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Course Logistics

B |[ecture:
e MonWed, 8:30-9:45am in SSW 315

B |Instructor:

e Masao Fukui (mfukui@bu.edu)
e Office hours: MonTue 4:15-5:45pm in Room 400 (my office)

B Grades:

e 80%: problem sets
e 20%: research proposal or a final project
* Bonus points if you catch coding errors in my code
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Course Theme

B In macro, we often postulate a representative firm solving:
max f,(L) — wL
L

B This gives the (inverse) aggregate labor demand function
JiL) =w

B Together with aggregate labor supply, it pins down wages and employment.
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Unpacking Aggregate Labor Demand

What is aggregate labor demand? — Two themes we highlight

1. There is no “representative firm”
 The reality, of course, consists of heterogeneous firms

e How does the heterogeneity shape the aggregate labor demand?

First theme: heterogeneous firms

2. The labor market is not competitive

e We assumed firms could hire any L taking w as given

e |tis hard to imagine there is any real firm that thinks in such a way

Second theme: monopsony and frictional labor market




The Course is Not About

B The course is not about aggregate labor supply

e We will mostly assume that the labor supply is fixed
* There is a literature focusing on labor supply (see Rogerson (2024) for a survey)

B The course is not about investment/capital demand or innovation

e We will mostly abstract from capital
 Another big literature on heterogeneous firms focuses on investment/R&D




Technical Tools

Along the way, | put emphasis on two technical tools:

1. Continuous-time techniques
* |ncreasingly becoming popular in macro
o Superficially looks elegant & sometimes actually useful
e At best, you will be able to use it after this course

e At worst, you won't be scared of reading continuous-time papers




Technical Tools

Along the way, | put emphasis on two technical tools:

1. Continuous-time techniques
* |ncreasingly becoming popular in macro
o Superficially looks elegant & sometimes actually useful
e At best, you will be able to use it after this course

e At worst, you won't be scared of reading continuous-time papers

2. Computational methods
e Extremely important in macro nowadays
 Hard to write qualitative papers now, quantification is almost always necessary
* The frontier expanded a lot in the past 5 years

e Young generation’s comparative advantage




Computation Tips

B | strongly recommend Julia as a computational language for quantitative macro

* Very similar to Matlab in terms of syntax, but much faster

- Matlab is a dying language in my view
e Python is good for many purposes, but not for quantitative macro

- needs a lot of work (JAX) to speed up & struggles to handle sparse matrices
e Slightly slower than Fortran and C++, but much easier to code/debug

- Remember: total time cost = time running + time coding/debugging

B | recommend VS Code + Github Copilot as an editor

e Github copilot is a game changer for me (free for academia)

B | post all the codes at:
https://github.com/masaofukui/741_Julia



https://github.com/masaofukui/741_Julia

Firm Size Distribution in the US 2021
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(suoljjiw) swdlj Jo JaquinN

Data: BDS 2021




Employment Share of Each Size Category

3]

I I
QA A

(suolj|iw) swdlj Jo JaquinN

Data: BDS 2021

10



A Handful of Firms Hire Majority of Workers

B Large firms in the US are extremely large

e Top 0.02% of firms (=~ 1,200 firms) account for 30% of employment in the US
e Top 1% of firms (=~ 60,000 firms) account for 60% of employment in the US

B What does the right tail of the firm size distribution look like?
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Power Law in Firm Size Distribution
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Power Law in Firm Size Distribution

Log of the rank
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Power Law in Firm Size Distribution
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Two Facts in Firm Size Distribution

B [wo surprises:

1. The ranking of firm size is log-linear in firm size (Power law)
2. The coefficient is close to one (Zipf's law)

B Mathematically,

log Pr(x > x) = — { log x + const, ~ 1

ranEing
B What is this distribution?
— Pareto: Pr(X > x) = (x/;c)_‘:
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Power Laws in Economics

“Paul Samuelson (1969) was once asked by a physicist for a law 1n
economics that was both nontrivial and true... Samuelson answered, ‘the
law of comparative advantage.’

A modern answer to the question posed to Samuelson would be that a
series of power laws count as actually nontrivial and true laws 1n
economics.”

— Gabaix (2016)
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The Nature of Firm Growth

B How do large firms grow going forward?

Do they systematically shrink? (i.e., mean reversion in firm size)
* Do they keep outperforming other smaller firms?

B Look at the relationship between firm growth and firm size

17



Firm Growth and Firm Size
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Gibrat's Law

B Firm growth rate is roughly independent of firm size...
... if we exclude small firms

B This is called Gibrat's law
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A Mechanical Model of Firm Size Distribution

with Continuous-Time Toolkits




Connecting Two Laws

B Two robust features of the firm dynamics

1. Power law
2. Gibrat's law

B Gabaix (1999): Gibrat's law = Power law
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Brownian Motion

m Definition: a standard Brownian motion is a stochastic process Z, with
1. Z,,—Z ~ N(O,s)
2. Z,..— Z isindependent of Z

m A continuous time version of (Gaussian) random walk: Z_, = Z +¢,, ¢, ~ N(0,1)

2

B A Brownian motion with drift 4 and variance ¢ is given by

XI=XO+//tt+GZt
where Z, is a standard Brownian motion

m Alternatively, we can write

dX, = pdt + odZ,

23



Visualizing Brownian Motion

B Mean and variance of Brownian motion:

C[X, — X,] = ut, Var[X, —X,] = o°t

or

“[dX)] = udt, Var[dX] = c*dt

30

10
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Diffusion Process

B More generally, a diffusion process X, is

dX, = u(X)dt + o(X,))dZ,

 Brownian motion: u(X)) = u,6(X)) = o
e Geometric Brownian motion: u(X,) = uX, o(X,) = oX,
e Ornstein-Uhlenbeck process: (X)) = —aX, o(X) = o

- Continuous time version of AR(1) process

m Note E[dX ] = u(X)dt and Var(dX,) = ¢*(X)dt

m A diffusion is a continuous-time version of a Markov process but rules out jumps
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Discrete Time Approximation

B Discrete-timet = At,2At, ...
m Consider
AX,Z X, —X = { u(X)At + a(Xt)\Et with prob 1/2
u(X)At — o(X,\/ At with prob 1/2

B Then

C[AX] = u(X)At, Var(AX) = 6*(X)At




What is the Implied Distribution?

m Suppose X, follows diffusion process

e We will model firm growth through a diffusion process

B How does the distribution of X, evolve?

e This gives us the implied firm size distribution
e Let G(X) = Prob(X, < X) be the cdf and g/(X) = 90,G/(X) be the pdf
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Kolmogorov Forward Equation

m If X follows diffusion, dX, = u(X)dt + o(X,)dZ, then g(X) = 0,G,(X) follows

1
0,8(X) = = Oxlu(X)g,(X)] + = o [0(X)*g,X)]

which is a partial differential equation called Kolmogorov Forward equation

B What is the intuition? Assume u(X) = u > 0 and 6(X) = o for simplicity.
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g(X — udr)

Intmtlonor Drift Term

0500 < uax[gxxn

g(X + //tdt)
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g(X — udr)

Intmtlonor Drift Term

0500 < uax[gxxn
g(X + //tdt)

Ag(x) = 8(X) — g(X — udi)
= — uoyg(X)dt as dt— 0
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g(X)

Intuition for Variance Term

: (7 ™
9800 = o001 Tk 50 )
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Intuition for Variance Term

: (7 ™
9800 = o001 Tk 50 )

gt(X)/’ Ag(x) = Egt(X - 0\/Ef) + Egt(X + 0\@) — g/(X)
&(X = o/d) X +ovdy ] l - ]
2

= | &X) = 008, OV dt + —- e (X)ds

1 2
+5 lgt(X) T Uant(X)\ﬁt T %5)2(th(X)dt] — 8(X)

2

0" »
- 76Xth(X)dt
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Heuristic Proof (1/2)

Let dX, be the change in X, over a time interval dt
Let p(dX,, X,) be density over dX,
The changes in density g(X,) over a time interval dt is

Ag(X,) = J (_p (dX, X)g(X,) + p(dX, X, — dX,)g(X, — dXI)> d(dX,)

outflow inflow

Taylor-expand the inflow around dX, = O:
pdX,, X,—dX,)g(X—dX,) ~ p(dX, X)g(X,) — dx[p(dX,, X)g(X,)IdX,

1
+= Ol P(dX, X)g(X)I(dX,)?
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Heuristic Proof (2/2)

B Substitute back (2) into (1):

1
Ag(X,) = [ (— Ox1pdX, X)g,X)IdX, + = Iy[p(dX, X»gt(Xt)](dXt)z) d(dX,)

= — 0, “ (p(dX,, X)dX,) d(dX,) g,(X,)

1, 2
5 %xx “ (p(dX,, X,)(dX,)?) d(dX,) gt(Xt)]

—u(X )dt —o(X )dt

1
= — Oy [//t(Xt)gt(Xt)] dr + 56)2()( [U(Xt)zgt(xt)] at
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Steady State Distribution

m Corollary: Steady-state distribution, g(X) = g(X), if it exists, solves

1 2 2
0 = = xlu(X)g(0)] + 0y 6(X)*g(X)]

e (Inflow into X) = (outflow from X)

m Steady-state distribution is characterized by a 2nd-order ODE

B This is a beauty of continuous time
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A Mechanical Model of Firm Size Distribution




Firm Growth as a Stochastic Process

Let n, denote the firm size and n, follows diffusion process

Gibrat's law suggests 7, follows a geometric Brownian motion:
dn, = undt + ondZz,
dn,

& — = udt+ odZ,
1y

One can show Var(logn,) = o’
= Distribution explodes as t — 0o = no steady-state distribution

Gabaix’s (1999) insight:
Gibrat's law + stabilizing force = SS distribution exists and features power law
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Stabilizing Forces

B A particular approach undertaken by Gabaix (1999):

e Minimum fim size requirement, n:
v If firms hit n, they exit

v' The same mass of new firms with size n enter at the same time

B Stationary firm size distribution g(n) solves

0=—9,[ung(n)| + %8,%,1 [aznzg(n)] forn > n

with boundary conditions such that jnoo g(n)dn =1and g(n) > 0 foralln
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Power Law in Firm Size Distribution

. : : . . =1 . K
Result: The solution is Pareto: g(n) = {nen —lwithe =1 — - > 0

1. Integrate the ODE once to obtain (¢, ¢, are integration constants)
c, = —2ung(n) + é)n[dznzg(n)]

2. Integrate one more time
n 24 —2u
¢, |"m@dm =n26"n*g(n) + c,

- Ezn_g_l,

& gn)=cn
where &, = ¢,/(6* — 2u), & = ¢,/0°.

3. Since g(n) is pdf, fnoo g(nydn=1=¢;,=0and ¢, = {n¢
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Power Law and Zipf's Law

The cdfis G(n) =1 — (n/g)_‘:, so power law holds:
log Pr(7i > n) = log(1 — G(n)) = — { logn + const

The existence of meanrequires{ > 1< u <0

What about Zipf's law? It holds if = 1 - =~ 1 © u ~ 0

202
The result is much more general than presented here:

e random growth + stabilizing force
= asymptotic power law: Pr(7i > n) — cn™*asn — o

e stabilizing force ~ 0 = Zipt's law
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Numerically Computing
Stationary Firm Size Distribution




How to Solve ODE on a Computer?

B Gabaix’s (1999) case admits analytical solutions

m Easy to come up with variations that prevent analytical characterizations

e For example, what if firm size follows a general diffusion with u(n) and o(n)?

B Even in these cases, one can always solve the following ODE numerically:

0 =—0,[u(n)g(n)] +—= a . lo(n)*g(n)|  forn>n

B How do we do that?

40



Discretization and Derivatives

m Discretize the firm-size space: n € {n,,n,, ..., n;} with n; = n and equispaced grids:

m We discretize the derivative —0 |u(n)g(n)] as well. Two-ways:

1. Forward difference approximation:

un g, ) — pun)gn,)
—0d,[u(n)g(n)| ~ — : ; »

2. Backward difference approximation:

u(n)gn;) — u(n,_1)g(n;_y)
—0,[u(n)g(n)] ~ e

m Use forward when —u(n;) > 0 and backward when —u(n;) < 0

B The second derivative is
arzm lg(ni)zg (nl)] ~

0(ni+1)2g (”li+1) — 20(”,')28 (”l) T U(Hi_l)zg (1;_1)
(An)?
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Discretized KFE

m Suppose u(n;) < 0, we use backward difference and discretized KFE is
—p(ny1)8(Mipy) + p(ny)g(ny) N 1 o(n11)°8(iy 1) — 20(m)°g(n) + o(n;_y)°g(n;_y)
An 2 (An)?
fori=1,....J—1

i

0
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Discretized KFE

- Suppose ,u(n) < 0, we use backward dn‘ference and discretized KFE is

—ﬂ(n,“)g(nm +/4(n )g(n) 10(n,+1)28(n,+1) 20(n,)°g(m;) + o(n;_1) g(n;_y)
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Discretized KFE

m Suppose u(n;) < 0, we use backward difference and discretized KFE is
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B Suppose u(n;) < 0, we use backward d.ﬁerehce —nd dISCretlzed KF \ | :

Inflow from i — 1 due to variance
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Discretized KFE

m Suppose u(n;) < 0, we use backward difference and discretized KFE is
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Discreti{
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Discretized KFE

m Suppose u(n;) < 0, we use backward difference and discretized KFE is
—p(ny1)8(Mipy) + p(ny)g(ny) N 1 o(n11)°8(iy 1) — 20(m)°g(n) + o(n;_y)°g(n;_y)
An 2 (An)?
fori=1,....J—1

i

0

42



Entry & Exit at Lower Boundary

m Suppose u(n;) < 0, we use backward difference and discretized KFE is

—p(n; )8 )+ o Lot )8y )~ oln)g(n)+

An 2 (An)?
fori=1,....J—1
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Entry & Exit at Lower Boundary

_ Suppose ,u(n) < 0, we use backward dn‘ference and discretized KFE is

—ﬂ(nm)g(nm)
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Entry & Exit at Lower Boundary
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Entry & EXlt at LO Inﬂow from [ — 1 due to variance

m Suppose u(n;) < 0, we use backward dn‘ferece and dlscretlzed KF A fis

S Lo )= ongt e
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fori=1,....J—1
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Entry & Exit at Lower Boundary

m Suppose u(n;) < 0, we use backward difference and discretized KFE is
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Entry & Exit at Lower Boundary

m Suppose u(n;) < 0, we use backward difference and discretized KFE is

—p(n; )8 )+ o Lot )8y )~ oln)g(n)+
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Reflection at Upper Boundary

m Suppose u(n;) < 0, we use backward difference and discretized KFE is

+un)g(n) 1 — U(Hi)zg (n;) + U(Wi_1)28 (1;_1) _

An 2 (An)?
fori=1,....J—1

My_1

0
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Reflection at Upper Boundary

m Suppose u(n;) < 0, we use backward difference and discretized KFE is

i - 0( ni)2 g( ni) + 0 (ni —1 )Zg (ni _ 1) —

My_1

Inflow from i + 1 due to variance
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Reflection at UP Inﬂow from i — 1 due to variance
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outflow from i due to variance

RefleCtlcn at U | + reflection

B Suppose u(n;) < O we use backward dn‘fernce | ddlscretlzed KFEis

My_1
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Reflection at Upper Boundary
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Linear System

B Realize that discretized KFE is a linear system of g = [g(n.)]

B Since g is a density,
J
which is also linearin g

B Letting y; = u(n;) and o; = o(n,), the system can simply written in a matrix form




Linear System when ;(n) < 0

g
where A =
| ' Hi 1 01'2 1 Giz
All:__ ’ Aii—lz_ T3 ’ Aii+1=_
An  (An)? | An 2 (An)? | 2 (An)?

All the other elements are 0.

m Intuitively, A; ;is the net transition rate from i to j. In fact, ZJ. A;i=0

(A)

(B)
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Matrix A when u(n) < 0

1 0 1 2
T (07) T (07) 0 0 0 0
— 5350 ey — = —(0) —(0,)’ 0 - 0 0
An P2 oan)2 2 A2 (A2 2 2(An)2 N 2
1 2 1 1 2 _1 2
0 An 3 2(An)? (0-3) An M3 (An)? (03) 2(An)? (03) U !
0
_ b 1 2 1 .1 2
0 0 0 An =17 a2 (0)-1)" J M1 2(An)? (0)-1)
1 1 7) 1 1 2
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Matrix Inversion to solve g

B One of the rows in (A) is colinear (implied by (B))

B Replace one of the rows in (A) with (B) to write

Ag=B = g=A"'B

A: one row in A is replaced with Anl’, and the same row in B is 1 and 0 elsewhere
m Inverting a big matrix like A is typically expensive

L But,ﬁ Is sparse (many zero entries)
m Always work with a sparse matrix whenever the matrix has many zero entries

B Inverting a sparse matrix is cheap even when the matrix is big
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Julia Code for Solving KFE

using SparseArrays
using Parameters
@with_kw mutable struct model

J = 1000

sig = 0.1

mu = -0.01

ng = range(1.0,6, length=])

dn = ngl[2] - ngl1]
end
function populate_A(param)
@unpack_model param
A = spzeros(length(ng),length(ng))
for (i,n) in enumerate(ng)
Ali,i] += —(sig*n)”2/dn"2;
Ali,min(i+1,J)] += 1/2%(sig*n)”2/dn"2;
Ali,max(i-1,1)] += 1/2%(sig*n)”2/dn"2;
1f mu > 0
Al[i,i] += —-mu*n/dn;
Ali,min(i+1,J)] += muxn/dn;
else
Al[i,i] += muxn/dn;
Ali,max(i-1,1)] += —muxn/dn;
end
end
return A
end
function solve_stationary_distribution(param)
@unpack_model param
A = populate_A(param)
B = zeros(length(ng));
Blend] = 1;
Alend,:] = ones(1,length(ng))*dn;
g = A'\B;
return ¢
end
param = model()

g = solve_stationary_distribution(param)




Solution
Density of Firm Size Distribution, g(n)

‘ Numerical
emm» Analytical
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Power Law

Power Law

emmw N ymerical
Analytical

log Ranking, log(1-G(n))

0.0 0.5 1.0 1.5
log(n)
B Bias in the upper tail due to truncation
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B The advantage of continuous time with diffusion lies in the sparsity of A

B In discrete time, A is unlikely to be sparse in many applications
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Numerically Computing
Transition of Firm Size Distribution




Solving Transition Dynamics

How do we numerically compute the transition path of {g,(n)} given g,(n)?

Recall the evolution of distribution is characterized by

0,8(n) = — 0,[u(n)g,(m)] + = 6 . lo(m)?g,(n)]

We have to discretize time as well: 7 € [, 1), ...,ty] and At =1, — 1,

Approximate the time derivative using backward difference:

gt(n) - gt—At(n)
At

0,8(X) ~

e Can use forward difference but requires At to be small
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Back to Markov Chain

m Foranygiveng, ., =1[g_a(n)], one can compute g, by solving

B The matrix P corresponds to Markov Chain transition matrix in a time interval At
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Julia Code for Transition

using LinearAlgebra
dt = 0.1;
T 5000;
A = populate A(param);
gpath = zeros(J,T);
gpath[:,1] = ones(J)./(J*dn);
for t = 2:T
gpath[:,t] = (I - dtxA’)\gpath[:,t-1]

end




Transition Dynamics

Transition of Firm Size Distribution, g(n)

t=0

time, t
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Transition Dynamics

Transition of Firm Size Distribution, g(n)
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Transition Dynamics

Transition of Firm Size Distribution, g(n)
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Transition Dynamics

Transition of Firm Size Distribution, g(n)
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Transition Dynamics

Transition of Firm Size Distribution, g(n)

Wnrt+r~+r++

teady state
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Taking Stock




Taking Stock

m Fact: A handful of extremely large firms hire a large share of workers

1. The firm size distribution is fat-tailed, Zipt's law
2. Firm growth is roughly unrelated to firm size, Gibrat's law

B Theory: A mechanical model of firm growth as in Gabaix (1999)

1. Gibrat's law + stabilizing force = power law
2. stabilizing force | 0 = Zipt's law
B Techniques: We have covered important continuous-time tools

1. Diffusion process, Kolmogorov forward equation (KFE)
2. How to solve KFE on your computer
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Appendix A:
Non-Uniform Grid




Why Non-Uniform Grid?

m So far, we have considered equi-spaced grid:

B In many applications, we would like to achieve the followings:
1. We want the upper bound of the grid to be large enough
e Walmart employs 2.3 million workers in 2021
2. We want to accurately compute especially at the lower end of the grid
* This is where exit decisions matter

3. We do not want to take too many gridpoints

B We can achieve the above goal with non-uniform grid

e Take many fine grids at lower ends and coarse grids at upper ends
* |og-spaced grid is a good example
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Discretization with Non-Uniform Grid

B Suppose grids are non-uniform: n = [n, n,, ..., n;]" with

An , =My =N

i, An_=n,—n_

jo
m Approximating first-derivative with non-uniform grid:

1. Forward difference approximation:

un g, ) — pun)gn,)
—0d,[u(n)g(n)| ~ — : :

Anj

2. Backward difference approximation:
p(n)g(n) — u(n;_)gn;_ ;)
—0,[u(n)g(n)] ~ - -

ja_

B Approximating second-derivative with non-uniform grid:

Anj,—d(niﬂ)zg (1) — (An;  + Anj’_)a(ni)zg (n;) + Anj,+6(ni—1)2g (;_1)

%(Anjﬂr -+ Anj,_)Anj, +Anj,_

arzm [U(Hi)zg (nl)] ~
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KFE in a Matrix Form when u(n) < 0

m LetA = [A; ];; with

2
P An; ,0;
WL Ang o (Ang, + An, )An;  An; _
L i (An; , + Anj,_)aj2
/) Anj,_ (Anjd_ + Anj,_)Anj,+Anj,_
An. _o?
A Jo—J

.+l
(An], +An],_)An], An],_

m If An; . = An; _ = An, we go back to the uniform grid case




KFE with Non-Uniform Grid

B The density isg = [g(n))];- We work with the transformed density:

g=181, & = gAn,

1 :
EAnj,Jr j=1
Anj= 13 >(An, +An, ) j=2,..J-1
1 :
EAnj,_ ] - J

B The KFE in a matrix form is
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Appendix B:
Numerically Solving KFE

wheny > 0




Discretized KFE when ;(n) > 0

m Suppose u(n;) > 0, we use backward difference and discretized KFE is
—p(n)g(ny) + p(n;_1)g(n;_y) N 1 o(n;,1)’g(niyy) — 20(n) g(ny) + o(n;_1)’g(n;_y) _
An 2 (An)?
fori=1,....J—1

i

0
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B sl S T B O P A X > . _posma = a A o o o Lo posma

Inflow from i + 1 due to drift n /’t(nl) > O

4

¢ I S R B L P B
2 _ ~_
ol
7 <
‘,
N
4

m Suppose u(n;) > Ofwe use backward difference and discretized KFE is

| o(1;11)78(4 1) ‘ 20(n;)’g(ny) + o(n;_)"g(n;_) _

T

—p(n)g(n;) //i(nl._ e, ‘

0
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Discretized KFE when ;(n) > 0

m Suppose u(n;) > 0, we use backward difference and discretized KFE is
—p(n)g(ny) + p(n;_1)g(n;_y) N 1 o(n;,1)’g(niyy) — 20(n) g(ny) + o(n;_1)’g(n;_y) _
An 2 (An)?
fori=1,....J—1

i

0
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Inflow from i — 1 due to variance

m Suppose u(n;) > 0, we use backward difference and discretized KFE\s

0

_//i(ni)g(ni) 1 ,bt(ni_l)g(ni_l) N l 0(ni+1)28(ni+1) - 20(ni)2g(n,-) G(ni—l)zg(ni_l) _
An ) (An)? -' ]
fori=1,....J—1

;1
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Discretized KFE when ;(n) > 0

m Suppose u(n;) > 0, we use backward difference and discretized KFE is
—p(n)g(ny) + p(n;_1)g(n;_y) N 1 o(n;,1)’g(niyy) — 20(n) g(ny) + o(n;_1)’g(n;_y) _
An 2 (An)?
fori=1,....J—1

i

0
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Discretized KFE when ;(n) > 0

m Suppose u(n;) > 0, we use backward difterence and discretized KFE is

; }2 | »
| 20(1,)"8(n;)]

i
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Discretized KFE when ;(n) > 0

m Suppose u(n;) > 0, we use backward difference and discretized KFE is
—p(n)g(ny) + p(n;_1)g(n;_y) N 1 o(n;,1)’g(niyy) — 20(n) g(ny) + o(n;_1)’g(n;_y) _
An 2 (An)?
fori=1,....J—1

i

0
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KFE at the Boundary when u(n) > 0

m Atthe boundaryi = 1,

— ()8 (n;) ><
Ll a(n,+1>2g<n,+1> — 20(n)’g(n) —_——<—__+ o(n)’g(n;) o

(An)

e Since g(n,_;) =0, inflow from i — 1 is absent

e SiNCe mass a(nl-)zg(ni) (An)? exits, the same mass enters atn, = n
n

B Ati = J, assume reflecting barrier so that

—un)gn;) + pu(n,_)g(n;_)+u(n;)gn;) n l —20 (ni)zg (n;) +o (ni_1)28 (n,_)+o (ni)28 (n;)

=0
An 2 (An)?
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