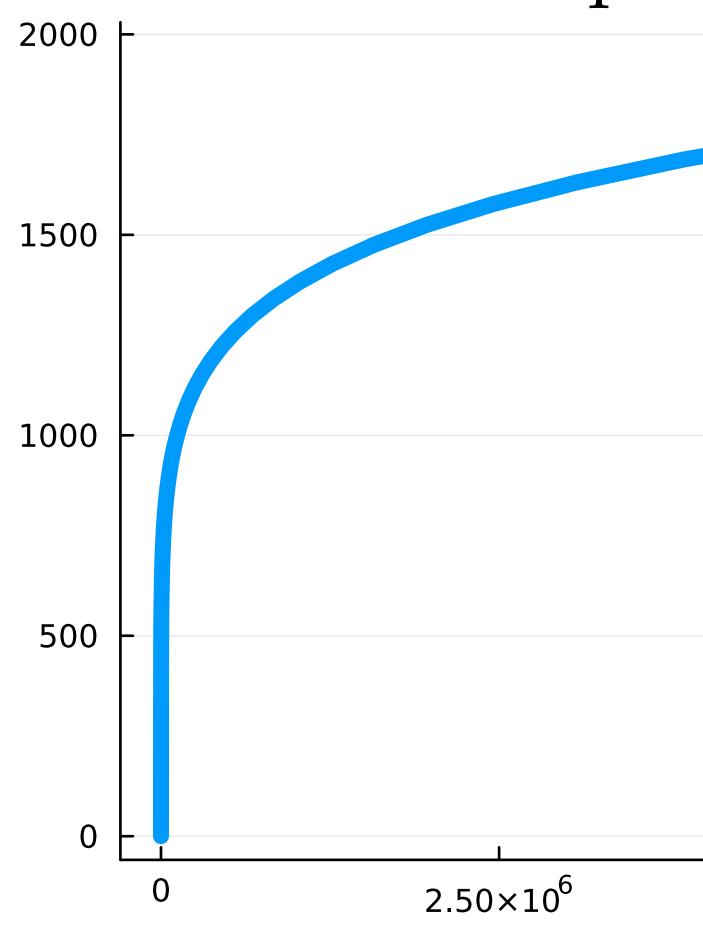
27

- When $\nu \ll \gamma$, consumption has a thinner tail than wealth
- MU of consumption, $c^{-\gamma}$, diminishes faster than MU of wealth, $a^{-\nu}$
- Consumption is non-homothetic and concave in wealth
 - Doubling the wealth less than doubles the consumption
- Consumption distribution is more equal than wealth distribution

Why $\zeta_c > \zeta_a$?

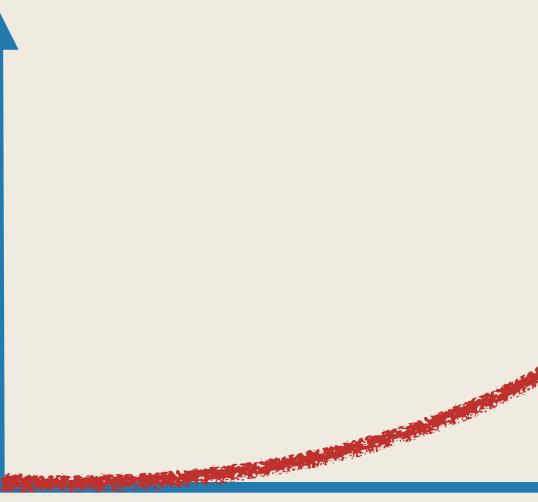
Consumption Poli

Consumptio



cy C	on	cave	in \	Ne	alth
on Po	licy	Functi	on		
I		I		I	
5.00×10 ⁶ Wealth,		7.50×10 [°]	1	.00×10′	

- When $\eta > 0$, capital income has a fatter tail than wealth
- Capital income is convex in wealth
 - Doubling the wealth more than doubles capital income
- Capital income distributed even more unequally than wealth



Why $\zeta_{ra} < \zeta_a$?

- Bewley-Hugget-Aiyagari is a workhorse model in macroeconomics
- However, the model faces a challenge in jointly matching the four tails of inequality
- The data strongly favors
 - 1. non-homothetic wealth-in-utility: rich households save more because they are rich
 - 2. scale-dependent return: rich households earn higher return from their wealth because they are rich

Conclusion

