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Course Logistics

■ Lecture: 
• MonWed, 8:30-9:45am in SSW 315 

■ Instructor:  
• Masao Fukui (mfukui@bu.edu)  
• Office hours: MonTue 4:15-5:45pm in Room 400 (my office) 

■ Grades: 
• 80%: problem sets 
• 20%: research proposal or a final project 
• Bonus points if you catch coding errors in my code
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Course Theme
■ In macro, we often postulate a representative firm solving: 

■ This gives the (inverse) aggregate labor demand function 

■ Together with aggregate labor supply, it pins down wages and employment.
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Unpacking Aggregate Labor Demand
What is aggregate labor demand? — Two themes we highlight 

1. There is no “representative firm” 

• The reality, of course, consists of heterogeneous firms 

• How does the heterogeneity shape the aggregate labor demand? 
First theme: heterogeneous firms  

2. The labor market is not competitive 

• We assumed firms could hire any  taking  as given 

• It is hard to imagine there is any real firm that thinks in such a way  
Second theme: monopsony and frictional labor market

L w
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The Course is Not About

■ The course is not about aggregate labor supply 
• We will mostly assume that the labor supply is fixed 
• There is a literature focusing on labor supply (see Rogerson (2024) for a survey) 

■ The course is not about investment/capital demand or innovation 
• We will mostly abstract from capital 
• Another big literature on heterogeneous firms focuses on investment/R&D
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Technical Tools
Along the way, I put emphasis on two technical tools:
1. Continuous-time techniques 

• Increasingly becoming popular in macro 
• Superficially looks elegant & sometimes actually useful  
• At best, you will be able to use it after this course 
• At worst, you won’t be scared of reading continuous-time papers
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Technical Tools
Along the way, I put emphasis on two technical tools:
1. Continuous-time techniques 

• Increasingly becoming popular in macro 
• Superficially looks elegant & sometimes actually useful  
• At best, you will be able to use it after this course 
• At worst, you won’t be scared of reading continuous-time papers

2. Computational methods 
• Extremely important in macro nowadays 
• Hard to write qualitative papers now, quantification is almost always necessary 
• The frontier expanded a lot in the past 5 years 
• Young generation’s comparative advantage 
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Computation Tips
■ I strongly recommend Julia as a computational language for quantitative macro 

• Very similar to Matlab in terms of syntax, but much faster 
- Matlab is a dying language in my view 

• Python is good for many purposes, but not for quantitative macro 
- needs a lot of work (JAX) to speed up & struggles to handle sparse matrices  

• Slightly slower than Fortran and C++, but much easier to code/debug 
- Remember: total time cost = time running + time coding/debugging 

■ I recommend VS Code + Github Copilot as an editor  
• Github copilot is a game changer for me (free for academia) 

■ I post all the codes at: 
https://github.com/masaofukui/741_Julia
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Firm Size Distribution in the US 2021
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Firm Size (Employment) Distribution
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Employment Share of Each Size Category
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A Handful of Firms Hire Majority of Workers

■ Large firms in the US are extremely large 

• Top 0.02% of firms (  1,200 firms) account for 30% of employment in the US 
• Top 1% of firms (  60,000 firms) account for 60% of employment in the US 

■ What does the right tail of the firm size distribution look like?

≈
≈
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Power Law in Firm Size Distribution
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Power Law in Firm Size Distribution
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Power Law in Firm Size Distribution
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Two Facts in Firm Size Distribution

■ Two surprises:  
1. The ranking of firm size is log-linear in firm size (Power law) 
2. The coefficient is close to one (Zipf’s law) 

■ Mathematically, 
 
 

■ What is this distribution?  
— Pareto: Pr(x̃ ≥ x) = (x/x)−ζ

15

log Pr(x̃ ≥ x)

ranking

= − ζ log x + const, ζ ≈ 1



Power Laws in Economics

“Paul Samuelson (1969) was once asked by a physicist for a law in 
economics that was both nontrivial and true… Samuelson answered, ‘the 
law of comparative advantage.’ 
 
A modern answer to the question posed to Samuelson would be that a 
series of power laws count as actually nontrivial and true laws in 
economics.” 

— Gabaix (2016)
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The Nature of Firm Growth

■ How do large firms grow going forward? 
• Do they systematically shrink? (i.e., mean reversion in firm size) 
• Do they keep outperforming other smaller firms? 

■ Look at the relationship between firm growth and firm size

17



Firm Growth and Firm Size

18

relationship between net employment growth and firm size
when not controlling for firm age.

Controlling for firm age, however, has a dramatic impact
on these patterns. Regardless of the size classification meth-
odology, once we control for firm age, we observe no sys-
tematic inverse relationship between net growth and firm
size. When we use base-year size, the smallest size class
has the largest positive coefficient, but the size classes in
the range from 5 to 499 have the most negative effects. This
implies that firms in the 5 to 499 range have lower net
growth rates on average than the largest businesses once we
control for firm age. When we use average size, we find a
positive relationship between net growth and firm size for
all the size classes up through 500 workers. While the
details differ nontrivially depending on which size class
method we use, the main point is that once we control for
firm age, there is no evidence that small firms systemati-
cally have higher net growth rates than larger businesses.

In the lower panel of figure 2, we show the results when
we restrict the analysis to continuing firms only. The first
thing to note is that there is a less dramatic impact of con-

trolling for firm age since there is, by construction, no role
for start-ups.23 Exploring this more deeply, we find a strong
inverse relationship between net growth and firm size for
continuing firms when we use the base-size methodology.
This is the case whether or not we control for firm age.
However, using average size, there is a positive relationship
between net firm growth and firm size regardless of whether
one controls for firm age. Hence, for continuing firms, it is
primarily the size class methodology that matters. The stark
differences for small continuing firms between the base-size
and average-size results are consistent with the strong
regression-to-the-mean effects for these firms.

Some of the differences between the patterns across the
two panels of figure 2 reflect the role of firm exits.24 We
explore this further in figure 3, which shows the patterns of
job destruction from firm exit by firm size with and without
age controls. Job destruction from firm exit is directly inter-
pretable as an employment-weighted firm exit rate. The
firm exit rate falls monotonically with firm size regardless
of size class methodology and with or without firm age con-
trols. Controlling for firm age yields somewhat higher exit
rates for small businesses, but this effect is quite modest
when using average-size class methodology. Thus, a robust
finding is that small firms are more likely to exit than larger
firms, even controlling for age.

Combining figure 3 with the lower panel of figure 2 helps
account for the patterns in the upper panel of figure 2, espe-
cially for the results controlling for firm age. The lower
panel of figure 2 shows that when controlling for firm age,
there is a modest but increasing relationship between net
growth and average size for continuing firms. Combining

FIGURE 2.—RELATIONSHIP BETWEEN NET GROWTH AND FIRM SIZE

A.  All Firms

B.  Continuing Firms only
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FIGURE 3.—FIRM EXIT BY FIRM SIZE
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23 NWZ briefly discuss a similar result they obtained using the NETS
data when they exclude start-ups.

24 Section VII.E of the online appendix shows that the overall net
effects we report in table 2 and figure 2 can be generated by using the esti-
mates for the components of net growth (continuers, job creation from
entry and job destruction from exit). This property holds for all the overall
net effects we report in the paper.
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Gibrat’s Law

■ Firm growth rate is roughly independent of firm size… 
… if we exclude small firms 

■ This is called Gibrat’s law

19



A Mechanical Model of Firm Size Distribution 
with Continuous-Time Toolkits

20



Connecting Two Laws

■ Two robust features of the firm dynamics 
1. Power law  
2. Gibrat’s law 

■ Gabaix (1999): Gibrat’s law  Power law⇒

21



Continuous-Time Toolkits 

— Diffusion and Kolmogorov Forward Equation

22



Brownian Motion
■ Definition: a standard Brownian motion is a stochastic process  with  

1.  
2.  is independent of  

■ A continuous time version of (Gaussian) random walk:  

■ A Brownian motion with drift  and variance  is given by 
 
 
where  is a standard Brownian motion 

■ Alternatively, we can write

Zt

Zt+s − Zt ∼ N(0,s)
Zt+s − Zt Zt

Zt+1 = Zt + ϵt, ϵt ∼ N(0,1)

μ σ2

Zt

23

Xt = X0 + μt + σZt

dXt = μdt + σdZt



Visualizing Brownian Motion

■ Mean and variance of Brownian motion: 
 
 
 
or

24

𝔼[Xt − X0] = μt, Var[Xt − X0] = σ2t

𝔼[dXt] = μdt, Var[dXt] = σ2dt



Diffusion Process

■ More generally, a diffusion process  is 
 

• Brownian motion: ,  
• Geometric Brownian motion: ,  
• Ornstein-Uhlenbeck process: ,  

- Continuous time version of AR(1) process 

■ Note  and  

■ A diffusion is a continuous-time version of a Markov process but rules out jumps

Xt

μ(Xt) = μ σ(Xt) = σ
μ(Xt) = μXt σ(Xt) = σXt
μ(Xt) = − αXt σ(Xt) = σ

𝔼[dXt] = μ(Xt)dt Var(dXt) = σ2(Xt)dt

25

dXt = μ(Xt)dt + σ(Xt)dZt



Discrete Time Approximation

■ Discrete-time   

■ Consider 
 
 

■ Then 
 

t = Δt,2Δt, …

26

𝔼[ΔXt] = μ(Xt)Δt, Var(ΔX) = σ2(Xt)Δt

ΔXt ≡ Xt+Δt − Xt =
μ(Xt)Δt + σ(Xt) Δt with prob 1/2

μ(Xt)Δt − σ(Xt) Δt with prob 1/2



What is the Implied Distribution?

■ Suppose  follows diffusion process 
• We will model firm growth through a diffusion process 

■ How does the distribution of  evolve? 
• This gives us the implied firm size distribution 
• Let  be the cdf and  be the pdf

Xt

Xt

Gt(X) ≡ Prob(Xt ≤ X) gt(X) = ∂XGt(X)

27



Kolmogorov Forward Equation

■ If  follows diffusion, , then  follows 
 
 
 
which is a partial differential equation called Kolmogorov Forward equation 

■ What is the intuition? Assume  and  for simplicity.

Xt dXt = μ(Xt)dt + σ(Xt)dZt gt(X) ≡ ∂XGt(X)

μ(X) = μ > 0 σ(X) = σ

28

∂tgt(X) = − ∂X[μ(X)gt(X)] +
1
2

∂2
XX [σ(X)2gt(X)]



Intuition for Drift Term
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∂tgt(X) = − μ∂X[gt(X)] +
σ2

2
∂2

XX [gt(X)]

X

gt(X − μdt)

gt(X)

gt(X + μdt)
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Intuition for Drift Term
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∂tgt(X) = − μ∂X[gt(X)] +
σ2

2
∂2

XX [gt(X)]

X

gt(X − μdt)

gt(X) Δgt(x) = gt(X) − gt(X − μdt)
= − μ∂Xgt(X)dt as dt → 0

gt(X + μdt)



Intuition for Variance Term
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∂tgt(X) = − μ∂X[gt(X)] +
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2
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XX [gt(X)]
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gt(X − σ dt)

gt(X)

gt(X + σ dt)



Intuition for Variance Term
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Intuition for Variance Term

30

∂tgt(X) = − μ∂X[gt(X)] +
σ2

2
∂2

XX [gt(X)]

X

gt(X − σ dt)

gt(X)

gt(X + σ dt)

Δgt(x) =
1
2

gt(X − σ dt) +
1
2

gt(X + σ dt) − gt(X)

≈
1
2 [gt(X) − σ∂Xgt(X) dt +

σ2

2
∂2

XXgt(X)dt]
+

1
2 [gt(X) + σ∂Xgt(X) dt +

σ2

2
∂2

XXgt(X)dt] − gt(X)

=
σ2

2
∂2

XXgt(X)dt



Heuristic Proof (1/2)
■ Let  be the change in  over a time interval  

■ Let  be density over  

■ The changes in density  over a time interval  is 
 
 

■ Taylor-expand the inflow around :

dXt Xt dt

p(dXt, Xt) dXt

gt(Xt) dt

dXt = 0

31

Δgt(Xt) = ∫ (−p(dXt, Xt)gt(Xt)

outflow

+ p(dXt, Xt − dXt)g(Xt − dXt)

inflow
)d(dXt)

p(dXt, Xt−dXt)g(Xt−dXt) ≈ p(dXt, Xt)g(Xt) − ∂X[p(dXt, Xt)g(Xt)]dXt

+
1
2

∂2
XX[p(dXt, Xt)g(Xt)](dXt)2

(1)

(2)



Heuristic Proof (2/2)
■ Substitute back (2) into (1): 

32

Δgt(Xt) = ∫ (−∂X[p(dXt, Xt)gt(Xt)]dXt +
1
2

∂2
XX[p(dXt, Xt)gt(Xt)](dXt)2)d(dXt)

= − ∂X[∫ (p(dXt, Xt)dXt) d(dXt)

=μ(Xt)dt

gt(Xt)] +
1
2

∂2
XX[∫ (p(dXt, Xt)(dXt)2) d(dXt)

=σ(Xt)2dt

gt(Xt)]

= − ∂X [μ(Xt)gt(Xt)] dt +
1
2

∂2
XX [σ(Xt)2gt(Xt)] dt



Steady State Distribution

■ Corollary: Steady-state distribution, , if it exists, solves 
 
 

• (Inflow into ) = (outflow from ) 

■ Steady-state distribution is characterized by a 2nd-order ODE 

■ This is a beauty of continuous time 

gt(X) = g(X)

X X

33

0 = − ∂X[μ(X)g(X)] +
1
2

∂2
XX [σ(X)2g(X)]



A Mechanical Model of Firm Size Distribution

34



Firm Growth as a Stochastic Process
■ Let  denote the firm size and  follows diffusion process 

■ Gibrat’s law suggests  follows a geometric Brownian motion: 
 
 
 

■ One can show   
 Distribution explodes as   no steady-state distribution 

■ Gabaix’s (1999) insight:  
Gibrat’s law + stabilizing force   SS distribution exists and features power law 

nt nt

nt

Var(log nt) = σ2t
⇒ t → ∞ ⇒

⇒

35

dnt = μntdt + σntdZt

⇔
dnt

nt
= μdt + σdZt



Stabilizing Forces
■ A particular approach undertaken by Gabaix (1999): 

• Minimum fim size requirement, :  

✓ If firms hit , they exit 

✓ The same mass of new firms with size  enter at the same time 

■ Stationary firm size distribution  solves 
 
 
 
with boundary conditions such that  and  for all 

n

n

n

g(n)

∫ ∞
n

g(n)dn = 1 g(n) ≥ 0 n

36

0 = − ∂n[μng(n)] +
1
2

∂2
nn [σ2n2g(n)] for n > n



Power Law in Firm Size Distribution
Result: The solution is Pareto:  with  

1. Integrate the ODE once to obtain (  are integration constants) 
 

2. Integrate one more time  
 
 
 
where . 

3. Since  is pdf,    and 

g(n) = ζnζn−ζ−1 ζ = 1 − μ
2σ2 > 0

c1, c2

c̃1 ≡ c1/(σ2 − 2μ), c̃2 ≡ c2/σ2

g(n) ∫ ∞
n

g(n)dn = 1 ⇒ c̃1 = 0 c̃2 = ζnζ

37

c1 = − 2μng(n) + ∂n[σ2n2g(n)]
⇔ n

−2μ
σ2 c1 = ∂n[n

−2μ
σ2 σ2n2g(n)]

c1 ∫ n m
−2μ
σ2 dm = n

−2μ
σ2 σ2n2g(n) + c2

⇔ g(n) = c̃1n−1 − c̃2n−ζ−1,



Power Law and Zipf’s Law

■ The cdf is , so power law holds: 
 

■ The existence of mean requires     

■ What about Zipf’s law? It holds if    

■ The result is much more general than presented here: 
• random growth + stabilizing force  

 asymptotic power law:  

• stabilizing force   Zipf’s law

G(n) = 1 − (n/n)−ζ

ζ > 1 ⇔ μ < 0

ζ = 1 − μ
2σ2 ≈ 1 ⇔ μ ≈ 0

⇒ Pr(ñ ≥ n) → cn−ζ as n → ∞

≈ 0 ⇒

38

log Pr(ñ ≥ n) = log(1 − G(n)) = − ζ log n + const



Numerically Computing  
Stationary Firm Size Distribution

39



How to Solve ODE on a Computer?

■ Gabaix’s (1999) case admits analytical solutions 

■ Easy to come up with variations that prevent analytical characterizations 

• For example, what if firm size follows a general diffusion with  and ? 

■ Even in these cases, one can always solve the following ODE numerically: 
 

■ How do we do that?

μ(n) σ(n)

40

0 = − ∂n[μ(n)g(n)] +
1
2

∂2
nn [σ(n)2g(n)] for n > n



Discretization and Derivatives
■ Discretize the firm-size space:  with  and equispaced grids: 

■ We discretize the derivative  as well. Two-ways: 
1. Forward difference approximation: 

 

2. Backward difference approximation: 
 

■ Use forward when  and backward when  

■ The second derivative is 

n ∈ {n1, n2, …, nJ} n1 = n

−∂n[μ(n)g(n)]

−μ(ni) > 0 −μ(ni) < 0

41

−∂n[μ(ni)g(ni)] ≈ −
μ(ni+1)g(ni+1) − μ(ni)g(ni)

Δn

−∂n[μ(ni)g(ni)] ≈ −
μ(ni)g(ni) − μ(ni−1)g(ni−1)

Δn

Δn ≡ nj − nj−1

∂2
nn [σ(ni)2g(ni)] ≈

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)

(Δn)2



Discretized KFE
■ Suppose , we use backward difference and discretized KFE is 

 
 
 
for 

μ(ni) < 0

i = 1,…, J − 1
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−μ(ni+1)g(ni+1) + μ(ni)g(ni)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2

= 0

ni−1 ni ni+1



Discretized KFE
■ Suppose , we use backward difference and discretized KFE is 
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+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2

= 0

Inflow from  due to drifti + 1 Inflow from  due to variancei + 1

ni−1 ni ni+1



Discretized KFE
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Discretized KFE
■ Suppose , we use backward difference and discretized KFE is 
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Discretized KFE
■ Suppose , we use backward difference and discretized KFE is 
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+
1
2
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Discretized KFE
■ Suppose , we use backward difference and discretized KFE is 
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42

−μ(ni+1)g(ni+1) + μ(ni)g(ni)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2

= 0

outflow from  due to drifti

outflow from  due to variancei

ni−1 ni ni+1



Discretized KFE
■ Suppose , we use backward difference and discretized KFE is 
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μ(ni) < 0

i = 1,…, J − 1
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−μ(ni+1)g(ni+1) + μ(ni)g(ni)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2

= 0

ni−1 ni ni+1



Entry & Exit at Lower Boundary
■ Suppose , we use backward difference and discretized KFE is 

 
 
 
for 

μ(ni) < 0

i = 1,…, J − 1
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−μ(ni+1)g(ni+1)+μ(ni)g(ni)
Δn

+
1
2

σ(ni+1)2g(ni+1)−2σ(ni)2g(ni)+σ(ni−1)2g(ni−1)
(Δn)2

= 0

n1 n2



Entry & Exit at Lower Boundary
■ Suppose , we use backward difference and discretized KFE is 
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μ(ni) < 0

i = 1,…, J − 1
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−μ(ni+1)g(ni+1)+μ(ni)g(ni)
Δn

+
1
2

σ(ni+1)2g(ni+1)−2σ(ni)2g(ni)+σ(ni−1)2g(ni−1)
(Δn)2
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Inflow from  due to drifti + 1 Inflow from  due to variancei + 1

n1 n2



Entry & Exit at Lower Boundary
■ Suppose , we use backward difference and discretized KFE is 
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Entry & Exit at Lower Boundary
■ Suppose , we use backward difference and discretized KFE is 
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Δn

+
1
2

σ(ni+1)2g(ni+1)−2σ(ni)2g(ni)+σ(ni−1)2g(ni−1)
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n1 n2



Entry & Exit at Lower Boundary
■ Suppose , we use backward difference and discretized KFE is 
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Entry & Exit at Lower Boundary
■ Suppose , we use backward difference and discretized KFE is 
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−μ(ni+1)g(ni+1)+μ(ni)g(ni)
Δn

+
1
2

σ(ni+1)2g(ni+1)−2σ(ni)2g(ni)+σ(ni−1)2g(ni−1)
(Δn)2

= 0

outflow from  due to variance 
+ inflow from entry

i

outflow from  due to drift 
+ inflow from entry

i

n1 n2



Entry & Exit at Lower Boundary
■ Suppose , we use backward difference and discretized KFE is 
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Reflection at Upper Boundary
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(Δn)2
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nJ−1 nJ



Reflection at Upper Boundary
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Inflow from  due to drifti + 1 Inflow from  due to variancei + 1

nJ−1 nJ
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(Δn)2
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nJ−1 nJ



Reflection at Upper Boundary
■ Suppose , we use backward difference and discretized KFE is 
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44

−μ(ni+1)g(ni+1)+μ(ni)g(ni)
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+
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σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2
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Inflow from  due to variancei − 1

nJ−1 nJ



Reflection at Upper Boundary
■ Suppose , we use backward difference and discretized KFE is 

 
 
 
for 

μ(ni) < 0

i = 1,…, J − 1

44

−μ(ni+1)g(ni+1)+μ(ni)g(ni)
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+
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2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2
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nJ−1 nJ



Reflection at Upper Boundary
■ Suppose , we use backward difference and discretized KFE is 

 
 
 
for 

μ(ni) < 0

i = 1,…, J − 1

44

−μ(ni+1)g(ni+1)+μ(ni)g(ni)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2

= 0

outflow from  due to drifti

outflow from  due to variance 
+ reflection

i

nJ−1 nJ



Reflection at Upper Boundary
■ Suppose , we use backward difference and discretized KFE is 

 
 
 
for 

μ(ni) < 0

i = 1,…, J − 1

44

−μ(ni+1)g(ni+1)+μ(ni)g(ni)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2

= 0

nJ−1 nJ



Linear System

■ Realize that discretized KFE is a linear system of   

■ Since  is a density, 
 
 
which is also linear in  

■ Letting  and , the system can simply written in a matrix form

g ≡ [g(ni)]i

g

g

μi ≡ μ(ni) σi ≡ σ(ni)

45

∑J
j=1 g(nj)Δn = 1



Linear System when μ(n) < 0

46

ATg = 0
Δn × 1′ g = 1

(A)

(B)

where , and 
 
 
 
All the other elements are 0. 

■ Intuitively,  is the net transition rate from  to . In fact,  

A ≡ [Ai,j]i,j

Ai,j i j ∑j Ai,j = 0

Ai,i =
μj

Δn
−

σ2
i

(Δn)2
, Ai,i−1 = −

μi

Δn
+

1
2

σ2
i

(Δn)2
, Ai,i+1 =

1
2

σ2
i

(Δn)2



Matrix  when A μ(n) < 0

47

A ≡

− 1
2(Δn)2 (σ1)2 1

2(Δn)2 (σ1)2 0 0 ⋯ 0 0

− 1
Δn μ2 + 1

2(Δn)2 (σ2)2 1
Δn μ2 − 1

(Δn)2 (σ2)2 1
2(Δn)2 (σ2)2 0 ⋯ 0 0

0 − 1
Δn μ3 + 1

2(Δn)2 (σ3)2 1
Δn μ3 − 1

(Δn)2 (σ3)2 1
2(Δn)2 (σ3)2 0 ⋯ 0

0 ⋯ ⋱ ⋱ ⋱ ⋮ ⋮
0 0 0 ⋯ − 1

Δn μJ−1 − 1
(Δn)2 (σJ−1)2 1

Δn μJ−1 + 1
2(Δn)2 (σJ−1)2

0 0 0 ⋯ − 1
Δn μJ + 1

2(Δn)2 (σJ)2 1
Δn μJ − 1

2(Δn)2 (σJ)2



Matrix Inversion to solve g
■ One of the rows in (A) is colinear (implied by (B)) 

■ Replace one of the rows in (A) with (B) to write 
 
 

: one row in  is replaced with , and the same row in  is 1 and 0 elsewhere 

■ Inverting a big matrix like  is typically expensive 

■ But,  is sparse (many zero entries) 

■ Always work with a sparse matrix whenever the matrix has many zero entries 

■ Inverting a sparse matrix is cheap even when the matrix is big

Ã A Δn1′ B̃

Ã

Ã

48

Ãg = B̃ ⇒ g = Ã−1B̃



Julia Code for Solving KFE

49

using SparseArrays  
using Parameters 
@with_kw mutable struct model 
    J = 1000 
    sig = 0.1 
    mu = -0.01 
    ng = range(1.0,6,length=J) 
    dn = ng[2] - ng[1] 
end 
function populate_A(param) 
    @unpack_model param 
    A = spzeros(length(ng),length(ng)) 
    for (i,n) in enumerate(ng) 
        A[i,i] += -(sig*n)^2/dn^2; 
        A[i,min(i+1,J)] += 1/2*(sig*n)^2/dn^2; 
        A[i,max(i-1,1)] += 1/2*(sig*n)^2/dn^2; 
        if mu > 0 
            A[i,i] += -mu*n/dn; 
            A[i,min(i+1,J)] += mu*n/dn; 
        else 
            A[i,i] += mu*n/dn; 
            A[i,max(i-1,1)] += -mu*n/dn;  
        end 
    end  
    return A 
end 
function solve_stationary_distribution(param) 
    @unpack_model param 
    A = populate_A(param) 
    B = zeros(length(ng));   
    B[end] = 1; 
    A[end,:] = ones(1,length(ng))*dn; 
    g = A’\B; 
    return g 
end 
param = model() 
g = solve_stationary_distribution(param)



Solution
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Power Law

■ Bias in the upper tail due to truncation
51



spy(A)

■ The advantage of continuous time with diffusion lies in the sparsity of  

■ In discrete time,  is unlikely to be sparse in many applications

A

A
52



Numerically Computing  
Transition of Firm Size Distribution

53



Solving Transition Dynamics
■ How do we numerically compute the transition path of  given ? 

■ Recall the evolution of distribution is characterized by 
 

■ We have to discretize time as well:  and  

■ Approximate the time derivative using backward difference: 
 
 

• Can use forward difference but requires  to be small

{gt(n)} g0(n)

t ∈ [t0, t1, …, tN] Δt ≡ tj − tj−1

Δt

54

∂tgt(n) = − ∂n[μ(n)gt(n)] +
1
2

∂2
nn [σ(n)2gt(n)]

∂tgt(X) ≈
gt(n) − gt−Δt(n)

Δt



Back to Markov Chain

■ For any given , one can compute  by solving 
 
 
 
 
 

■ The matrix  corresponds to Markov Chain transition matrix in a time interval 

gt−Δt ≡ [gt−Δt(ni)]i gt

P Δt

55

gt − gt−Δt

Δt
= ATgt

⇔ gt = [I − Δt × AT]−1

≡ P

gt−Δt



Julia Code for Transition
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using LinearAlgebra 
dt = 0.1; 
T = 5000; 
A = populate_A(param); 
gpath = zeros(J,T); 
gpath[:,1] = ones(J)./(J*dn); 
for t = 2:T 
    gpath[:,t] = (I - dt*A’)\gpath[:,t-1] 
end



Transition Dynamics
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Transition Dynamics
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Transition Dynamics
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Transition Dynamics
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Transition Dynamics
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Taking Stock
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Taking Stock

■ Fact: A handful of extremely large firms hire a large share of workers 
1. The firm size distribution is fat-tailed, Zipf’s law 
2. Firm growth is roughly unrelated to firm size, Gibrat’s law 

■ Theory: A mechanical model of firm growth as in Gabaix (1999) 

1. Gibrat’s law + stabilizing force  power law 
2. stabilizing force    Zipf’s law 

■ Techniques: We have covered important continuous-time tools 
1. Diffusion process, Kolmogorov forward equation (KFE) 
2. How to solve KFE on your computer

⇒
↓ 0 ⇒
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Appendix A: 
Non-Uniform Grid

60



Why Non-Uniform Grid?
■ So far, we have considered equi-spaced grid: 

■ In many applications, we would like to achieve the followings: 
1. We want the upper bound of the grid to be large enough 

• Walmart employs 2.3 million workers in 2021 
2. We want to accurately compute especially at the lower end of the grid 

• This is where exit decisions matter 
3. We do not want to take too many gridpoints 

■ We can achieve the above goal with non-uniform grid 
• Take many fine grids at lower ends and coarse grids at upper ends 
• log-spaced grid is a good example

61

Δnj ≡ nj − nj−1 = Δn



Discretization with Non-Uniform Grid
■ Suppose grids are non-uniform:  with  

■ Approximating first-derivative with non-uniform grid: 
1. Forward difference approximation: 

 

2. Backward difference approximation: 
 

■ Approximating second-derivative with non-uniform grid: 

n ≡ [n1, n2, …, nJ]′ 

62

Δnj,+ = nj+1 − nj, Δnj,− = nj − nj−1

−∂n[μ(ni)g(ni)] ≈ −
μ(ni+1)g(ni+1) − μ(ni)g(ni)

Δnj,+

−∂n[μ(ni)g(ni)] ≈ −
μ(ni)g(ni) − μ(ni−1)g(ni−1)

Δnj,−

∂2
nn [σ(ni)2g(ni)] ≈

Δnj,−σ(ni+1)2g(ni+1) − (Δnj,+ + Δnj,−)σ(ni)2g(ni) + Δnj,+σ(ni−1)2g(ni−1)
1
2 (Δnj,+ + Δnj,−)Δnj,+Δnj,−



KFE in a Matrix Form when μ(n) < 0
■ Let  with 

 
 
 
 
 
 
 

■ If , we go back to the uniform grid case

A ≡ [Ai,j]i,j

Δnj,+ = Δnj,− = Δn

63

Aj,j−1 = −
μj

Δnj,−
+

Δnj,+σ2
j

(Δnj,+ + Δnj,−)Δnj,+Δnj,−

Aj,j =
μj

Δnj,−
−

(Δnj,+ + Δnj,−)σ2
j

(Δnj,+ + Δnj,−)Δnj,+Δnj,−

Aj,j+1 =
Δnj,−σ2

j

(Δnj,+ + Δnj,−)Δnj,+Δnj,−



KFE with Non-Uniform Grid
■ The density is . We work with the transformed density: 

 
 
 
 
 
 
 

■ The KFE in a matrix form is

g ≡ [g(nj)]j

64

Δ̃nj =

1
2 Δnj,+ j = 1
1
2 (Δnj,+ + Δnj,−) j = 2,…, J − 1
1
2 Δnj,− j = J

g̃ ≡ [g̃j]j, g̃j = gjΔ̃nj

ATg̃j = 0



Appendix B: 
Numerically Solving KFE  
when μ > 0
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Discretized KFE when μ(ni) > 0
■ Suppose , we use backward difference and discretized KFE is 

 
 
 
for 

μ(ni) > 0

i = 1,…, J − 1
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−μ(ni)g(ni) + μ(ni−1)g(ni−1)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2

= 0

ni−1 ni ni+1



Discretized KFE when μ(ni) > 0
■ Suppose , we use backward difference and discretized KFE is 
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−μ(ni)g(ni) + μ(ni−1)g(ni−1)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2

= 0

Inflow from  due to drifti + 1

Inflow from  due to variancei + 1

ni−1 ni ni+1



Discretized KFE when μ(ni) > 0
■ Suppose , we use backward difference and discretized KFE is 
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σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2
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Discretized KFE when μ(ni) > 0
■ Suppose , we use backward difference and discretized KFE is 

 
 
 
for 

μ(ni) > 0

i = 1,…, J − 1

66

−μ(ni)g(ni) + μ(ni−1)g(ni−1)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
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= 0

Inflow from  due to variancei − 1

ni−1 ni ni+1



Discretized KFE when μ(ni) > 0
■ Suppose , we use backward difference and discretized KFE is 

 
 
 
for 

μ(ni) > 0

i = 1,…, J − 1

66

−μ(ni)g(ni) + μ(ni−1)g(ni−1)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
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= 0

ni−1 ni ni+1



Discretized KFE when μ(ni) > 0
■ Suppose , we use backward difference and discretized KFE is 

 
 
 
for 

μ(ni) > 0

i = 1,…, J − 1

66

−μ(ni)g(ni) + μ(ni−1)g(ni−1)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2

= 0

outflow from  due to drifti outflow from  due to variancei

ni−1 ni ni+1



Discretized KFE when μ(ni) > 0
■ Suppose , we use backward difference and discretized KFE is 

 
 
 
for 

μ(ni) > 0

i = 1,…, J − 1

66

−μ(ni)g(ni) + μ(ni−1)g(ni−1)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)
(Δn)2

= 0

ni−1 ni ni+1



−μ(ni)g(ni)+μ(ni−1)g(ni−1)
Δn

+
1
2

σ(ni+1)2g(ni+1) − 2σ(ni)2g(ni)+σ(ni−1)2g(ni−1) + σ(ni)2g(ni)
(Δn)2

= 0

KFE at the Boundary when μ(ni) > 0
■ At the boundary , 

 
 
 
 

• Since , inflow from  is absent 

• Since mass  exits, the same mass enters at  

■ At , assume reflecting barrier so that 

i = 1

g(ni−1) = 0 i − 1

σ(ni)2g(ni)
1

(Δn)2
ni = n

i = J

67

−μ(ni)g(ni) + μ(ni−1)g(ni−1)+μ(ni)g(ni)
Δn

+
1
2

−2σ(ni)2g(ni) + σ(ni−1)2g(ni−1)+σ(ni)2g(ni)
(Δn)2

= 0


