Firm Size Distribution

Masao Fukui

741 Macroeconomics Topic 1

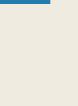
Fall 2024

Lecture:

- MonWed, 8:30-9:45am in SSW 315
- Instructor:
 - Masao Fukui (<u>mfukui@bu.edu</u>)
 - Office hours: MonTue 4:15-5:45pm in Room 400 (my office)

Grades:

- 80%: problem sets
- 20%: research proposal or a final project
- Bonus points if you catch coding errors in my code



- In macro, we often postulate a representative firm solving:
 - $\max f_t(L) wL$
- This gives the (inverse) aggregate labor demand function $f'_t(L) = w$
- Together with aggregate labor supply, it pins down wages and employment.

Course Theme

- In macro, we often postulate a representative firm solving:
 - $\max f_t(L) wL$
- This gives the (inverse) aggregate labor demand function

 \mathcal{W}

Course Theme

 $f'_t(L) = w$

Together with aggregate labor supply, it pins down wages and employment. Agg. labor supply

 $\blacktriangleright L$

Agg. labor demand

Unpacking Aggregate Labor Demand

What is aggregate labor demand? – Two themes we highlight

- 1. There is no "representative firm"
 - The reality, of course, consists of heterogeneous firms

• How does the heterogeneity shape the aggregate labor demand? First theme: heterogeneous firms

- 2. The labor market is not competitive
 - We assumed firms could hire any L taking w as given

• It is hard to imagine there is any real firm that thinks in such a way Second theme: monopsony and frictional labor market

The Course is Not About

The course is not about aggregate labor supply

- We will mostly assume that the labor supply is fixed
- There is a literature focusing on labor supply (see Rogerson (2024) for a survey)

The course is not about investment/capital demand or innovation

- We will mostly abstract from capital
- Another big literature on heterogeneous firms focuses on investment/R&D

Technical Tools

Along the way, I put emphasis on two technical tools:

1. Continuous-time techniques

- Increasingly becoming popular in macro
- Superficially looks elegant & sometimes actually useful
- At best, you will be able to use it after this course
- At worst, you won't be scared of reading continuous-time papers

Technical Tools

Along the way, I put emphasis on two technical tools:

1. Continuous-time techniques

- Increasingly becoming popular in macro
- Superficially looks elegant & sometimes actually useful
- At best, you will be able to use it after this course
- At worst, you won't be scared of reading continuous-time papers

2. Computational methods

- Extremely important in macro nowadays
- Hard to write qualitative papers now, quantification is almost always necessary
- The frontier expanded a lot in the past 5 years
- Young generation's comparative advantage

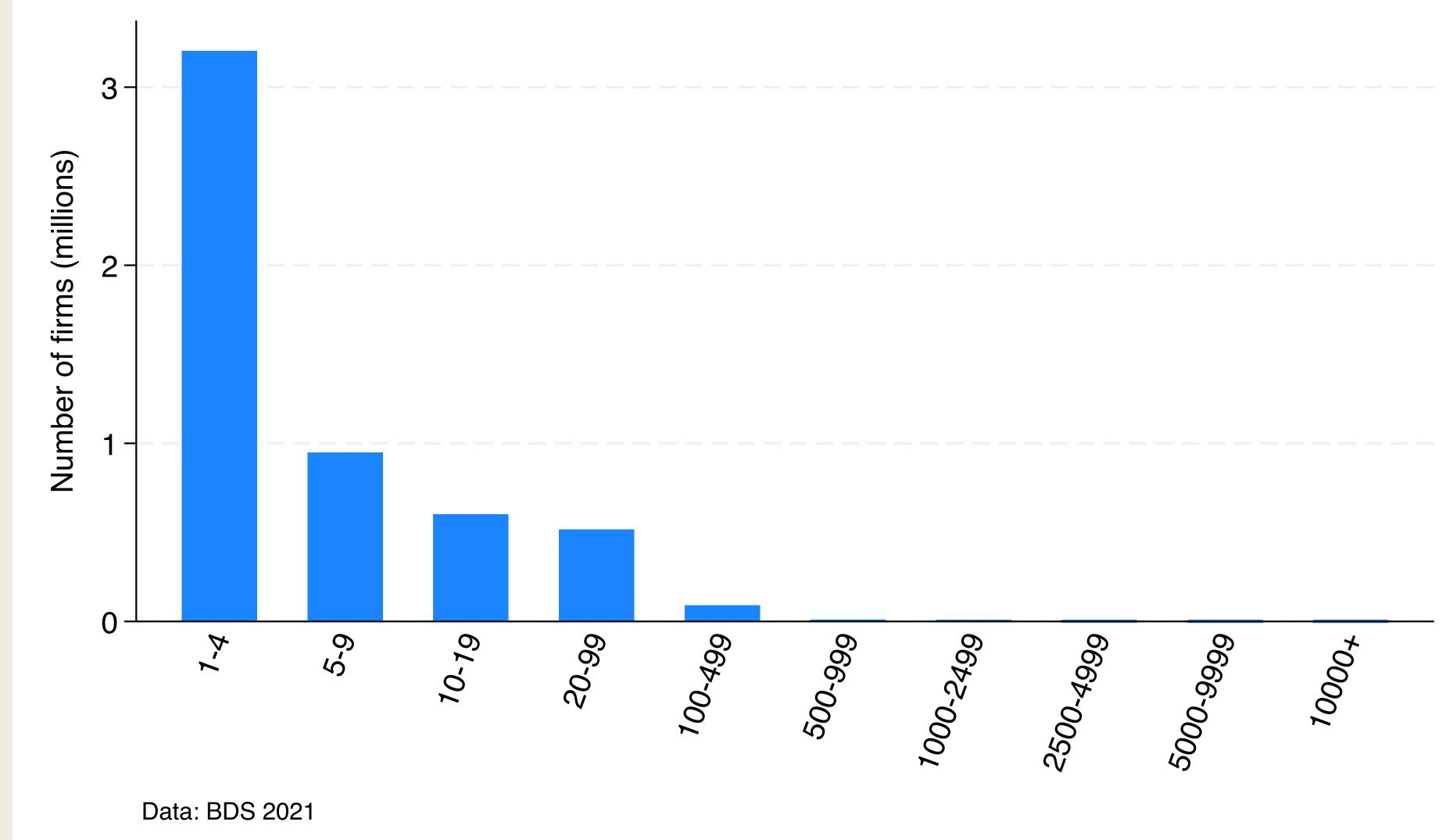
6

Computation Tips

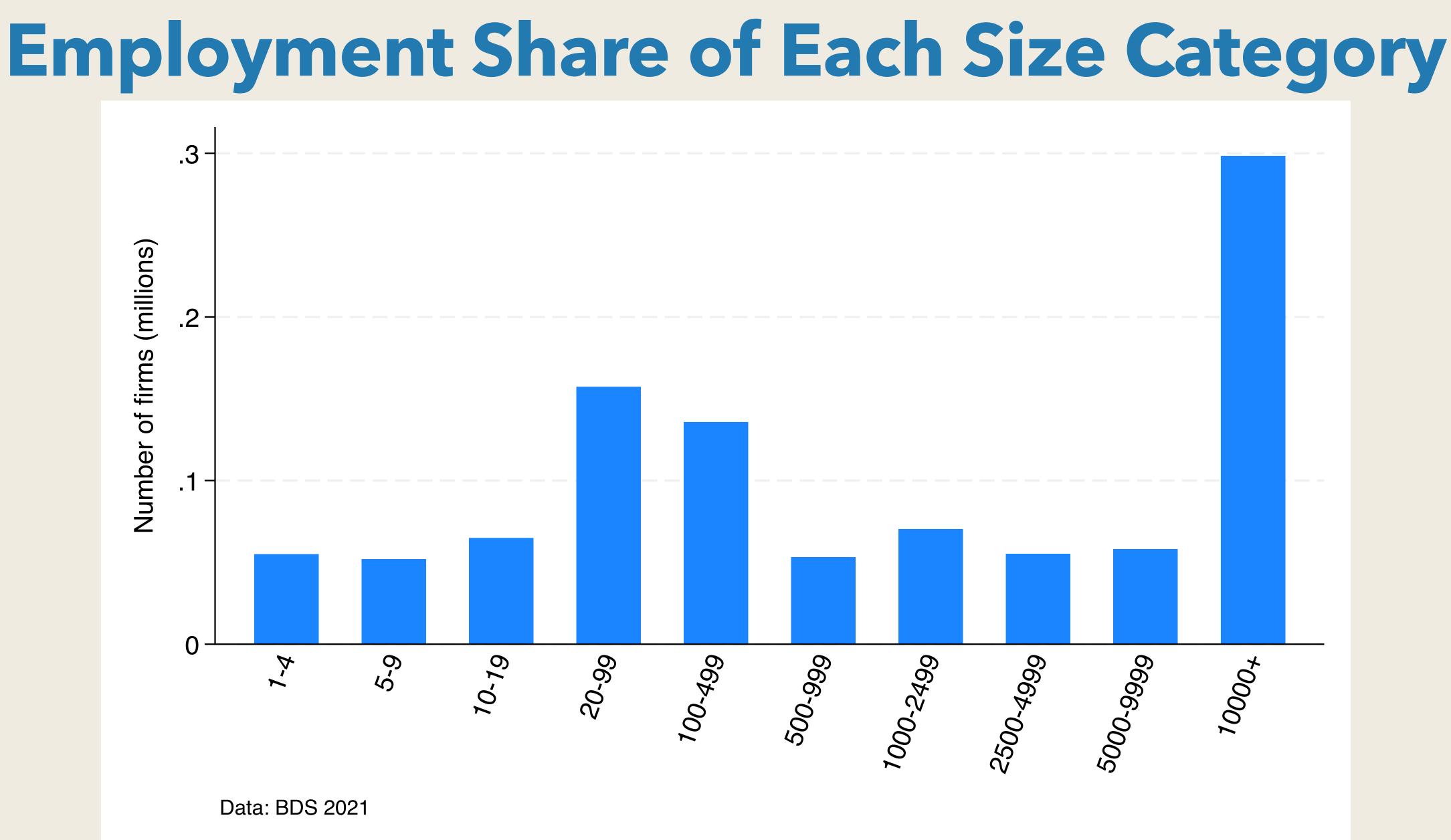
- I strongly recommend Julia as a computational language for quantitative macro
 - Very similar to Matlab in terms of syntax, but much faster
 - Matlab is a dying language in my view
 - Python is good for many purposes, but not for quantitative macro
 - needs a lot of work (JAX) to speed up & struggles to handle sparse matrices
 - Slightly slower than Fortran and C++, but much easier to code/debug
 - Remember: total time cost = time running + time coding/debugging
- I recommend VS Code + Github Copilot as an editor
 - Github copilot is a game changer for me (free for academia)
- I post all the codes at: https://github.com/masaofukui/741_Julia

Firm Size Distribution in the US 2021

Firm Size (Employment) Distribution



9

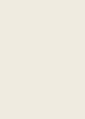


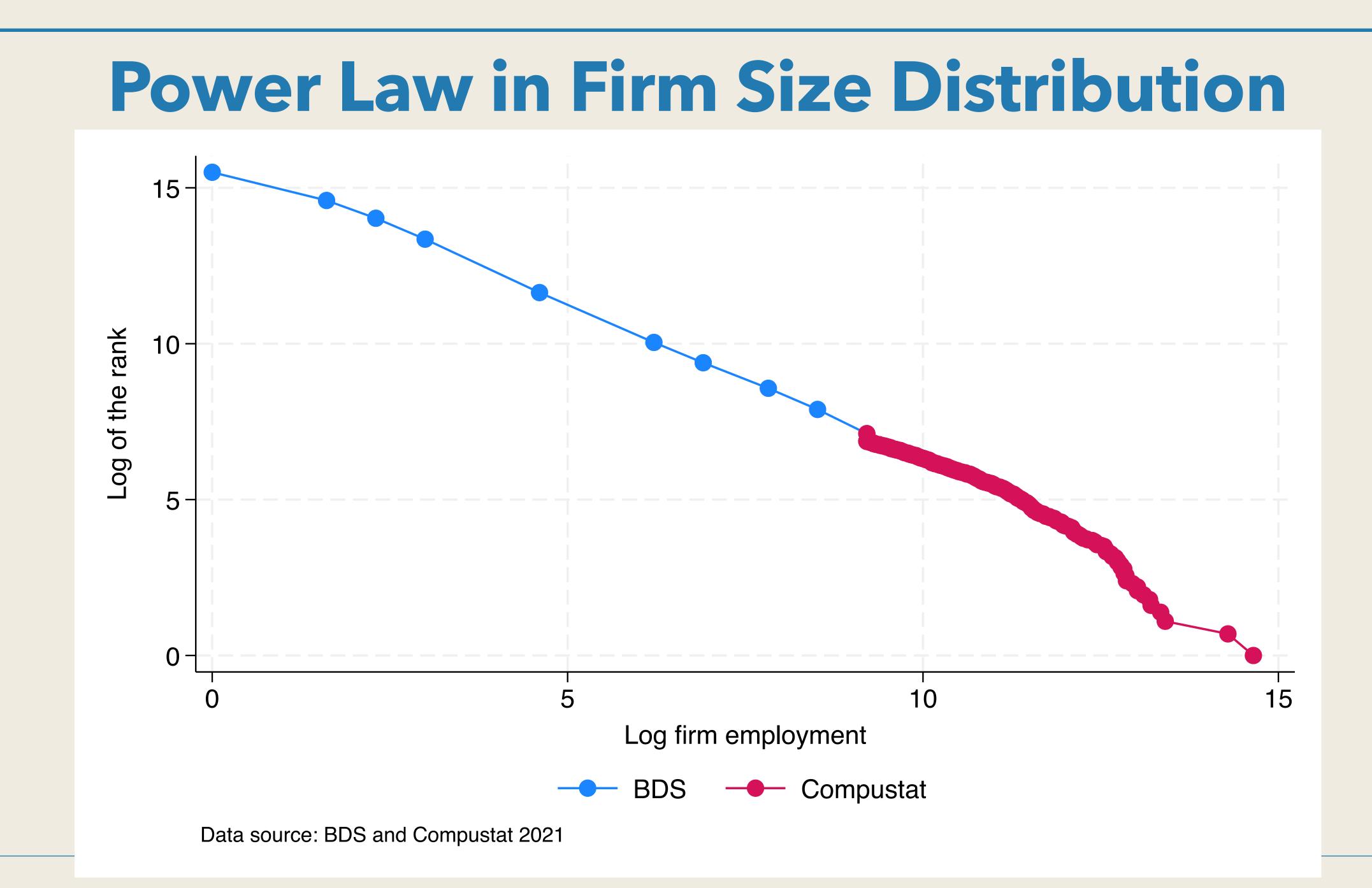
A Handful of Firms Hire Majority of Workers

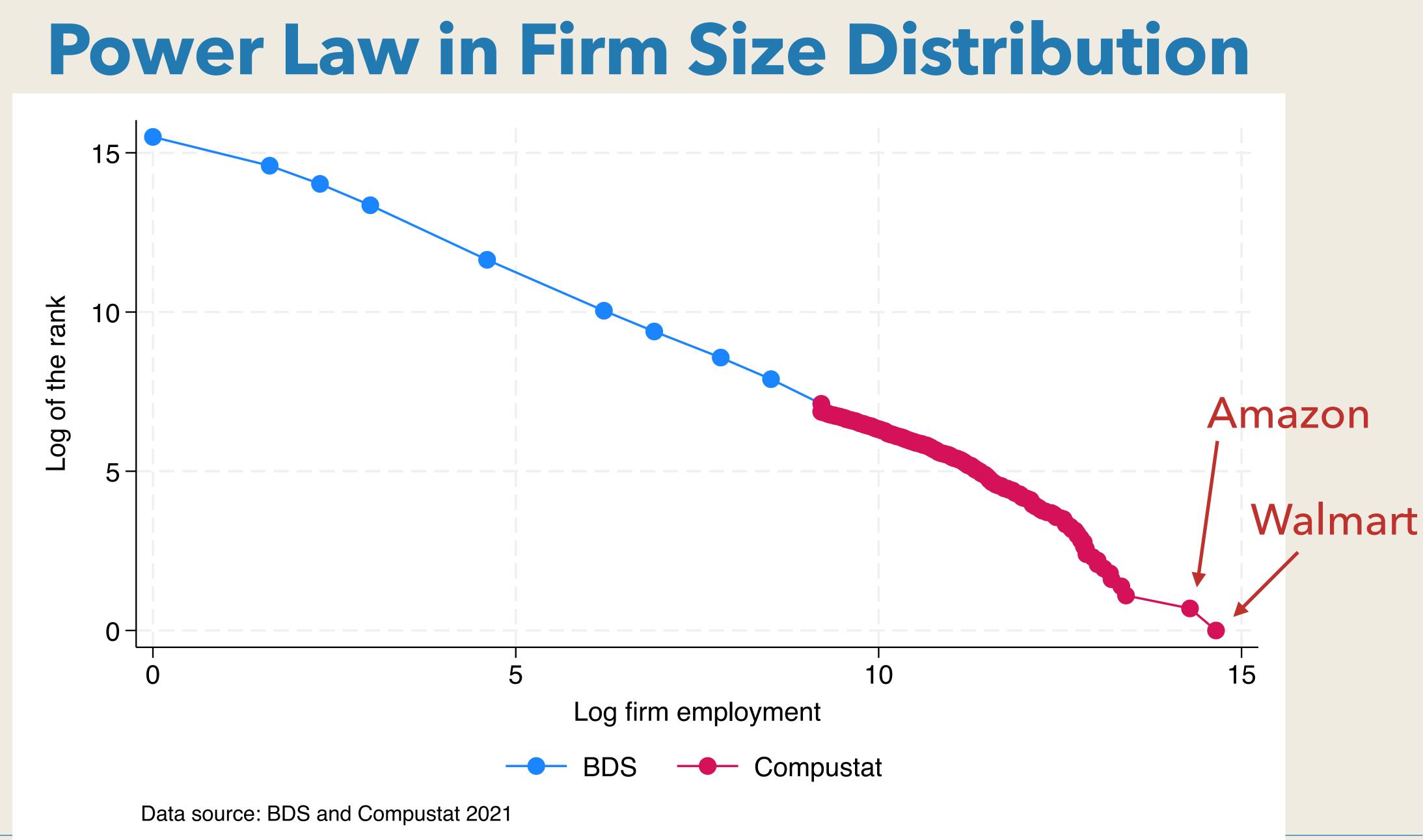
Large firms in the US are extremely large

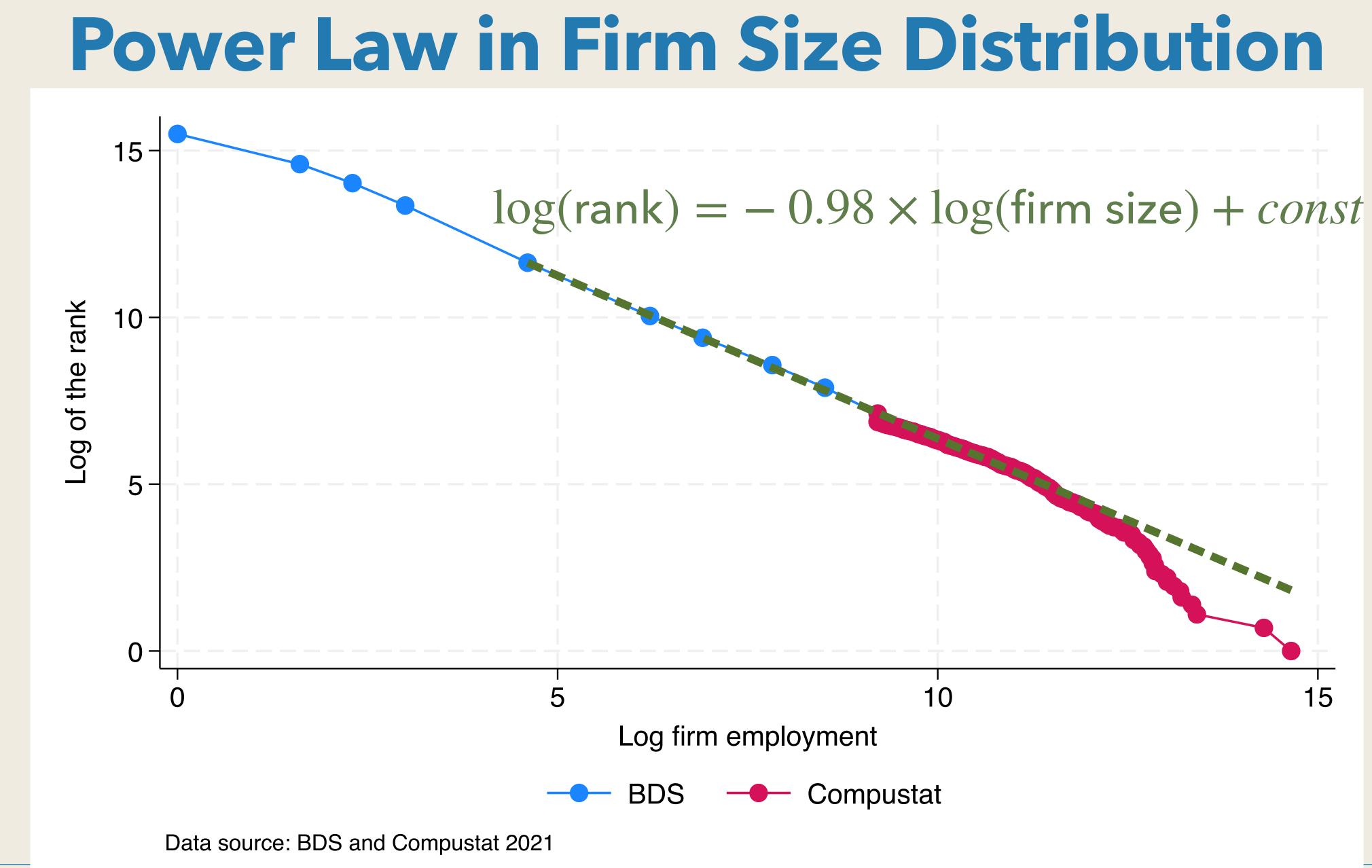
- What does the right tail of the firm size distribution look like?

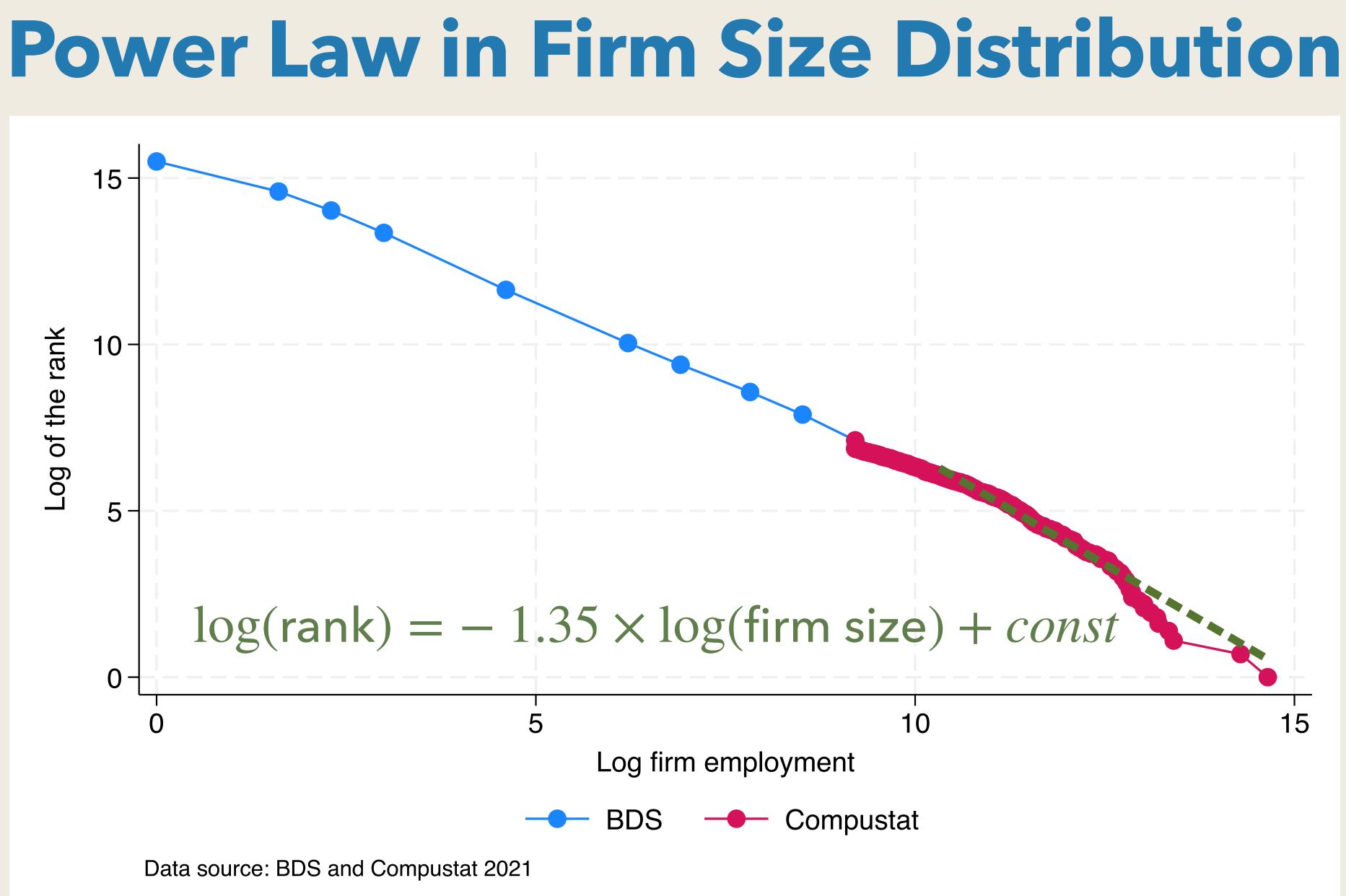
• Top 0.02% of firms (\approx 1,200 firms) account for 30% of employment in the US • Top 1% of firms (\approx 60,000 firms) account for 60% of employment in the US











Two Facts in Firm Size Distribution

- Two surprises:
 - 1. The ranking of firm size is log-linear in firm size (Power law)
 - 2. The coefficient is close to one (**Zipf's law**)
- Mathematically,

$$\log \Pr(\tilde{x} \ge x) = -\zeta$$

ranking

• What is this distribution? - Pareto: $Pr(\tilde{x} \ge x) = (x/x)^{-\zeta}$ r in firm size (**Power law**) f's law)

 $\log x + const, \qquad \zeta \approx 1$

Power Laws in Economics

"Paul Samuelson (1969) was once asked by a physicist for a law in economics that was both nontrivial and true... Samuelson answered, 'the law of comparative advantage.'

A modern answer to the question posed to Samuelson would be that a series of power laws count as actually nontrivial and true laws in economics."

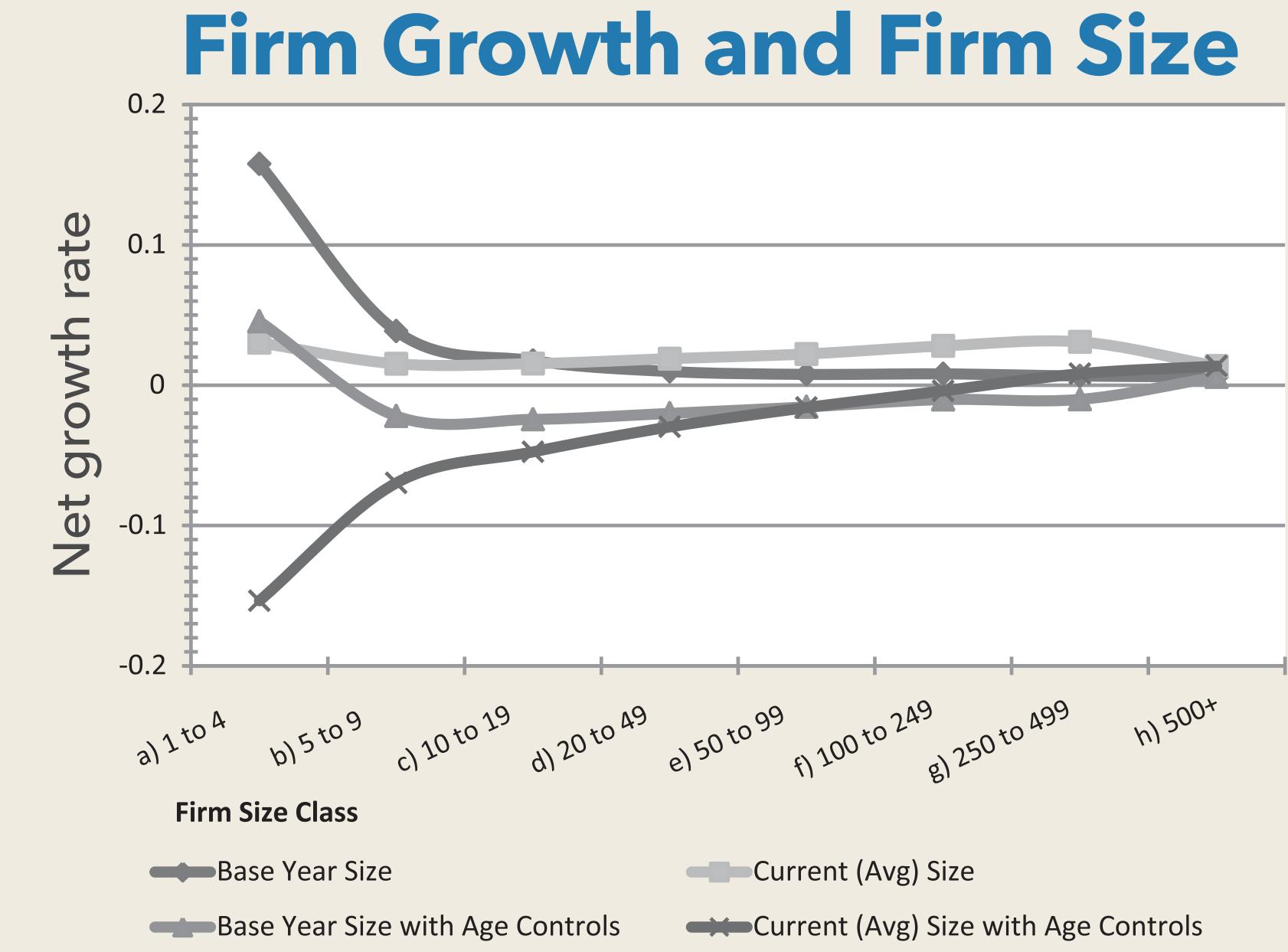
Gabaix (2016)

The Nature of Firm Growth

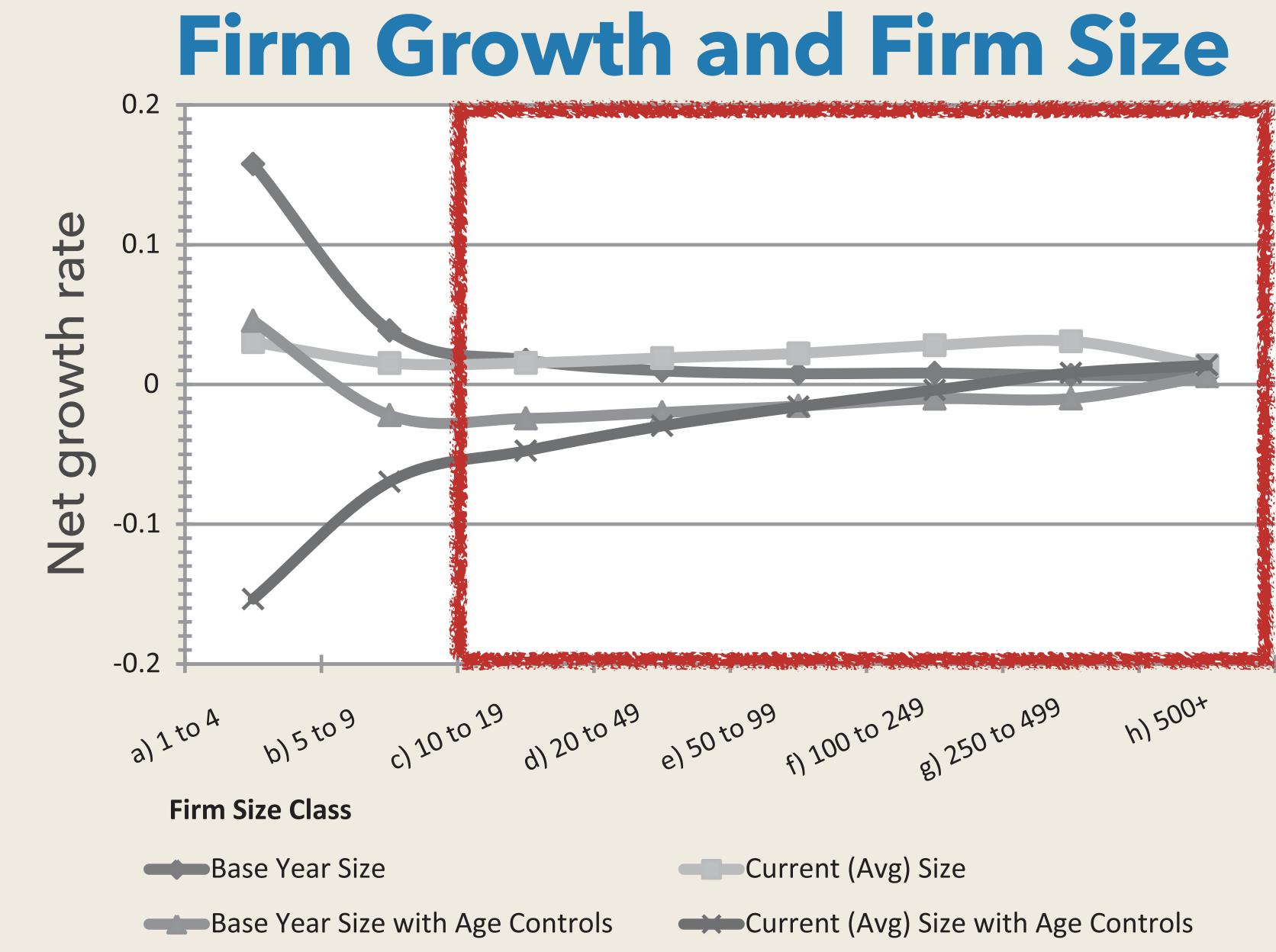
How do large firms grow going forward?

- Do they systematically shrink? (i.e., mean reversion in firm size) • Do they keep outperforming other smaller firms?
- Look at the relationship between firm growth and firm size





Source: Haltiwanger, Jarmin & Mirand (2013)



Source: Haltiwanger, Jarmin & Mirand (2013)

- Firm growth rate is roughly independent of firm size... ... if we exclude small firms
- This is called Gibrat's law

A Mechanical Model of Firm Size Distribution with Continuous-Time Toolkits

Two robust features of the firm dynamics

- 1. Power law
- 2. Gibrat's law

Gabaix (1999): Gibrat's law \Rightarrow Power law

Connecting Two Laws

Continuous-Time Toolkits Diffusion and Kolmogorov Forward Equation

Brownian Motion

- **Definition:** a standard Brownian motion is a stochastic process Z_t with
 - **1.** $Z_{t+s} Z_t \sim N(0,s)$
 - **2.** $Z_{t+s} Z_t$ is independent of Z_t
- A continuous time version of (Gaussian) random walk: $Z_{t+1} = Z_t + \epsilon_t$, $\epsilon_t \sim N(0,1)$
- A Brownian motion with drift μ and variance σ^2 is given by $X_t = X_0 + \mu t + \sigma Z_t$
 - where Z_t is a standard Brownian motion
- Alternatively, we can write

$$dX_t =$$

 $= \mu dt + \sigma dZ_t$

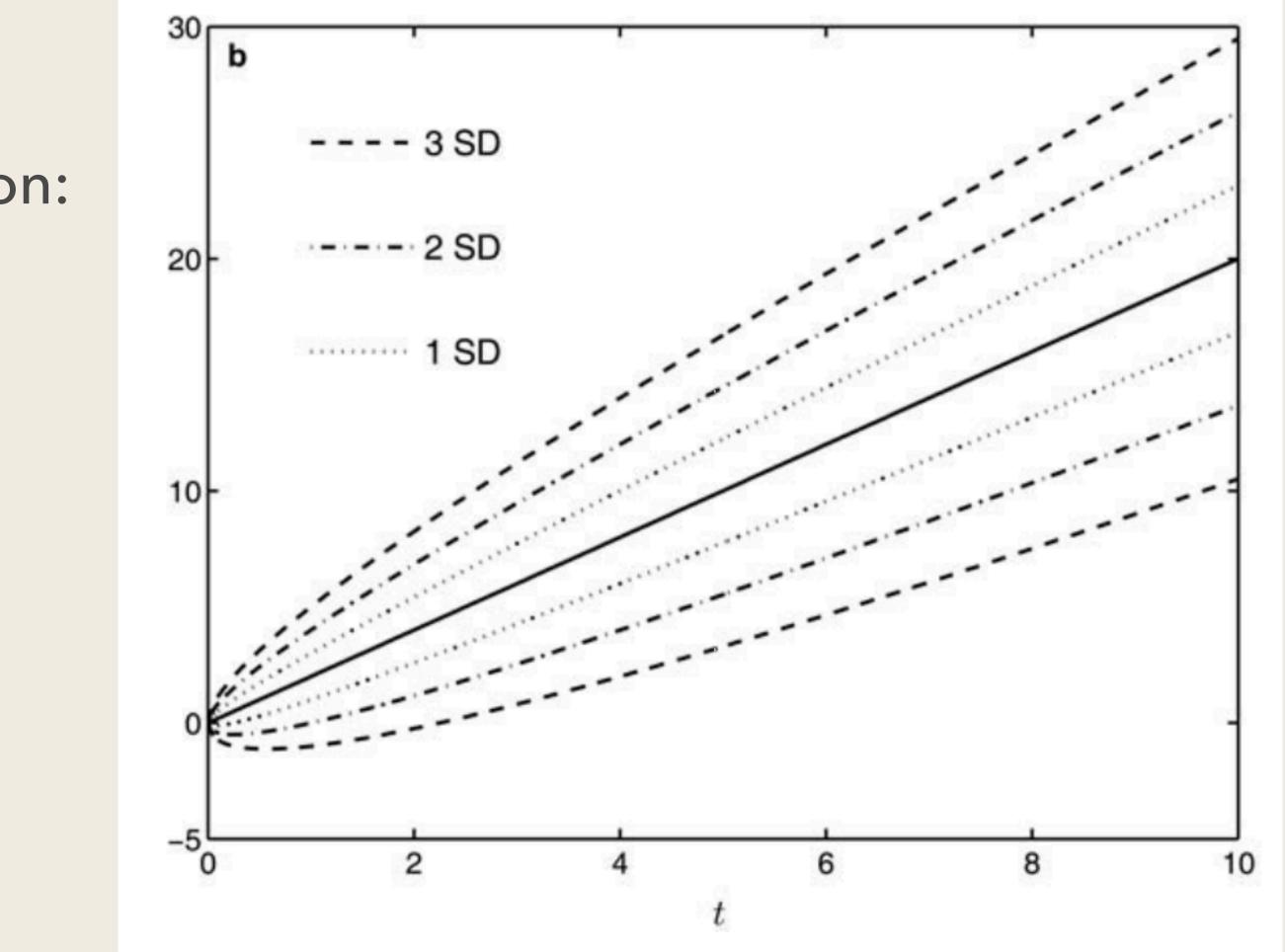
Mean and variance of Brownian motion:

$$\mathbb{E}[X_t - X_0] = \mu t, \quad \text{Var}[X_t - X_0] = \sigma^2 t$$

or

$\mathbb{E}[dX_t] = \mu dt, \quad \mathsf{Var}[dX_t] = \sigma^2 dt$

Visualizing Brownian Motion



Diffusion Process

- More generally, a diffusion process X_t is $dX_t = \mu(X_t)dt + \sigma(X_t)dZ_t$
 - Brownian motion: $\mu(X_t) = \mu, \sigma(X_t) = \sigma$
 - Geometric Brownian motion: $\mu(X_t) = \mu X_t, \sigma(X_t) = \sigma X_t$
 - Ornstein-Uhlenbeck process: $\mu(X_t) = -\alpha X_t, \sigma(X_t) = \sigma$
 - Continuous time version of AR(1) process
- Note $\mathbb{E}[dX_t] = \mu(X_t)dt$ and $Var(dX_t) = \sigma^2(X_t)dt$
- A diffusion is a continuous-time version of a Markov process but rules out jumps

Discrete Time Approximation

Discrete-time $t = \Delta t, 2\Delta t, \dots$

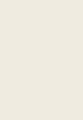
Consider

 $\mathbb{E}[\Delta X_t] = \mu(X_t)\Delta t, \quad \text{Var}(\Delta X) = \sigma^2(X_t)\Delta t$

$\Delta X_t \equiv X_{t+\Delta t} - X_t = \begin{cases} \mu(X_t)\Delta t + \sigma(X_t)\sqrt{\Delta t} & \text{with prob } 1/2 \\ \mu(X_t)\Delta t - \sigma(X_t)\sqrt{\Delta t} & \text{with prob } 1/2 \end{cases}$

What is the Implied Distribution?

- Suppose X_t follows diffusion process
 - We will model firm growth through a diffusion process
- How does the distribution of X_t evolve?
 - This gives us the implied firm size distribution
 - Let $G_t(X) \equiv \operatorname{Prob}(X_t \leq X)$ be the cdf and $g_t(X) = \partial_X G_t(X)$ be the pdf



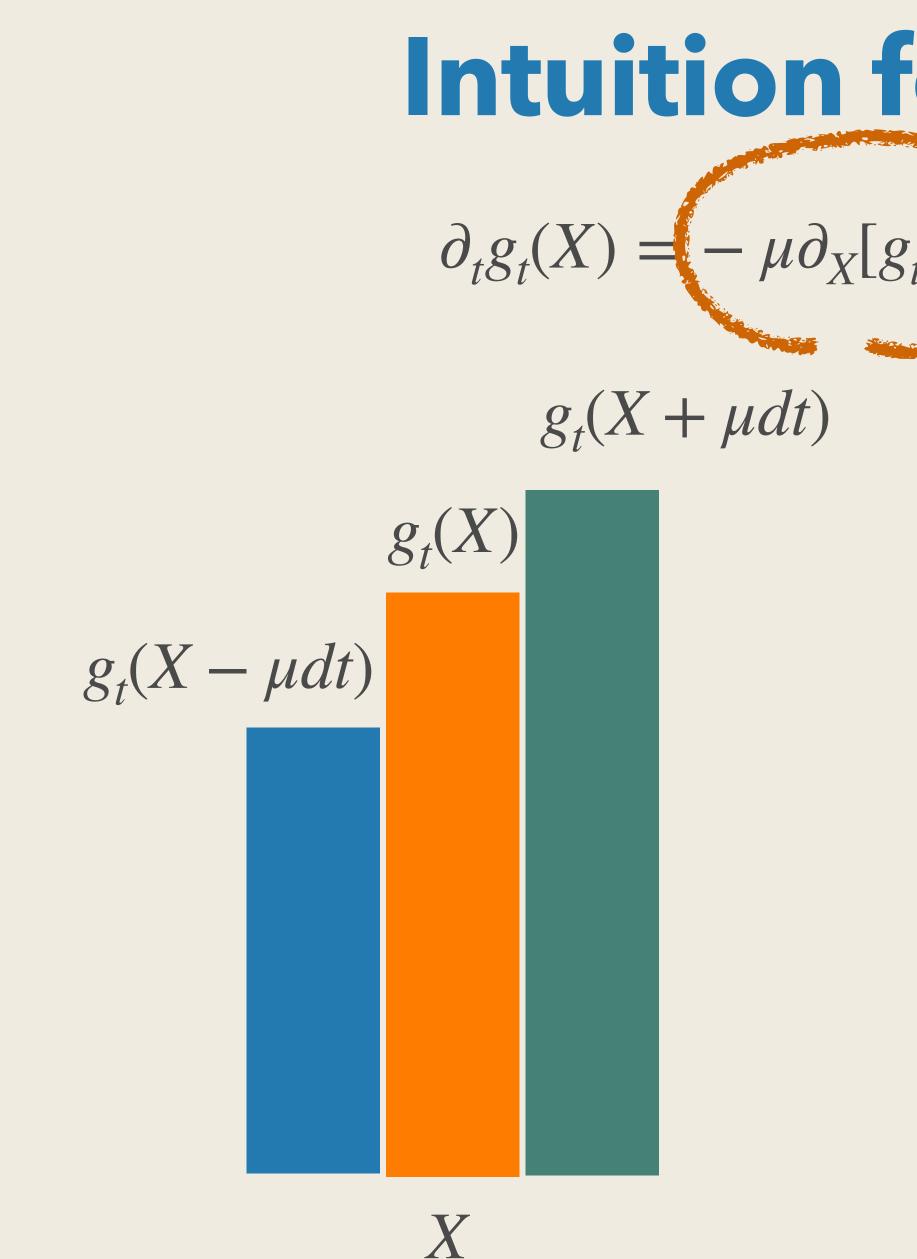
Kolmogorov Forward Equation

- If X_t follows diffusion, $dX_t = \mu(X_t)dt + dt$ $\partial_t g_t(X) = -\partial_X [\mu(X)]$

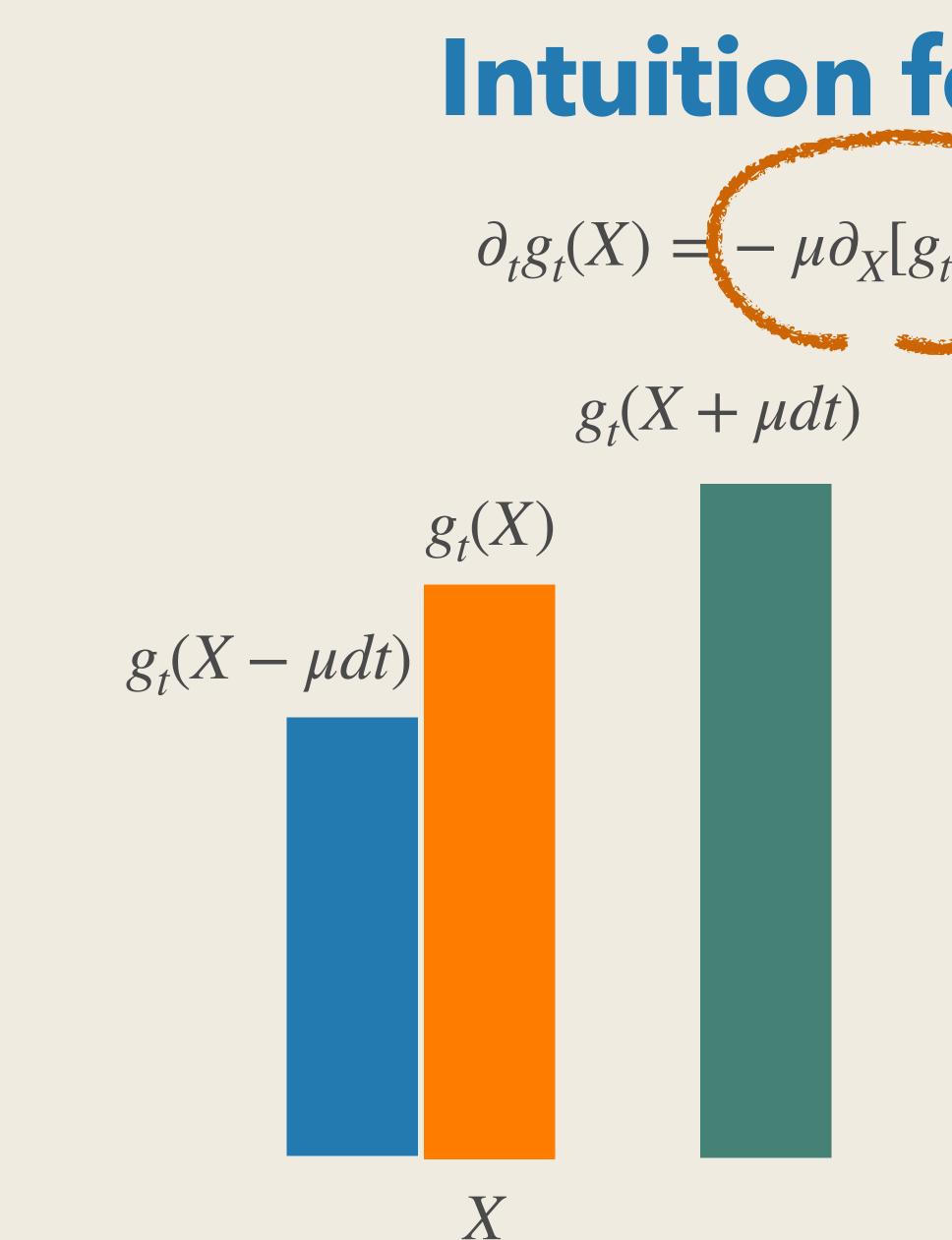
• What is the intuition? Assume $\mu(X) = \mu > 0$ and $\sigma(X) = \sigma$ for simplicity.

$$\sigma(X_t)dZ_t, \text{ then } g_t(X) \equiv \partial_X G_t(X) \text{ follows}$$
$$g_t(X)] + \frac{1}{2}\partial_{XX}^2 \left[\sigma(X)^2 g_t(X)\right]$$

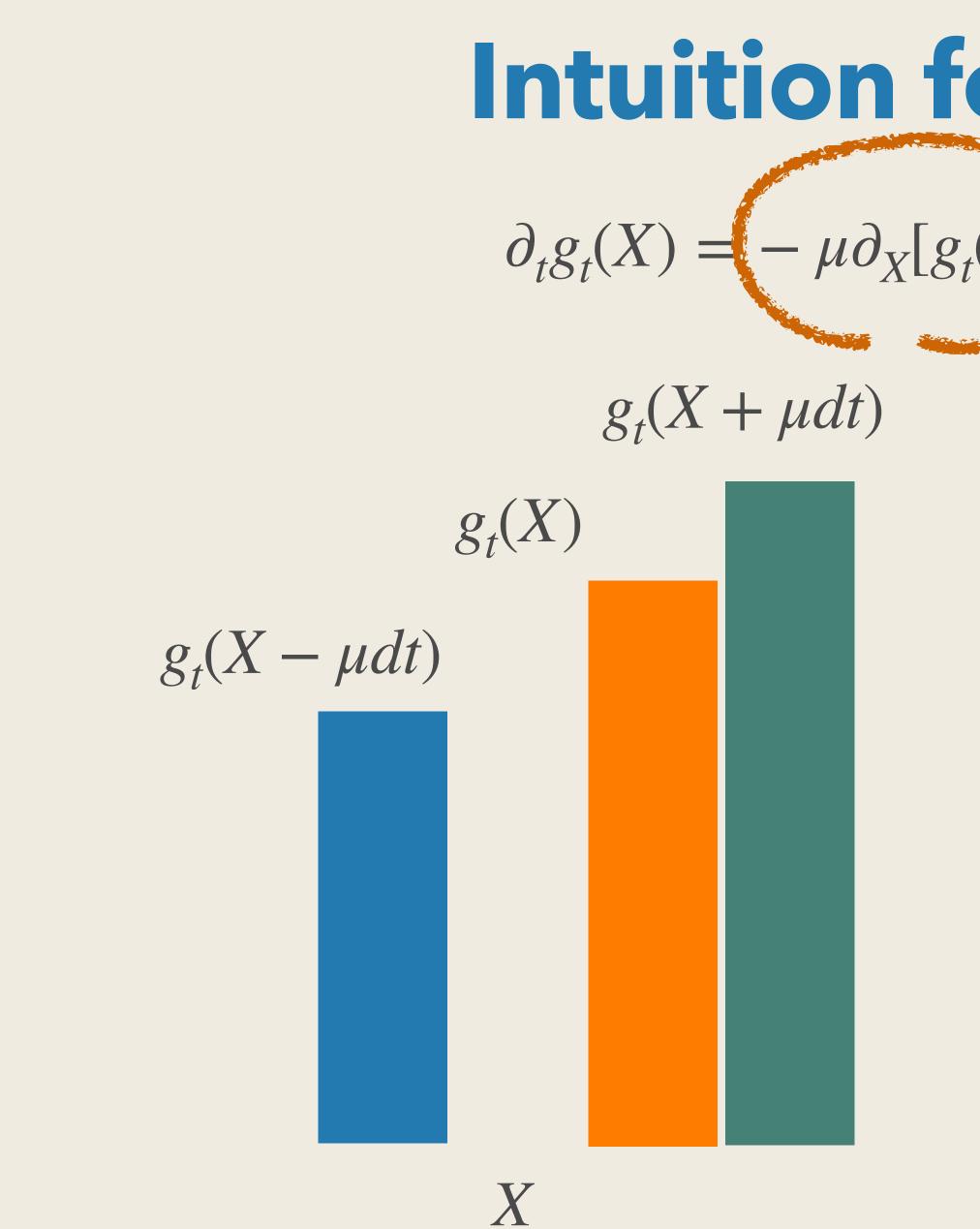
which is a partial differential equation called Kolmogorov Forward equation



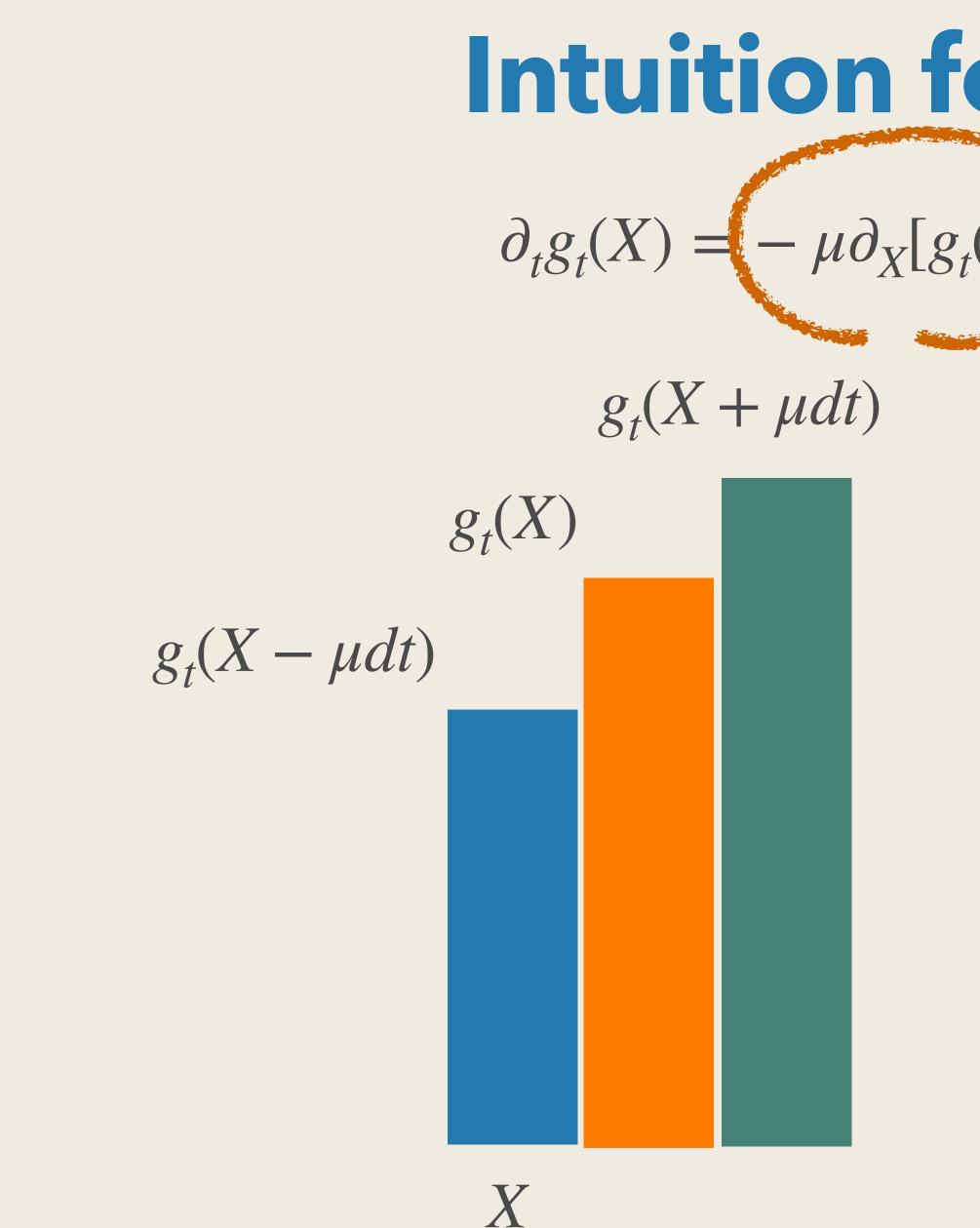
Intuition for Drift Term $\partial_t g_t(X) = -\mu \partial_X [g_t(X)] + \frac{\sigma^2}{2} \partial_{XX}^2 [g_t(X)]$



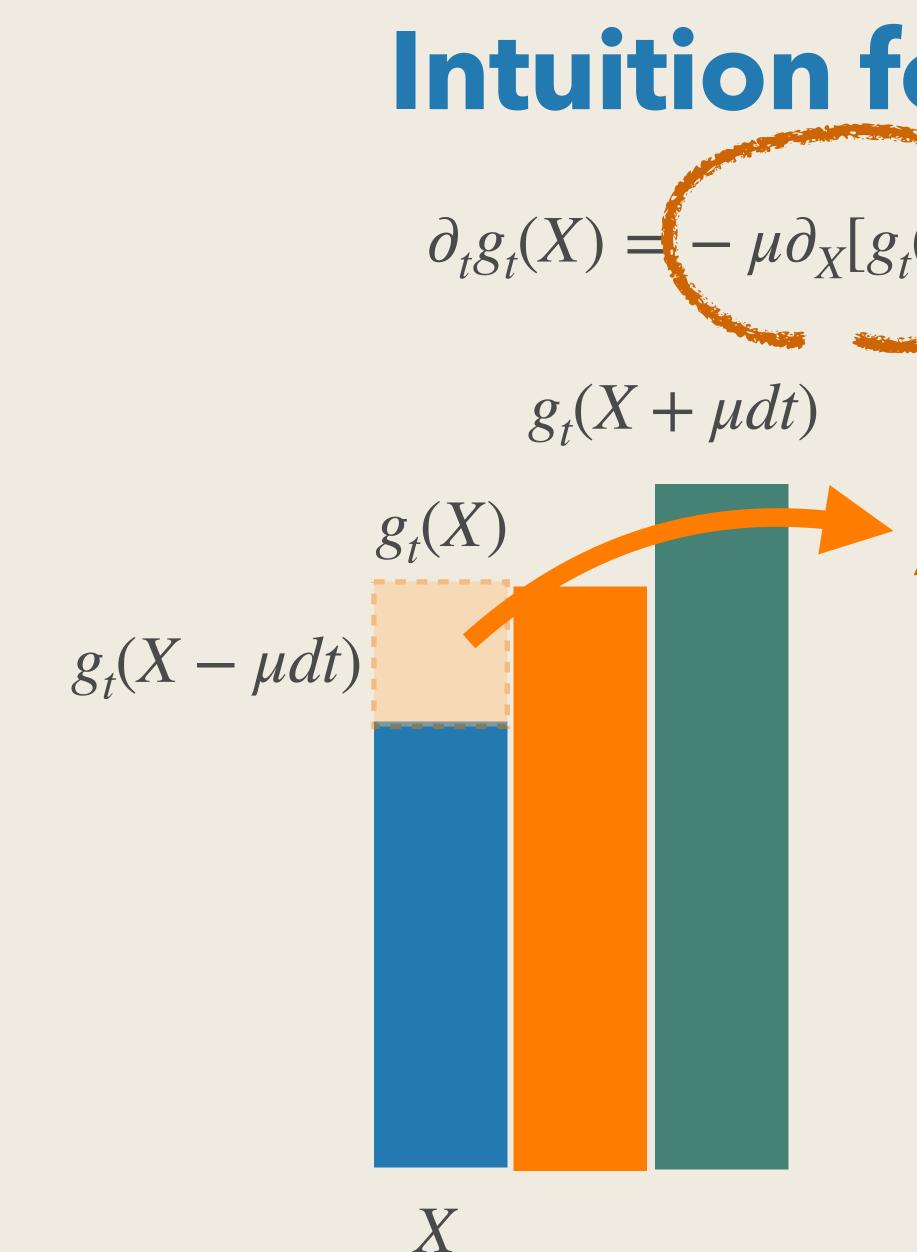
Intuition for Drift Term $\partial_t g_t(X) = -\mu \partial_X [g_t(X)] + \frac{\sigma^2}{2} \partial_{XX}^2 [g_t(X)]$



Intuition for Drift Term $\partial_t g_t(X) = -\mu \partial_X [g_t(X)] + \frac{\sigma^2}{2} \partial_{XX}^2 [g_t(X)]$

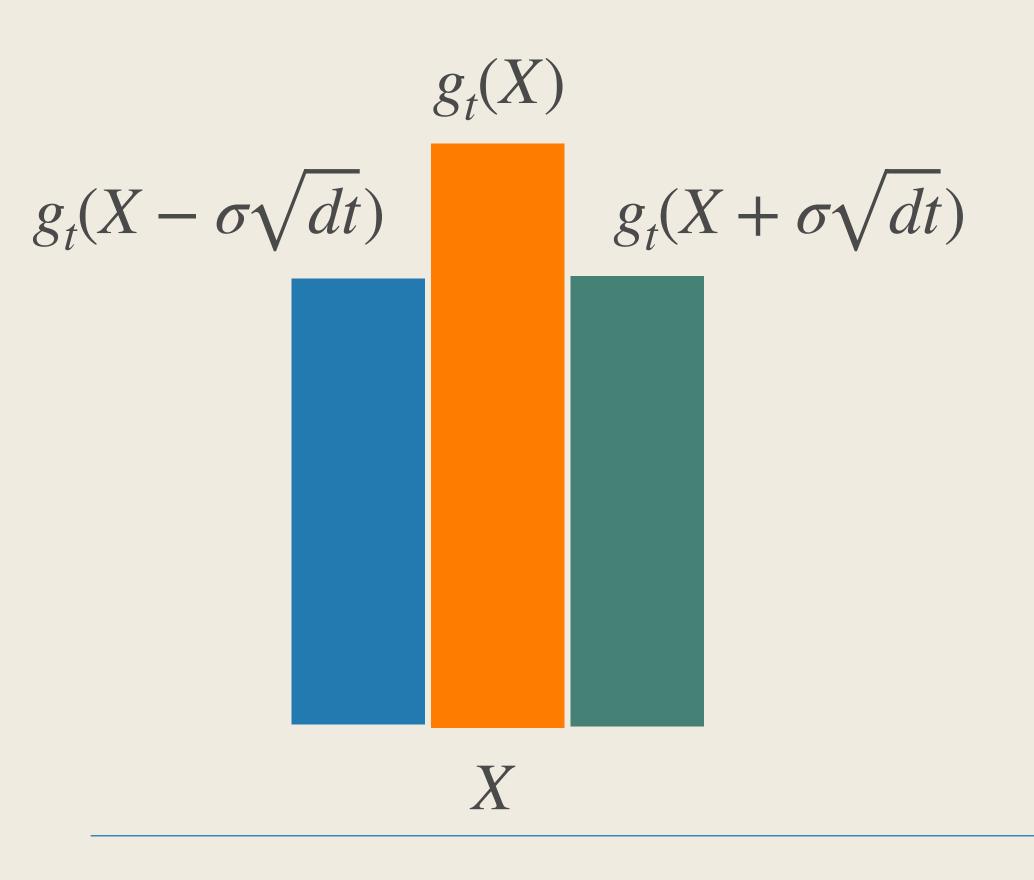


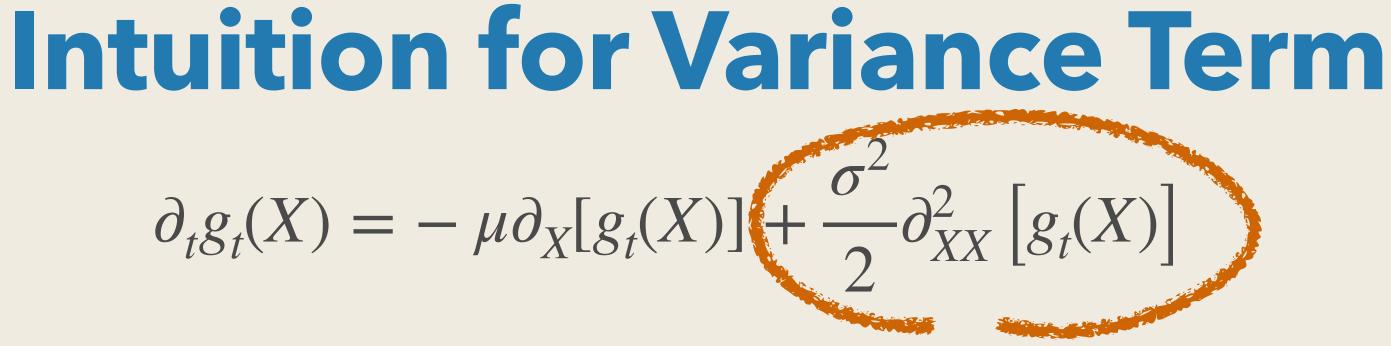
Intuition for Drift Term $\partial_t g_t(X) = -\mu \partial_X [g_t(X)] + \frac{\sigma^2}{2} \partial_{XX}^2 [g_t(X)]$

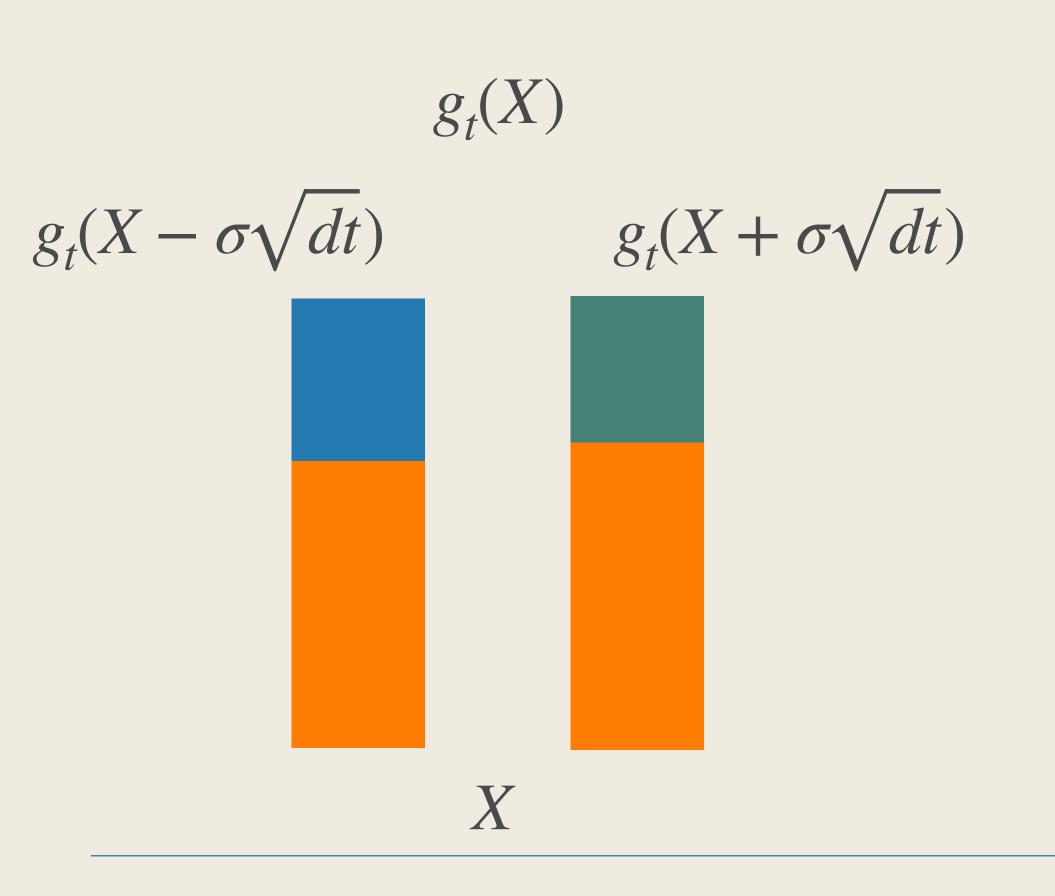


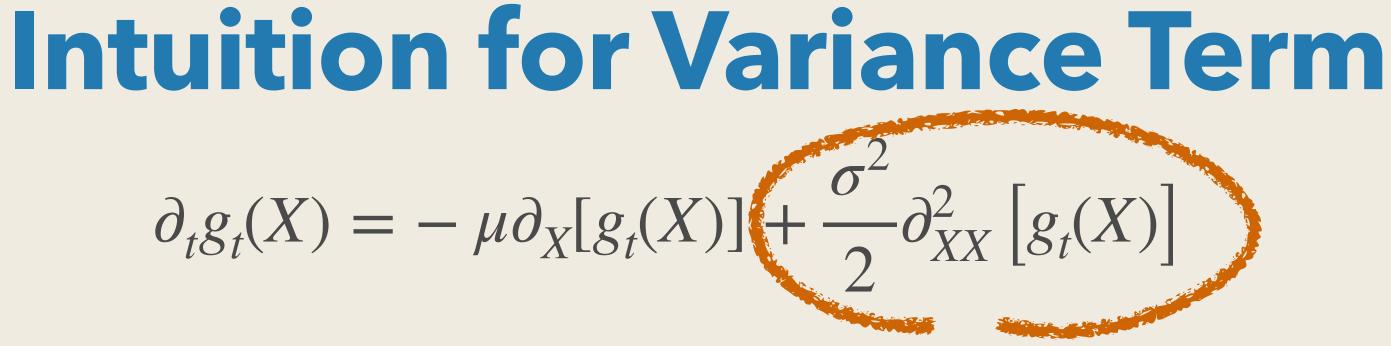
Intuition for Drift Term $\partial_t g_t(X) = -\mu \partial_X [g_t(X)] + \frac{\sigma^2}{2} \partial_{XX}^2 [g_t(X)]$

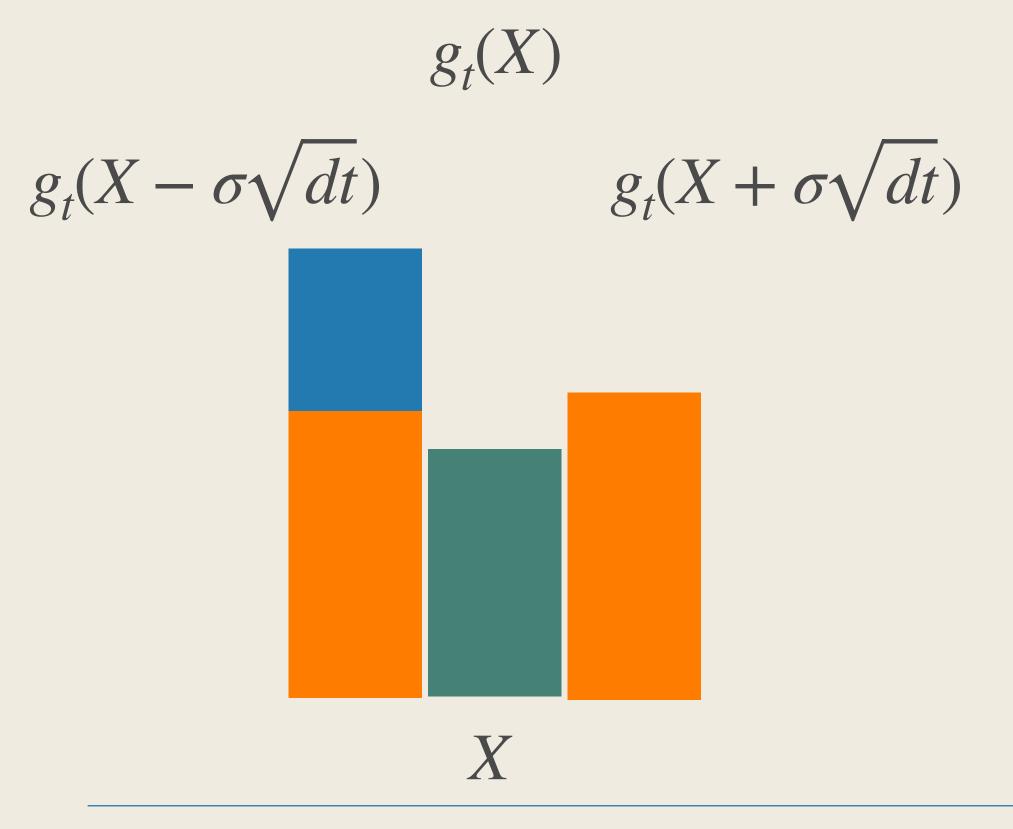
$\Delta g_t(x) = g_t(X) - g_t(X - \mu dt)$ $= -\mu \partial_X g_t(X) dt \quad \text{as} \quad dt \to 0$

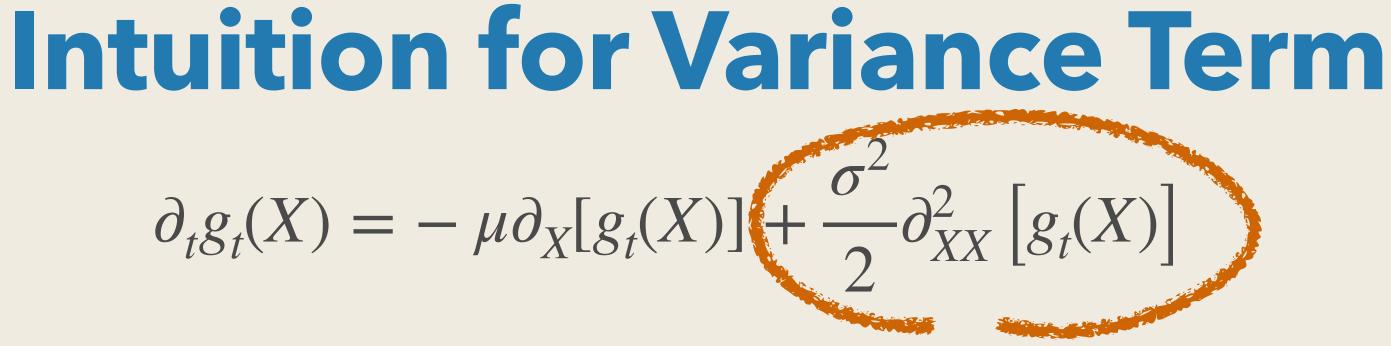


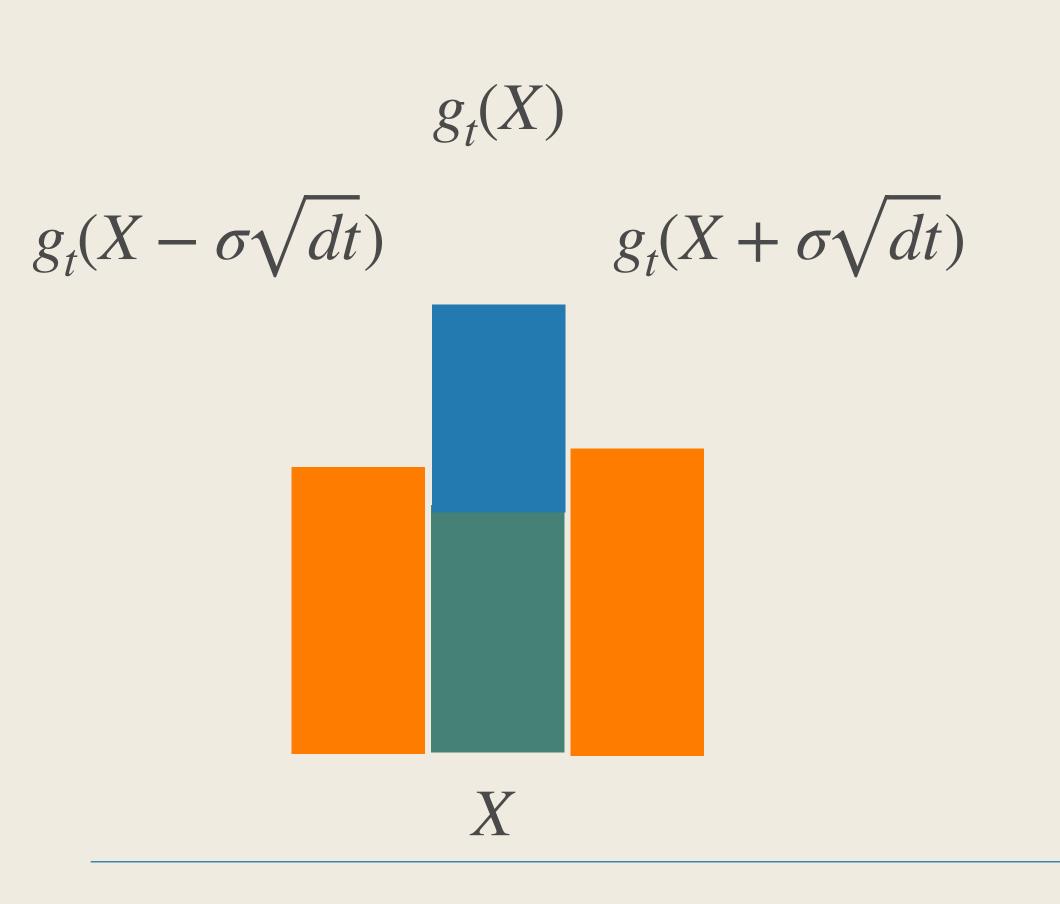


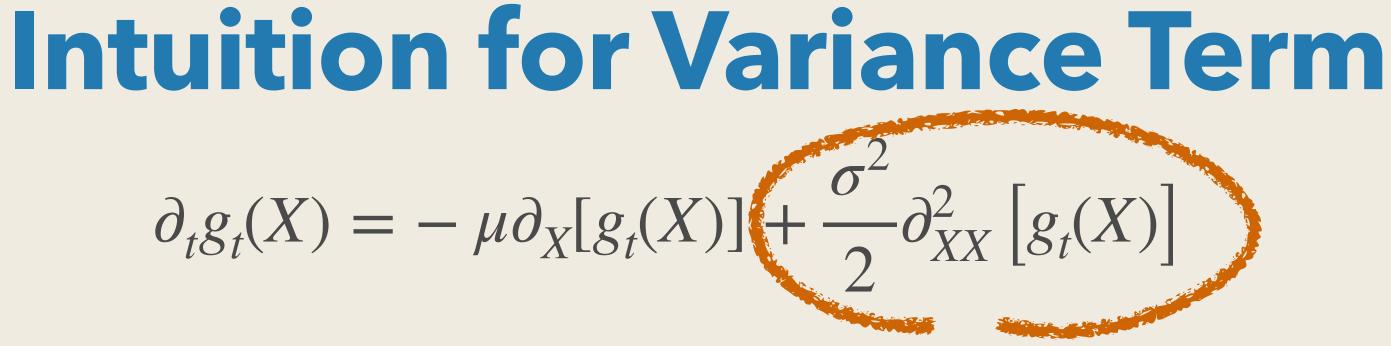




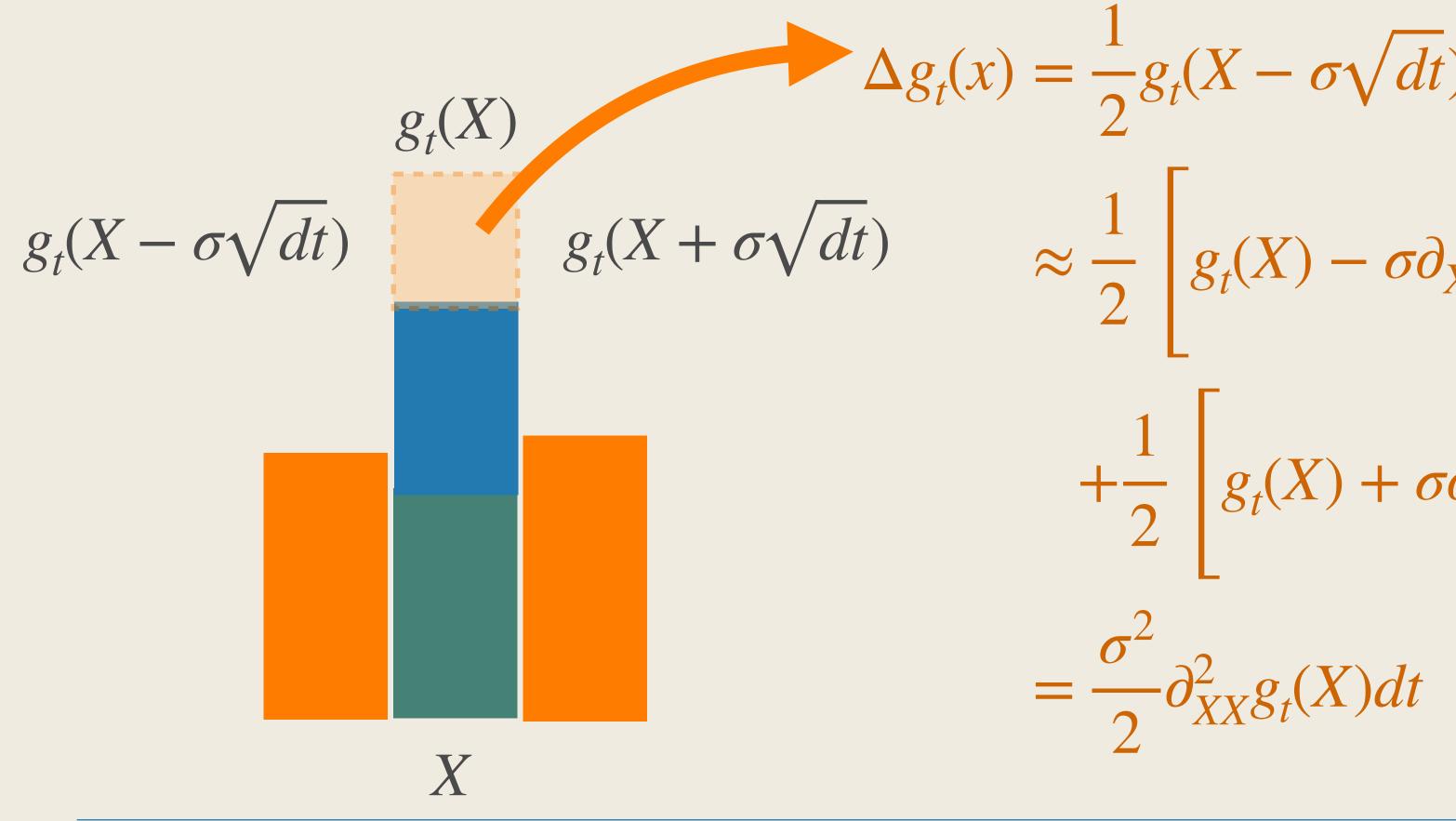








Intuition for Variance Term $\partial_t g_t(X) = -\mu \partial_X [g_t(X)] + \frac{\sigma^2}{2} \partial_{XX}^2 [g_t(X)]$ $\Delta g_t(x) = \frac{1}{2}g_t(X - \sigma\sqrt{dt}) + \frac{1}{2}g_t(X + \sigma\sqrt{dt}) - g_t(X)$



 $g_t(X + \sigma\sqrt{dt}) \approx \frac{1}{2} g_t(X) - \sigma\partial_X g_t(X)\sqrt{dt} + \frac{\sigma^2}{2}\partial_{XX}^2 g_t(X)dt$

 $+\frac{1}{2}\left|g_{t}(X) + \sigma \partial_{X}g_{t}(X)\sqrt{dt} + \frac{\sigma^{2}}{2}\partial_{XX}^{2}g_{t}(X)dt\right| - g_{t}(X)$

Heuristic Proof (1/2)

- Let dX_t be the change in X_t over a time interval dt
- Let $p(dX_t, X_t)$ be density over dX_t
- The changes in density $g_t(X_t)$ over a time interval dt is

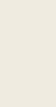
outflow

Taylor-expand the inflow around $dX_t = 0$:

$$-\underbrace{p(dX_t, X_t - dX_t)g(X_t - dX_t)}_{\text{inflow}} d(dX_t)$$

 $p(dX_t, X_t - dX_t)g(X_t - dX_t) \approx p(dX_t, X_t)g(X_t) - \partial_X[p(dX_t, X_t)g(X_t)]dX_t$

 $+\frac{1}{2}\partial_{XX}^2[p(dX_t,X_t)g(X_t)](dX_t)^2$



31

Heuristic Proof (2/2)

Substitute back (2) into (1):

$$\begin{split} \Delta g_t(X_t) &= \int \left(-\partial_X [p(dX_t, X_t) g_t(X_t)] dX_t + \frac{1}{2} \partial^2_{XX} [p(dX_t, X_t) g_t(X_t)] (dX_t)^2 \right) d(dX_t) \\ &= -\partial_X \left[\int \left(p(dX_t, X_t) dX_t \right) d(dX_t) g_t(X_t) \right] + \frac{1}{2} \partial^2_{XX} \left[\int \left(p(dX_t, X_t) (dX_t)^2 \right) d(dX_t) g_t(X_t) g_t(X_t) \right] \\ &= -\partial_X \left[\mu(X_t) g_t(X_t) \right] dt + \frac{1}{2} \partial^2_{XX} \left[\sigma(X_t)^2 g_t(X_t) \right] dt \end{split}$$

Steady State Distribution

- Corollary: Steady-state distribution, $g_t(X) = g(X)$, if it exists, solves $0 = -\partial_X[\mu(X)g(X)] + \frac{1}{2}\partial_{XX}^2\left[\sigma(X)^2g(X)\right]$
- - (Inflow into X) = (outflow from X)
- Steady-state distribution is characterized by a 2nd-order ODE
- This is a beauty of continuous time

A Mechanical Model of Firm Size Distribution

Firm Growth as a Stochastic Process

- Let n_t denote the firm size and n_t follows diffusion process
- Gibrat's law suggests n_t follows a geometric Brownian motion:

- One can show $Var(\log n_t) = \sigma^2 t$ ⇒ Distribution explodes as $t \to \infty \Rightarrow$ no steady-state distribution
- Gabaix's (1999) insight:
 Gibrat's law + stabilizing force ⇒ SS distribution exists and features power law

- $dn_t = \mu n_t dt + \sigma n_t dZ_t$
- $\Leftrightarrow \quad \frac{dn_t}{n_t} = \mu dt + \sigma dZ_t$

Stabilizing Forces

- A particular approach undertaken by Gabaix (1999):
 - Minimum fim size requirement, *n*:
 - \checkmark If firms hit *n*, they exit
 - The same mass of new firms with size n enter at the same time

Stationary firm size distribution g(n) solves

$$0 = -\partial_n[\mu ng(n)] + \frac{1}{2}\partial_{nn}^2 \left[\sigma^2 n^2 g(n)\right] \quad \text{for } n > \underline{n}$$

with boundary conditions such that $\int_{n}^{\infty} g(n) dn = 1$ and $g(n) \ge 0$ for all n

Power Law in Firm Size Distribution

Result: The solution is Pareto: $g(n) = \zeta \underline{n}^{\zeta} n^{-\zeta-1}$ with $\zeta = 1 - \frac{\mu}{2\sigma^2} > 0$

1. Integrate the ODE once to obtain (c_1, c_2 are integration constants)

$$c_1 = -2\mu n_d$$

$$\Rightarrow n^{\frac{-2\mu}{\sigma^2}} c_1 = \partial_n \left[n^{\frac{-2\mu}{\sigma^2}} \right]$$

2. Integrate one more time

$$c_{1} \int^{n} m^{\frac{-2\mu}{\sigma^{2}}} dm = n^{\frac{-2\mu}{\sigma^{2}}} \sigma^{2} n^{2} g(n) + c_{2}$$

$$\Leftrightarrow \quad g(n) = \tilde{c}_{1} n^{-1} - \tilde{c}_{2} n^{-\zeta - 1},$$

where
$$\tilde{c}_1 \equiv c_1/(\sigma^2 - 2\mu)$$
, $\tilde{c}_2 \equiv c_2/\sigma^2$.

3. Since g(n) is pdf, $\int_{n}^{\infty} g(n) dn = 1 \Rightarrow \tilde{c}_{1} = 0$ and $\tilde{c}_{2} = \zeta \underline{n}^{\zeta}$

 $\partial g(n) + \partial_n [\sigma^2 n^2 g(n)]$ $\int \frac{2\mu}{2} \sigma^2 n^2 g(n)$

Power Law and Zipf's Law

- The cdf is $G(n) = 1 (n/n)^{-\zeta}$, so power law holds:
 - $\log \Pr(\tilde{n} \ge n) = \log(1)$
- The existence of mean requires $\zeta > 1 \Leftrightarrow \mu < 0$
- What about Zipf's law? It holds if $\zeta =$
- The result is much more general than presented here:
 - random growth + stabilizing force \Rightarrow asymptotic power law: $\Pr(\tilde{n} \ge n)$
 - stabilizing force $\approx 0 \Rightarrow$ Zipf's law

$$-G(n)) = -\zeta \log n + const$$

$$1 - \frac{\mu}{2\sigma^2} \approx 1 \Leftrightarrow \mu \approx 0$$

$$\rightarrow cn^{-\zeta} \operatorname{as} n \rightarrow \infty$$

Numerically Computing Stationary Firm Size Distribution

How to Solve ODE on a Computer?

- Gabaix's (1999) case admits analytical solutions
- Easy to come up with variations that prevent analytical characterizations
 - For example, what if firm size follows a general diffusion with $\mu(n)$ and $\sigma(n)$?
- Even in these cases, one can always solve the following ODE numerically:

$$0 = -\partial_n[\mu(n)g(n)] +$$

How do we do that?

 $\frac{1}{2}\partial_{nn}^2 \left[\sigma(n)^2 g(n)\right] \quad \text{for } n > \underline{n}$

Discretization and Derivatives

- We discretize the derivative $-\partial_n[\mu(n)g(n)]$ as well. Two-ways:
 - **1.** Forward difference approximation:
 - $-\partial_n[\mu(n_i)g(n_i)]$
 - 2. Backward difference approximation: $-\partial_n[\mu(n_i)g(n_i)]$
- Use forward when $-\mu(n_i) > 0$ and backward when $-\mu(n_i) < 0$
- The second derivative is

$$\partial_{nn}^2 \left[\sigma(n_i)^2 g(n_i) \right] \approx \frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2}$$

Discretize the firm-size space: $n \in \{n_1, n_2, ..., n_J\}$ with $n_1 = \underline{n}$ and equispaced grids: $\Delta n \equiv n_i - n_{i-1}$

$$\approx -\frac{\mu(n_{i+1})g(n_{i+1}) - \mu(n_i)g(n_i)}{\Delta n}$$

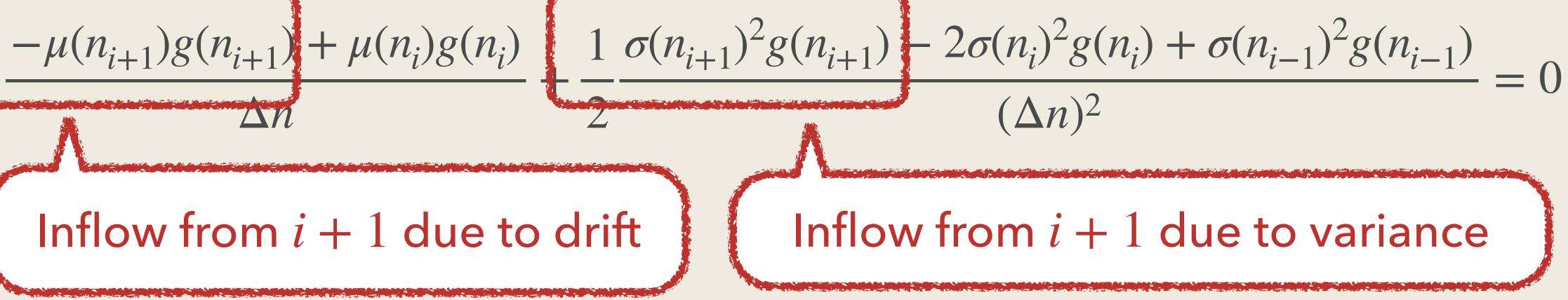
$$\approx -\frac{\mu(n_i)g(n_i) - \mu(n_{i-1})g(n_{i-1})}{\Delta n}$$

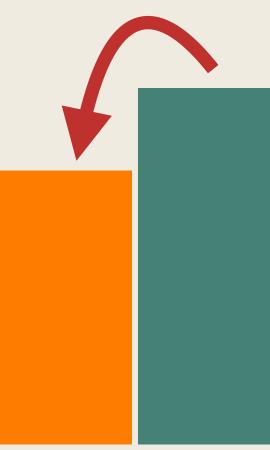
Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is

$$\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$$

for $i = 1, \dots, J - 1$

Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is Inflow from i + 1 due to drift





Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is

$$\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$$

for $i = 1, \dots, J - 1$

Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFW is

$$\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})}{\sigma(n_i)}$$
for $i = 1, ..., J - 1$

Discretize Inflow from i - 1 due to variance $\frac{(\Delta n)^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} \neq 0$

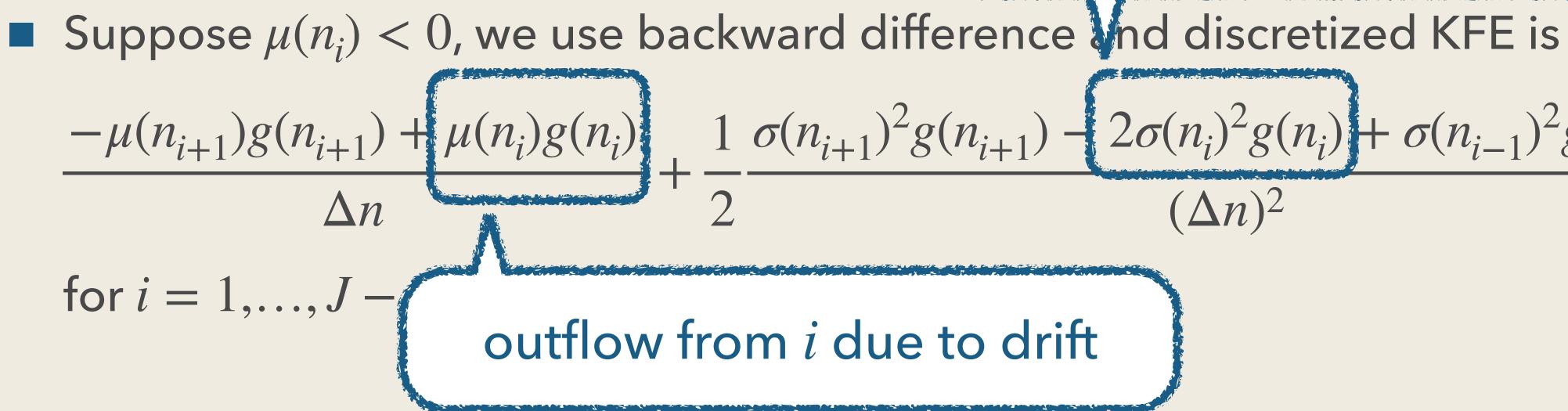
 n_{i-1} n_i n_{i+1}

42

Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is

$$\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$$

for $i = 1, \dots, J - 1$



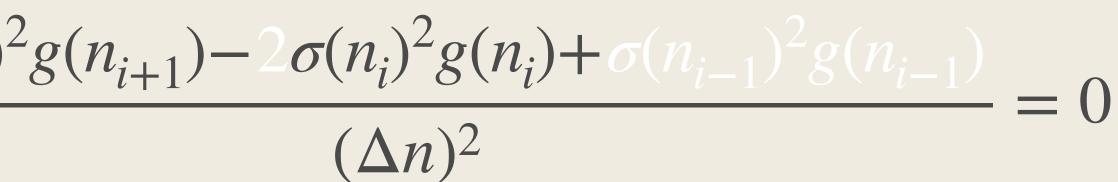
Discreti outflow from *i* due to variance $\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2g(n_{i+1}) - 2\sigma(n_i)^2g(n_i) + \sigma(n_{i-1})^2g(n_{i-1})}{(\Delta n)^2} = 0$ n_{i-1} n_i n_{i+1}

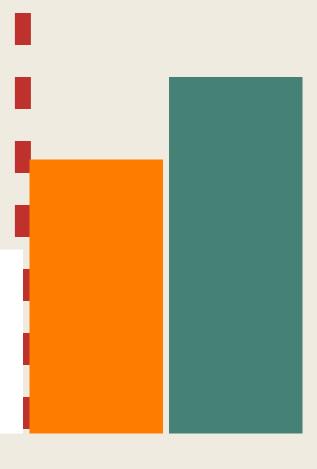
Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is

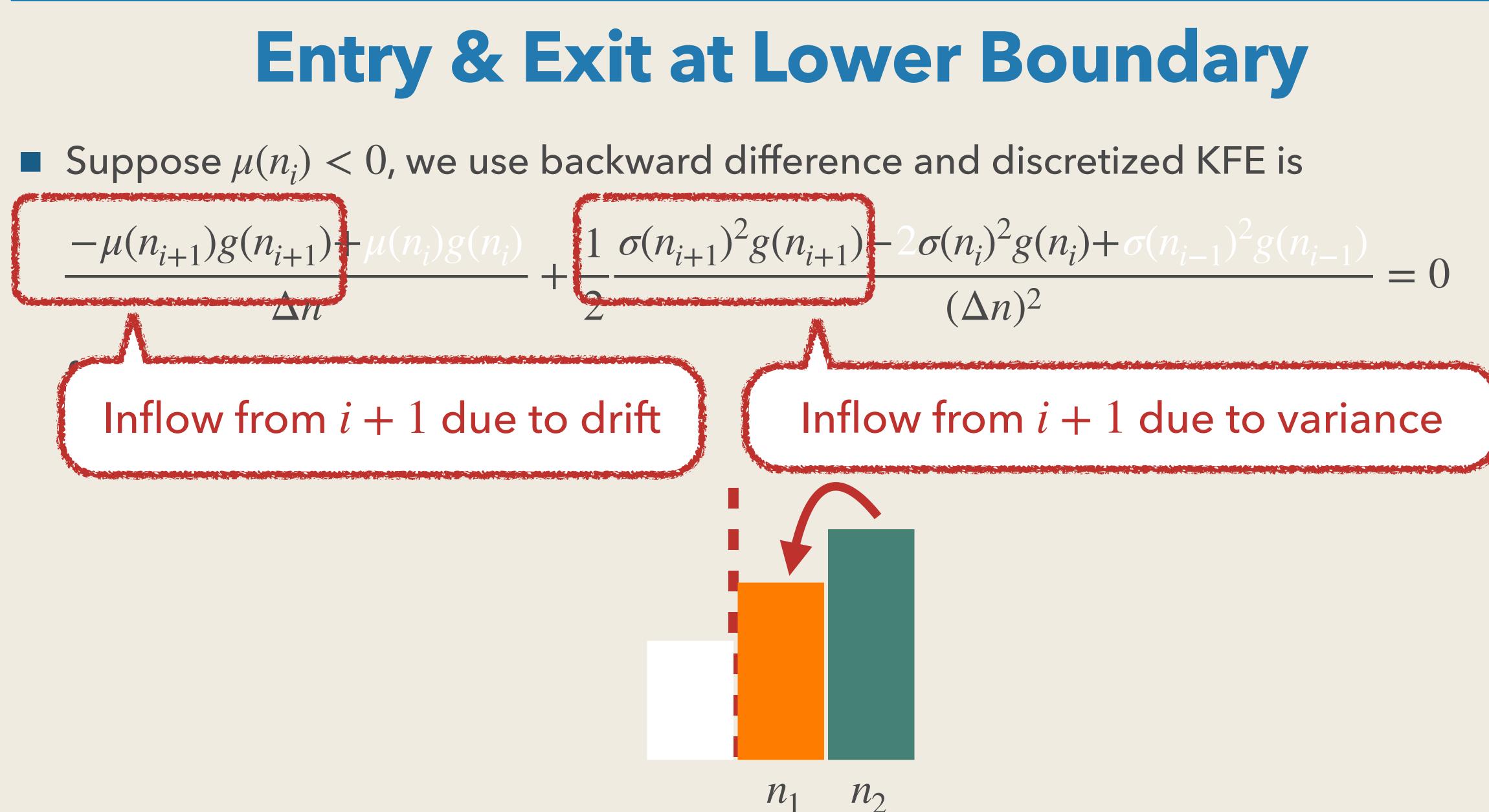
$$\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$$

for $i = 1, \dots, J - 1$

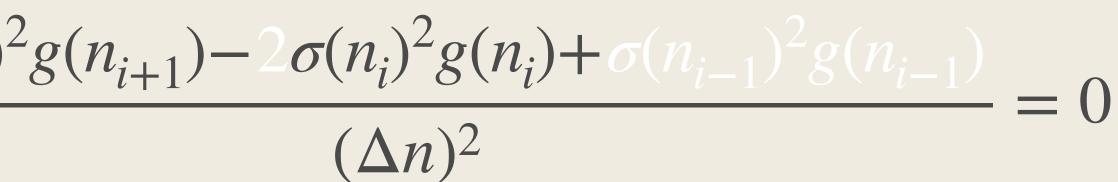
Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is $\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2} \frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2}$ for i = 1, ..., J - 1

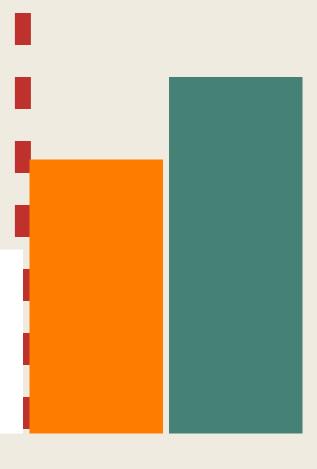




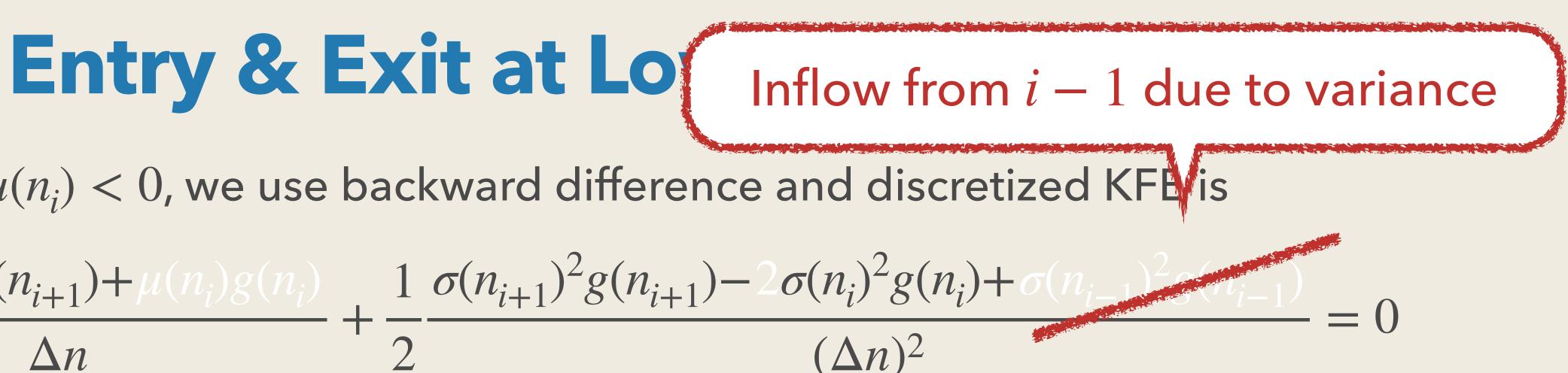


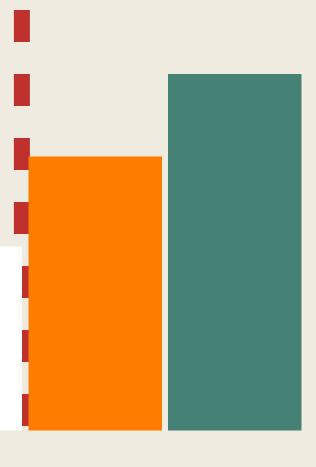
Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is $\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2} \frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2}$ for i = 1, ..., J - 1





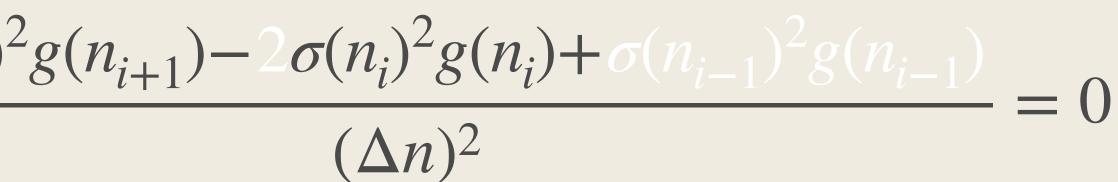
Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFW is $-\mu(n_{i+1})g(n_{i+1})+\mu$ Δn for i = 1, ..., J - 1

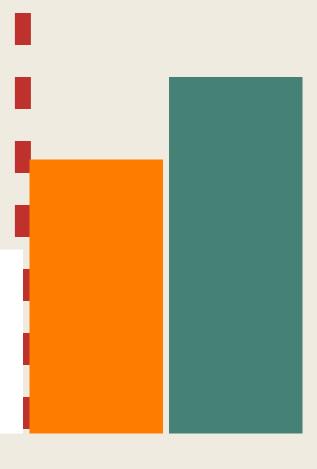


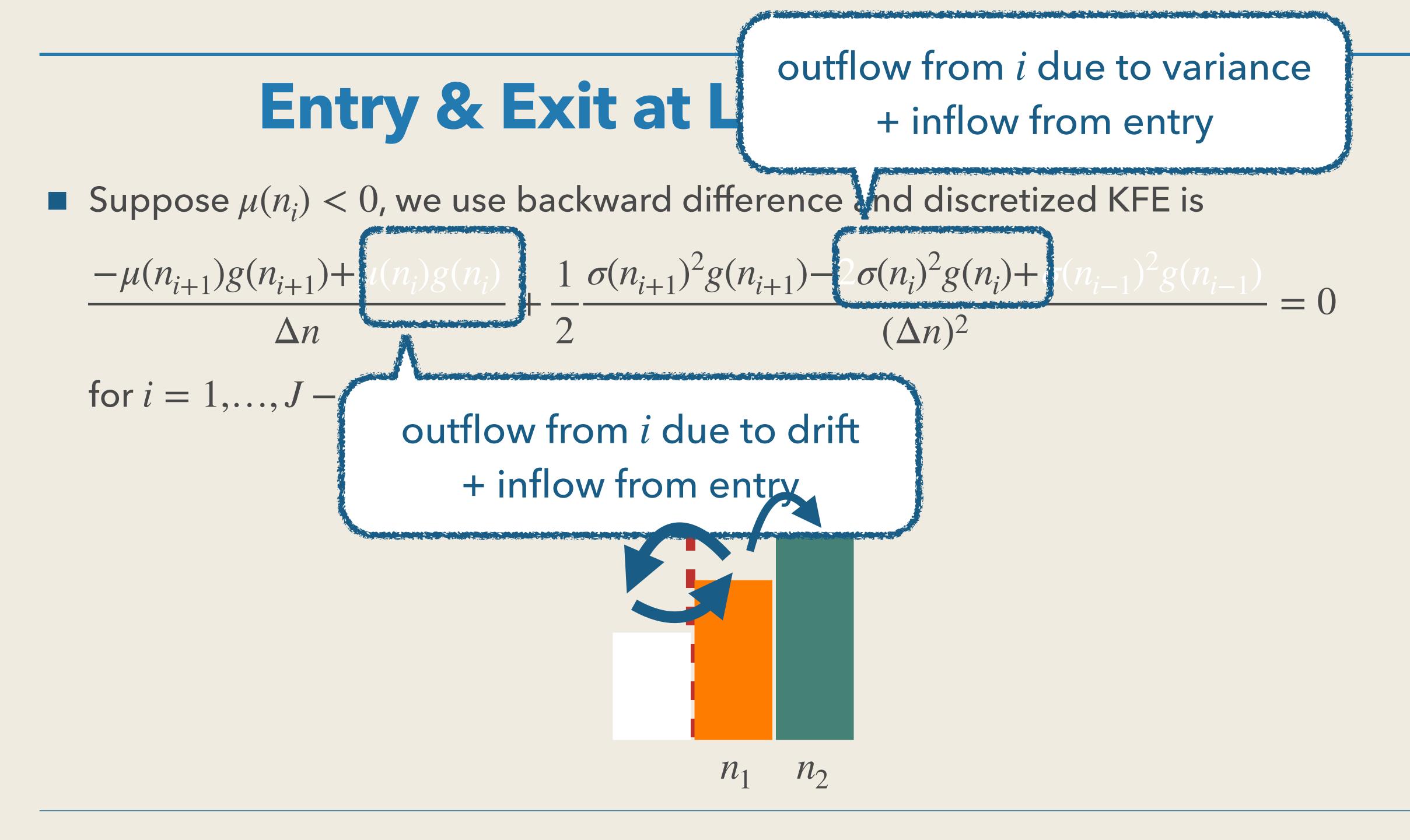


43

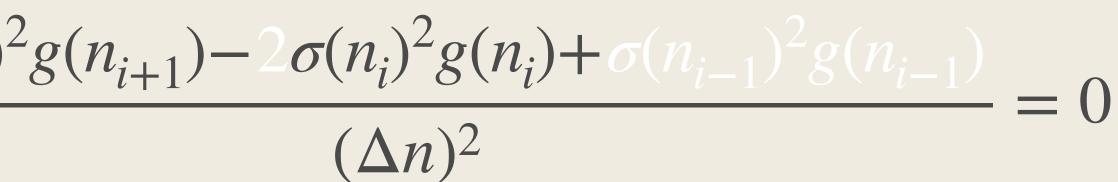
Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is $\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2} \frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2}$ for i = 1, ..., J - 1

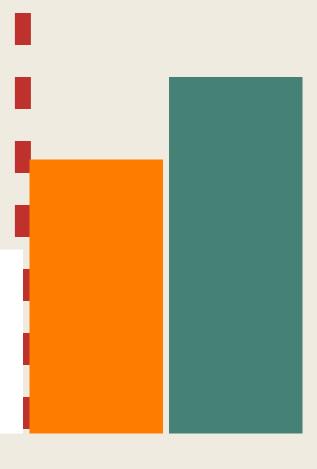






Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is $\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2} \frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2}$ for i = 1, ..., J - 1



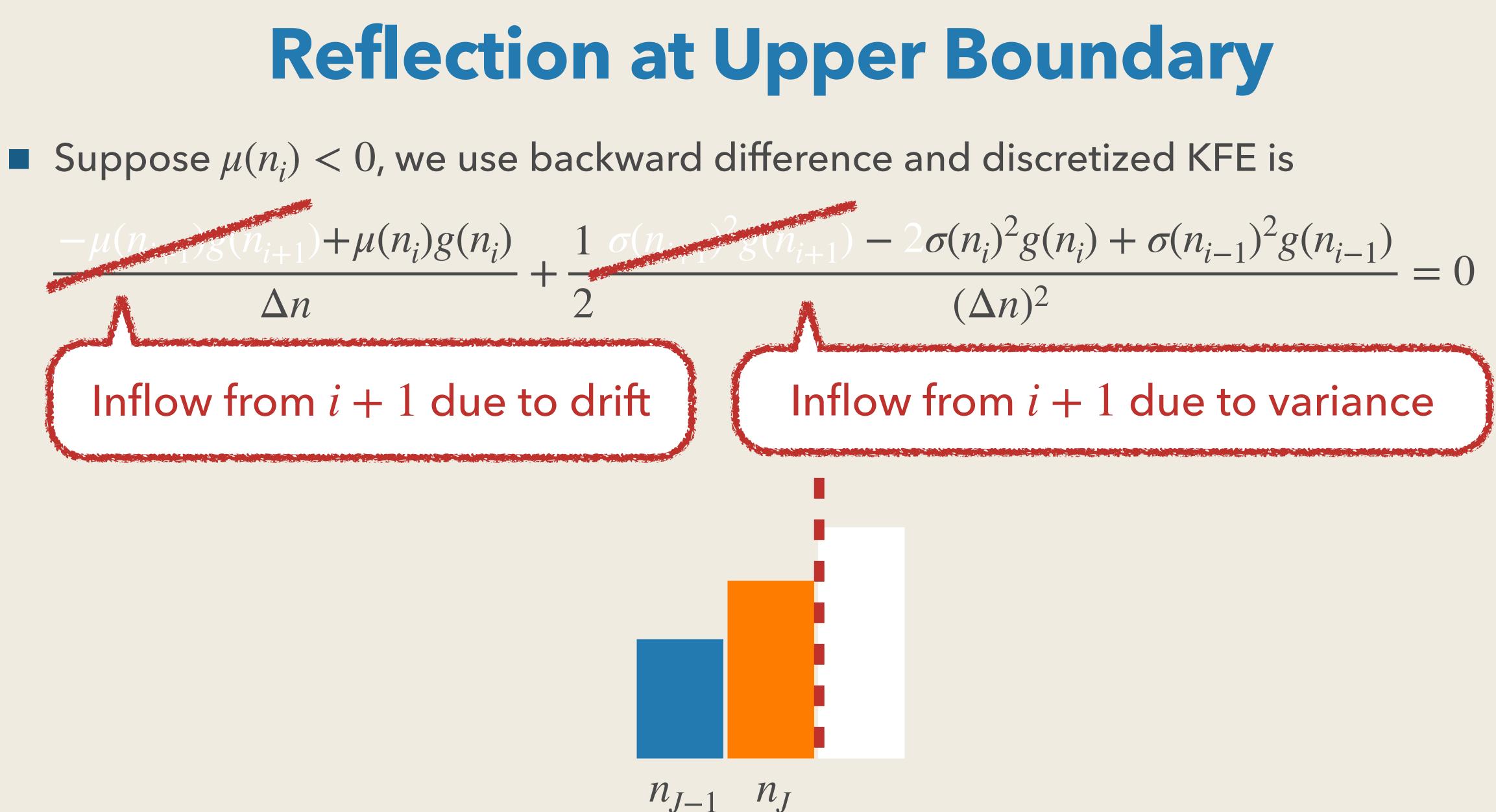


Reflection at Upper Boundary

Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is

 $\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$

for i = 1, ..., J - 1



Reflection at Upper Boundary

Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is

 $\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$

for i = 1, ..., J - 1

Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFW is

for i = 1, ..., J - 1

Reflection at Up Inflow from i - 1 due to variance $\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i)}{(\Delta n)^2} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_i)}{(\Delta n)^2} + \frac{1}{$

44

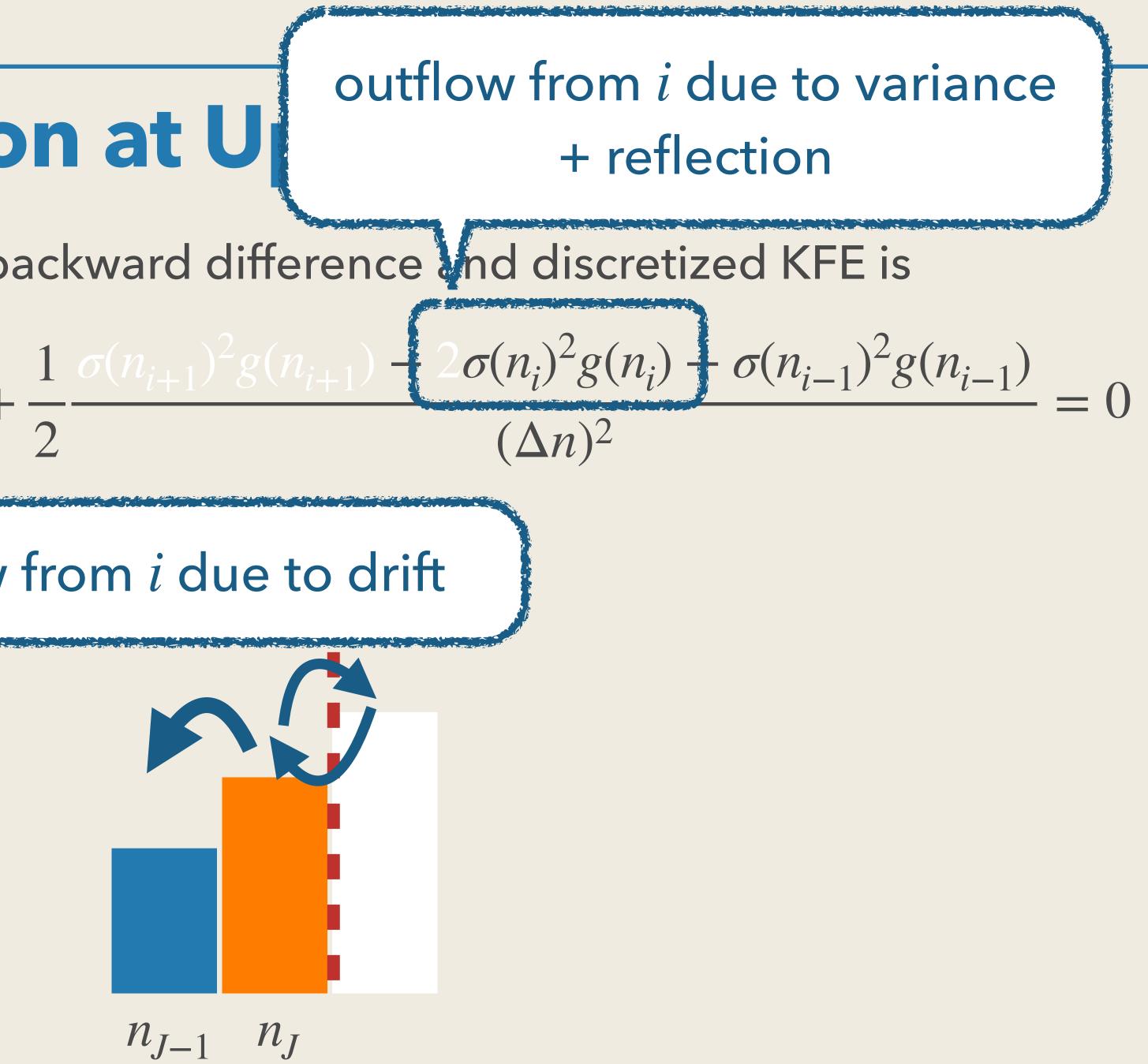
Reflection at Upper Boundary

Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is

 $\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$

for i = 1, ..., J - 1

Reflection at U Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is $)+\mu(n_i)g(n_i)$ Δn for i = 1, ..., J outflow from *i* due to drift



Reflection at Upper Boundary

Suppose $\mu(n_i) < 0$, we use backward difference and discretized KFE is

 $\frac{-\mu(n_{i+1})g(n_{i+1}) + \mu(n_i)g(n_i)}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$

for i = 1, ..., J - 1

Realize that discretized KFE is a linear system of $g \equiv [g(n_i)]_i$ ■ Since g is a density,

$$\sum_{j=1}^{J} g(n_j)$$

which is also linear in g

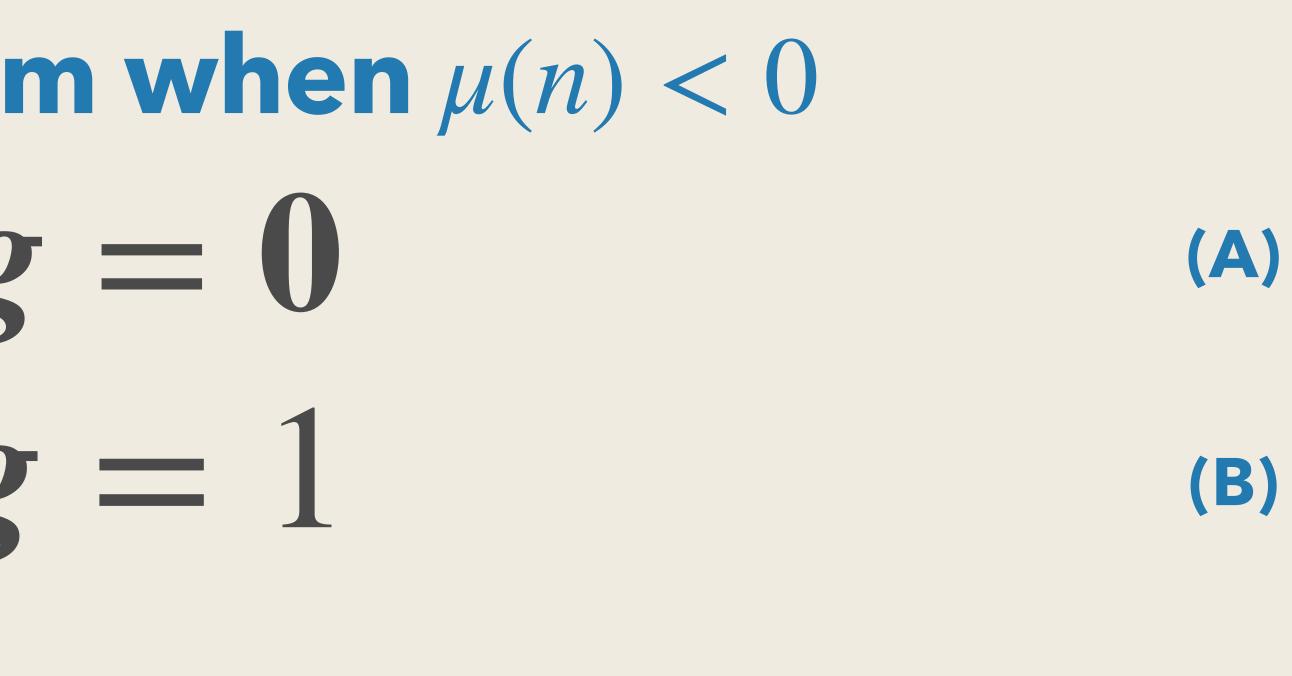
• Letting $\mu_i \equiv \mu(n_i)$ and $\sigma_i \equiv \sigma(n_i)$, the system can simply written in a matrix form

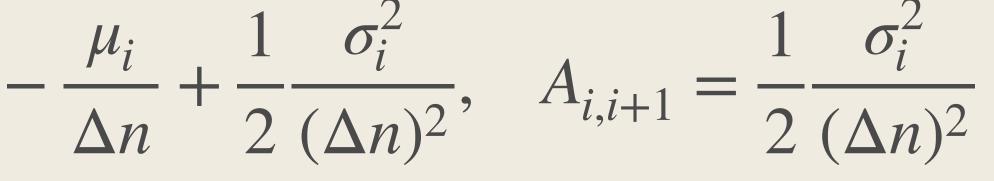
$\Delta n = 1$

$$\begin{aligned} \text{Linear System} & A^T g \\ A^T g \\ \Delta n \times 1' g \end{aligned} \\ \text{where } A \equiv [A_{i,j}]_{i,j'} \text{ and} \\ A_{i,i} = \frac{\mu_j}{\Delta n} - \frac{\sigma_i^2}{(\Delta n)^2}, \quad A_{i,i-1} = -\frac{1}{2} \end{aligned}$$

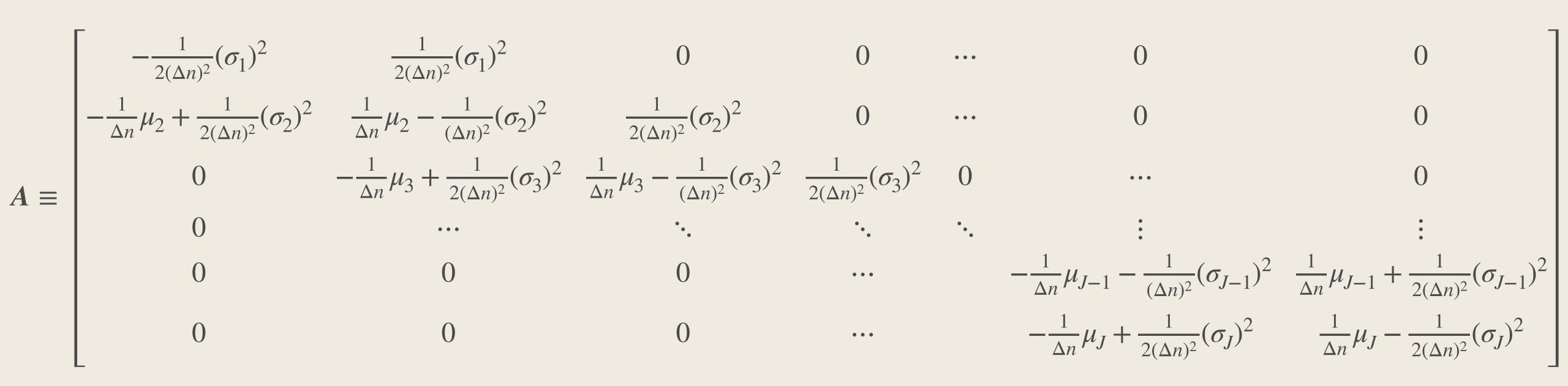
All the other elements are 0.

Intuitively, $A_{i,j}$ is the net transition rate from *i* to *j*. In fact, $\sum_{j} A_{i,j} = 0$





Matrix A when $\mu(n) < 0$



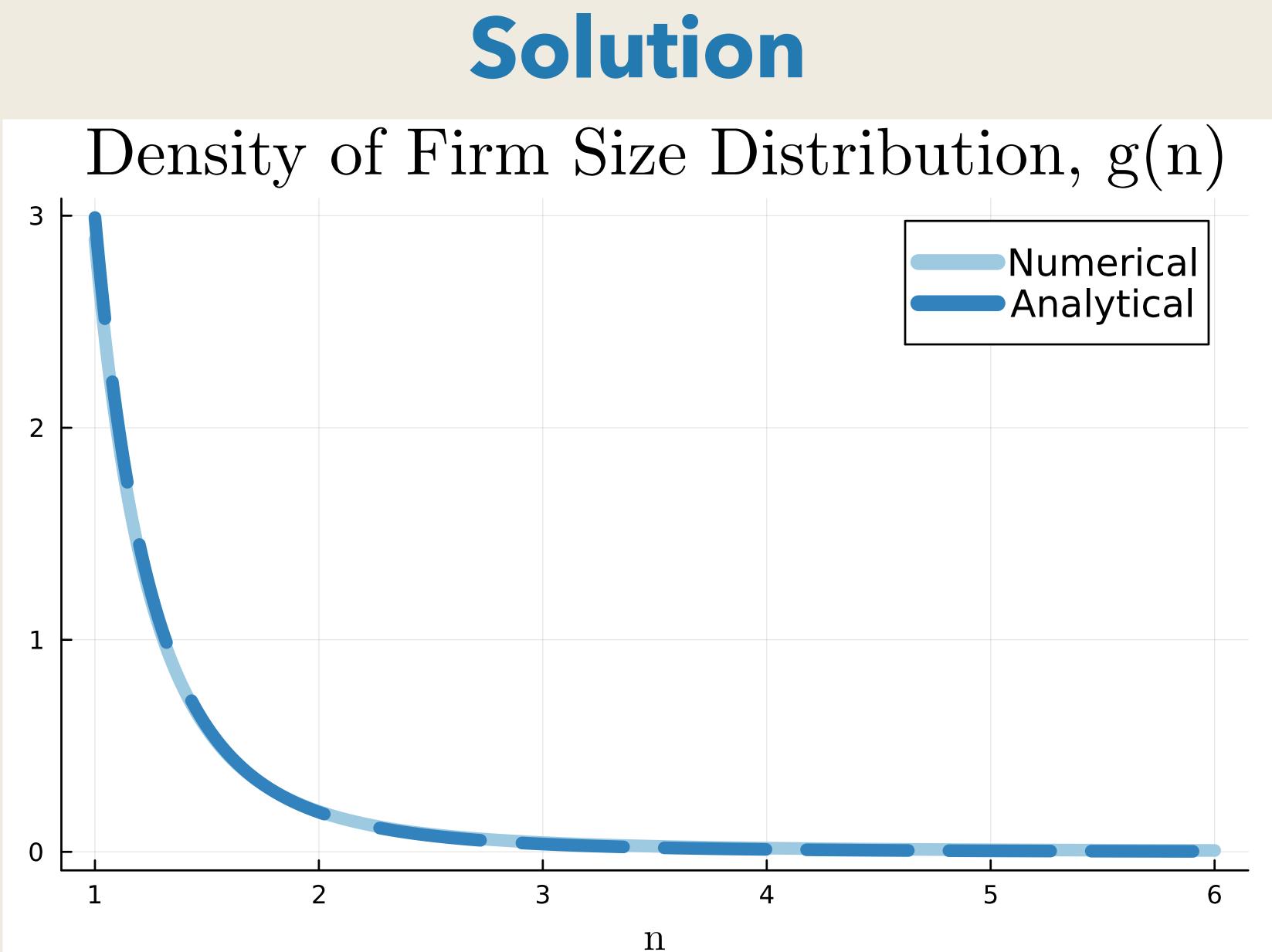
Matrix Inversion to solve g

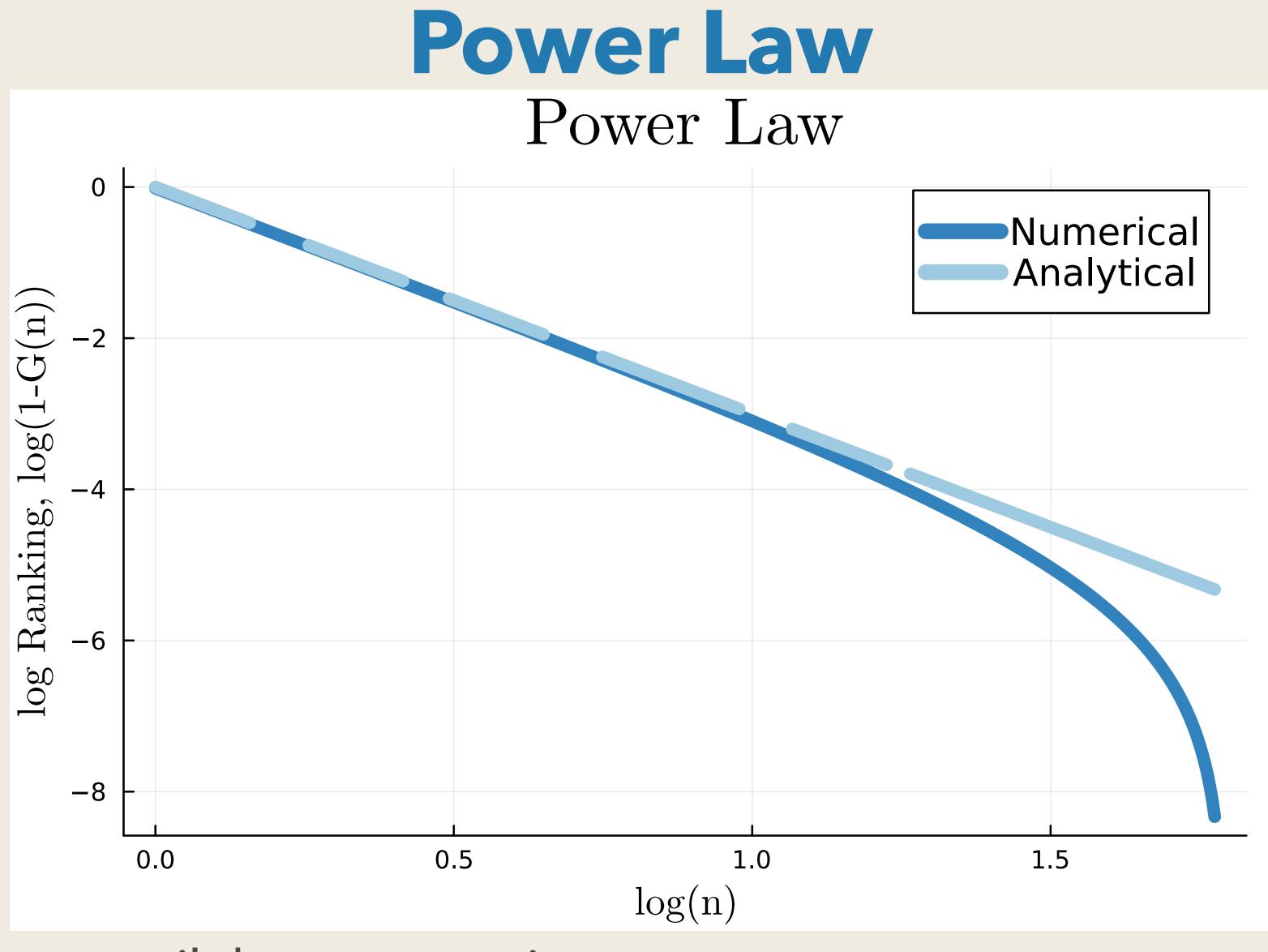
- One of the rows in (A) is colinear (implied by (B))
- Replace one of the rows in (A) with (B) to write $\tilde{A}g = \tilde{B}$
 - \tilde{A} : one row in A is replaced with $\Delta n1'$, and the same row in \tilde{B} is 1 and 0 elsewhere
- Inverting a big matrix like \tilde{A} is typically expensive
- But, \tilde{A} is sparse (many zero entries)
- Always work with a sparse matrix whenever the matrix has many zero entries
- Inverting a sparse matrix is cheap even when the matrix is big

$$\Rightarrow \quad \boldsymbol{g} = \boldsymbol{\tilde{A}}^{-1} \boldsymbol{\tilde{B}}$$

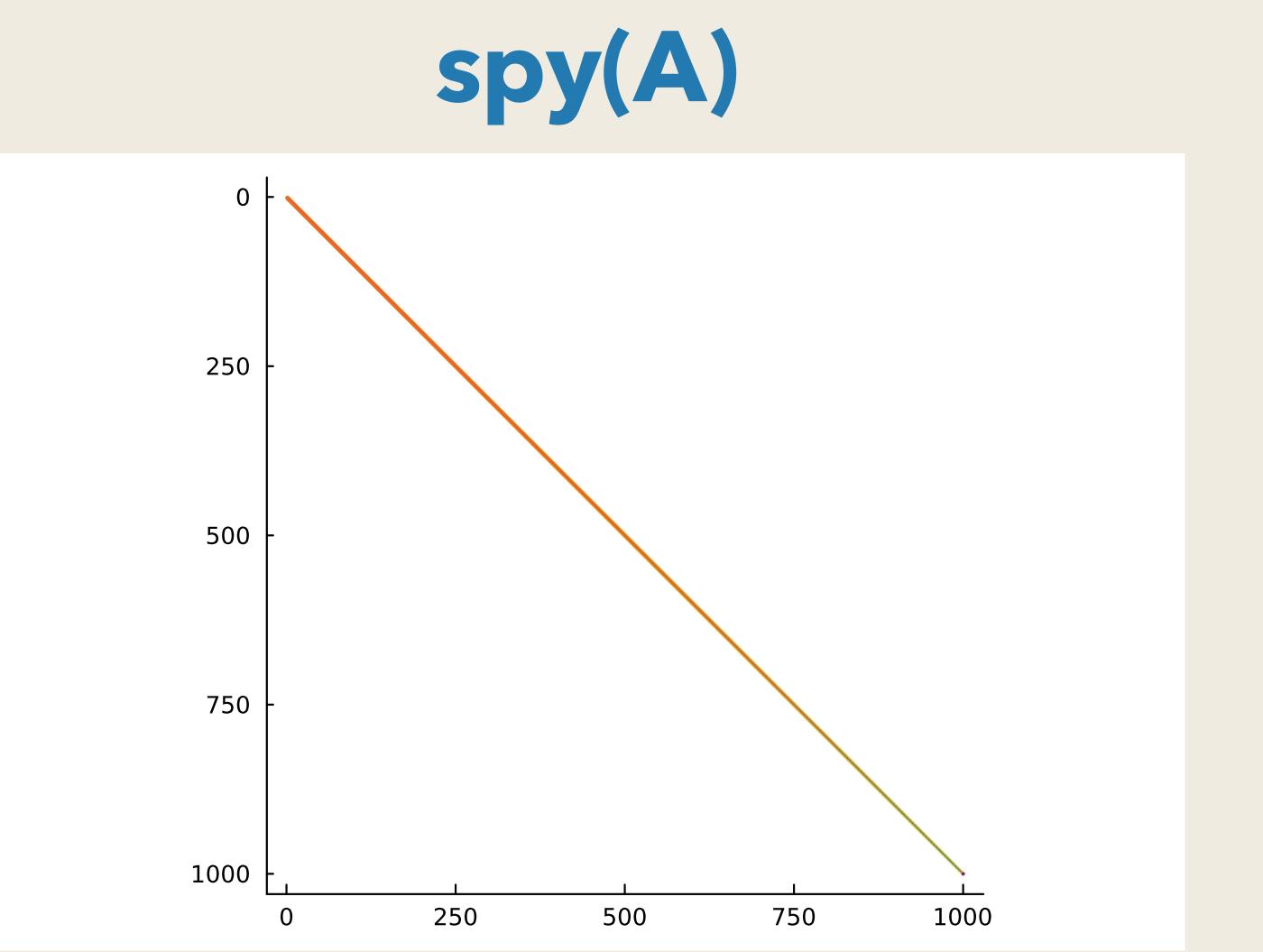
Julia Code for Solving KFE

```
using SparseArrays
using Parameters
@with_kw mutable struct model
    J = 1000
    sig = 0.1
    mu = -0.01
   ng = range(1.0, 6, length=J)
    dn = ng[2] - ng[1]
end
function populate_A(param)
    @unpack_model param
    A = spzeros(length(ng),length(ng))
    for (i,n) in enumerate(ng)
        A[i,i] += -(sig*n)^2/dn^2;
        A[i,min(i+1,J)] += 1/2*(sig*n)^2/dn^2;
        A[i,max(i-1,1)] += 1/2*(sig*n)^2/dn^2;
        if mu > 0
            A[i,i] += -mu*n/dn;
            A[i,min(i+1,J)] += mu*n/dn;
        else
            A[i,i] += mu*n/dn;
            A[i, max(i-1, 1)] += -mu * n/dn;
        end
    end
    return A
end
function solve_stationary_distribution(param)
    @unpack_model param
    A = populate_A(param)
    B = zeros(length(ng));
    B[end] = 1;
    A[end,:] = ones(1,length(ng))*dn;
    g = A' \setminus B;
    return g
end
param = model()
g = solve_stationary_distribution(param)
```



Bias in the upper tail due to truncation



The advantage of continuous time with diffusion lies in the sparsity of A In discrete time, A is unlikely to be sparse in many applications

Numerically Computing Transition of Firm Size Distribution

Solving Transition Dynamics

- How do we numerically compute the transition path of $\{g_t(n)\}$ given $g_0(n)$?
- Recall the evolution of distribution is characterized by

$$\partial_t g_t(n) = -\partial_n [\mu(n)g_t(n)] + \frac{1}{2}\partial_{nn}^2 \left[\sigma(n)^2 g_t(n)\right]$$

- We have to discretize time as well: $t \in$
- Approximate the time derivative using backward difference:

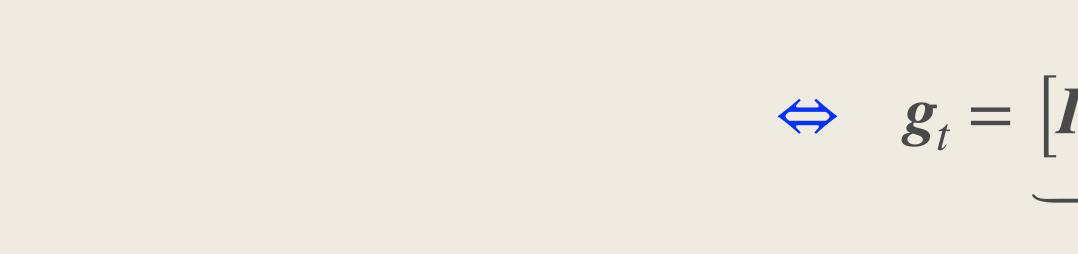
$$\partial_t g_t(X) \approx \frac{g_t(n) - g_{t-\Delta t}(n)}{\Delta t}$$

• Can use forward difference but requires Δt to be small

$$[t_0, t_1, \dots, t_N] \text{ and } \Delta t \equiv t_j - t_{j-1}$$

Back to Markov Chain

For any given $g_{t-\Delta t} \equiv [g_{t-\Delta t}(n_i)]_i$, one can compute g_t by solving



$$\frac{\boldsymbol{g}_{t} - \boldsymbol{g}_{t-\Delta t}}{\Delta t} = \boldsymbol{A}^{T} \boldsymbol{g}_{t}$$

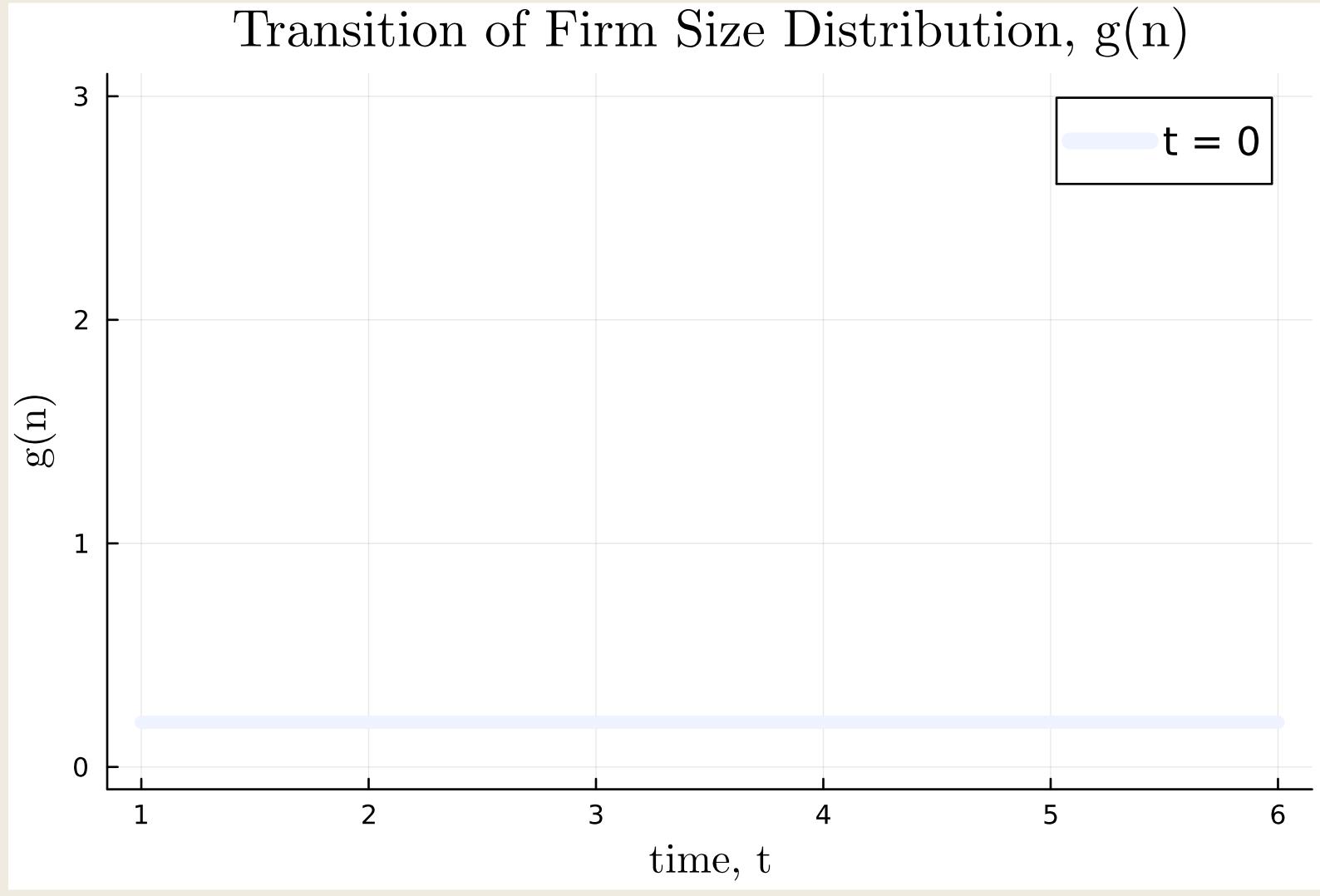
$$= \left[\boldsymbol{I} - \Delta t \times \boldsymbol{A}^{T} \right]^{-1} \boldsymbol{g}_{t-\Delta t}$$

$$= \boldsymbol{P}$$

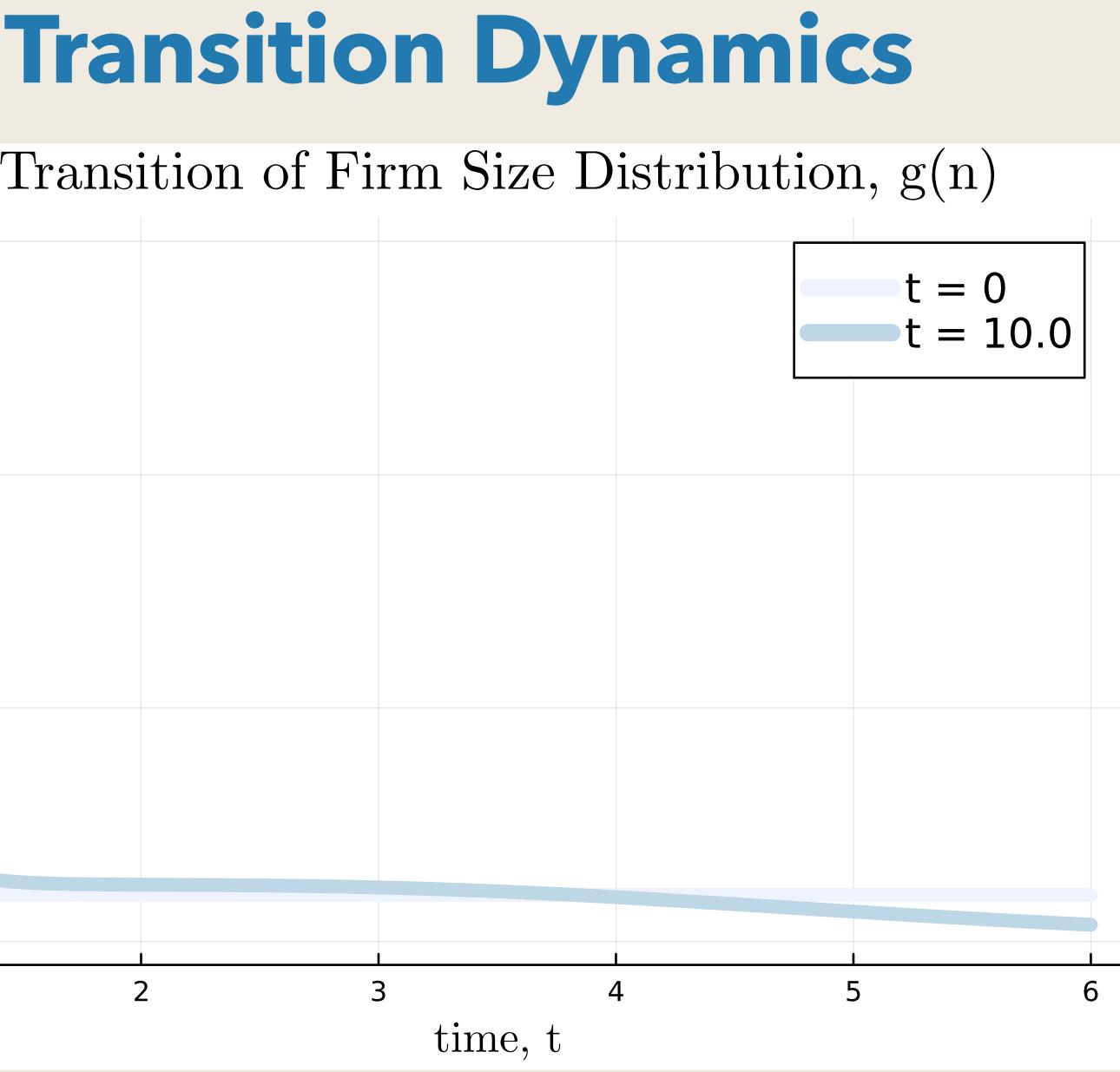
The matrix P corresponds to Markov Chain transition matrix in a time interval Δt

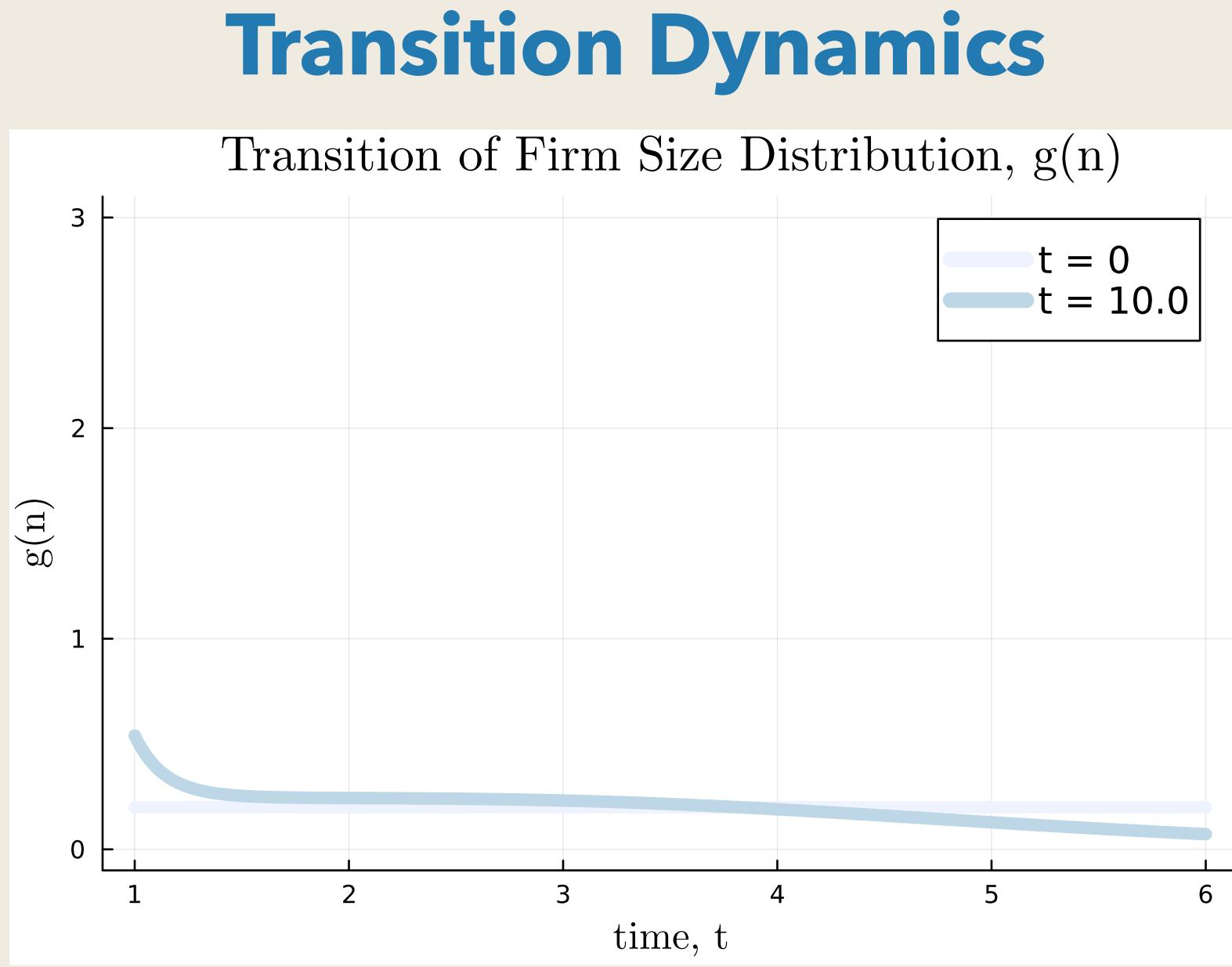
Julia Code for Transition

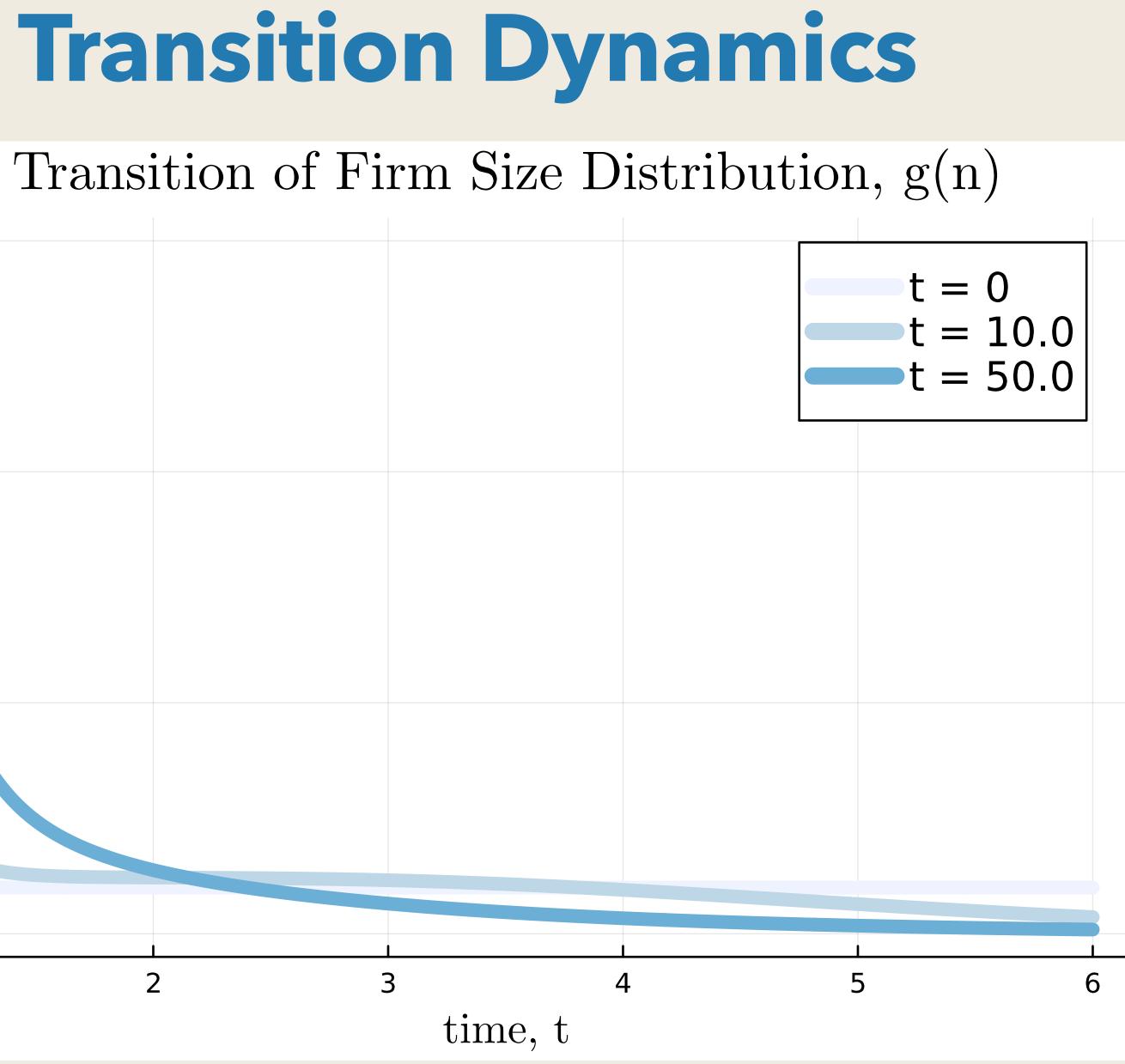
using LinearAlgebra dt = 0.1; T = 5000;A = populate_A(param); gpath = zeros(J,T); gpath[:,1] = ones(J)./(J*dn);for t = 2:T $gpath[:,t] = (I - dt*A') \setminus gpath[:,t-1]$ end

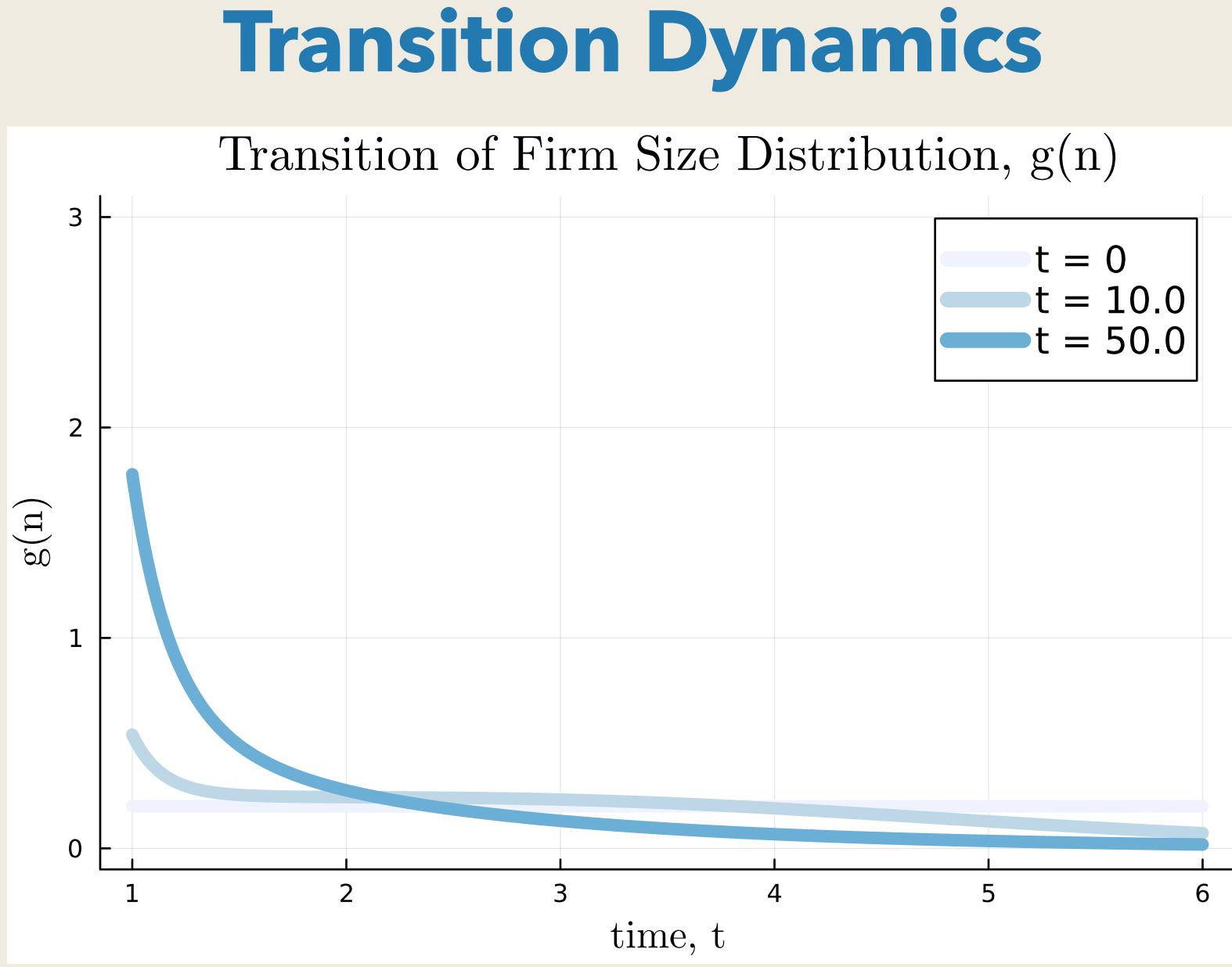


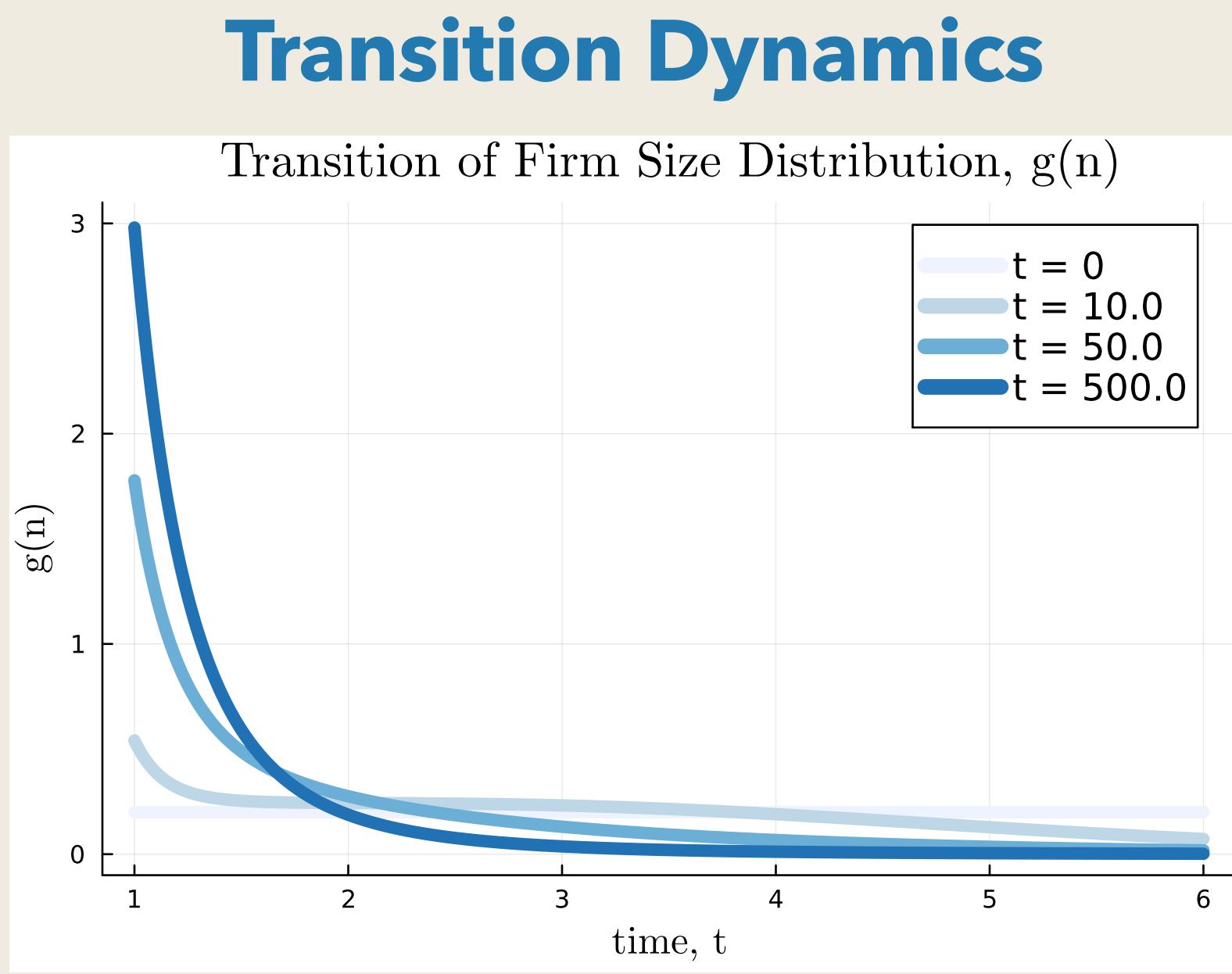
Transition Dynamics

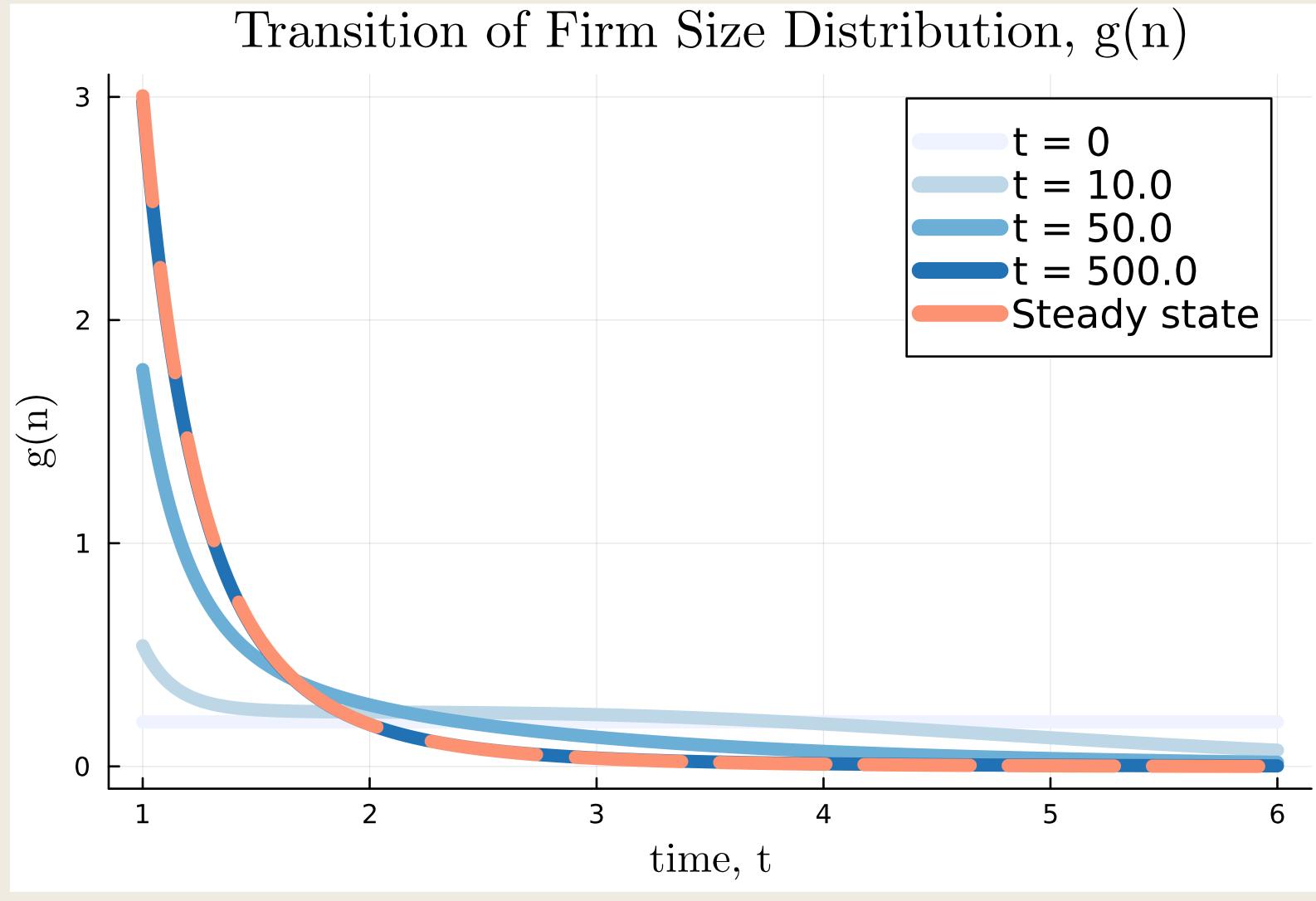












Taking Stock

Taking Stock

- Fact: A handful of extremely large firms hire a large share of workers
 - 1. The firm size distribution is fat-tailed, Zipf's law
 - 2. Firm growth is roughly unrelated to firm size, Gibrat's law
- Theory: A mechanical model of firm growth as in Gabaix (1999)
 - 1. Gibrat's law + stabilizing force \Rightarrow power law
 - 2. stabilizing force $\downarrow 0 \Rightarrow$ Zipf's law
- Techniques: We have covered important continuous-time tools 1. Diffusion process, Kolmogorov forward equation (KFE)

 - 2. How to solve KFE on your computer

Appendix A: Non-Uniform Grid

Why Non-Uniform Grid?

- So far, we have considered equi-spaced grid: $\Delta n_i \equiv n_i - n_{i-1} = \Delta n$
- In many applications, we would like to achieve the followings:
 - 1. We want the upper bound of the grid to be large enough
 - Walmart employs 2.3 million workers in 2021
 - 2. We want to accurately compute especially at the lower end of the grid This is where exit decisions matter
- - 3. We do not want to take too many gridpoints
- We can achieve the above goal with non-uniform grid
 - Take many fine grids at lower ends and coarse grids at upper ends
 - log-spaced grid is a good example

Discretization with Non-Uniform Grid

- Suppose grids are non-uniform: $n \equiv [n]$
 - $\Delta n_{j,+} = n_{j+1} n_{j+1}$
- Approximating first-derivative with non-uniform grid: 1. Forward difference approximation: $-\partial_n[\mu(n_i)g(n_i)]$
 - 2. Backward difference approximation: $-\partial_n[\mu(n_i)g(n_i)]$
- Approximating second-derivative with non-uniform grid:

$$\partial_{nn}^{2} \left[\sigma(n_{i})^{2} g(n_{i}) \right] \approx \frac{\Delta n_{j,-} \sigma(n_{i+1})^{2} g(n_{i+1}) - (\Delta n_{j,+} + \Delta n_{j,-}) \sigma(n_{i})^{2} g(n_{i}) + \Delta n_{j,+} \sigma(n_{i-1})^{2} g(n_{i-1})}{\frac{1}{2} (\Delta n_{j,+} + \Delta n_{j,-}) \Delta n_{j,+} \Delta n_{j,-}}$$

$$[n_1, n_2, \ldots, n_J]'$$
 with

$$n_{j}, \quad \Delta n_{j,-} = n_j - n_{j-1}$$

$$\approx -\frac{\mu(n_{i+1})g(n_{i+1}) - \mu(n_i)g(n_i)}{\Delta n_{j,+}}$$

$$\approx -\frac{\mu(n_i)g(n_i) - \mu(n_{i-1})g(n_{i-1})}{\Delta n_{j,-}}$$

KFE in a Matrix Form when $\mu(n) < 0$

• Let $A \equiv [A_{i,j}]_{i,j}$ with

$$\begin{split} A_{j,j-1} &= -\frac{\mu_{j}}{\Delta n_{j,-}} + \frac{\Delta n_{j,+}\sigma_{j}^{2}}{(\Delta n_{j,+} + \Delta n_{j,-})\Delta n_{j,+}\Delta n_{j,-}} \\ A_{j,j} &= \frac{\mu_{j}}{\Delta n_{j,-}} - \frac{(\Delta n_{j,+} + \Delta n_{j,-})\sigma_{j}^{2}}{(\Delta n_{j,+} + \Delta n_{j,-})\Delta n_{j,+}\Delta n_{j,-}} \\ A_{j,j+1} &= \frac{\Delta n_{j,-}\sigma_{j}^{2}}{(\Delta n_{j,+} + \Delta n_{j,-})\Delta n_{j,+}\Delta n_{j,-}} \end{split}$$

If $\Delta n_{j,+} = \Delta n_{j,-} = \Delta n$, we go back to the uniform grid case

KFE with Non-Uniform Grid

• The density is $g \equiv [g(n_j)]_j$. We work with the transformed density:

 $\tilde{\boldsymbol{g}} \equiv [\tilde{g}_j]$

 $\tilde{\Delta}n_{j} = \begin{cases} \frac{1}{2}\Delta n_{j}, \\ \frac{1}{2}(\Delta n_{j}), \\ \frac{1}{2}\Delta n_{j}, \\ \frac{1}{2}\Delta n_{j}, \end{cases}$

The KFE in a matrix form is

$$\begin{aligned} y_{j}, \quad \tilde{g}_{j} &= g_{j} \tilde{\Delta} n_{j} \\ y_{j,+} & j = 1 \\ n_{j,+} &+ \Delta n_{j,-} \end{pmatrix} \quad j &= 2, \dots, J-1 \\ y_{j,-} & j &= J \end{aligned}$$

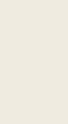
 $\boldsymbol{A}^T \tilde{\boldsymbol{g}}_j = \boldsymbol{0}$

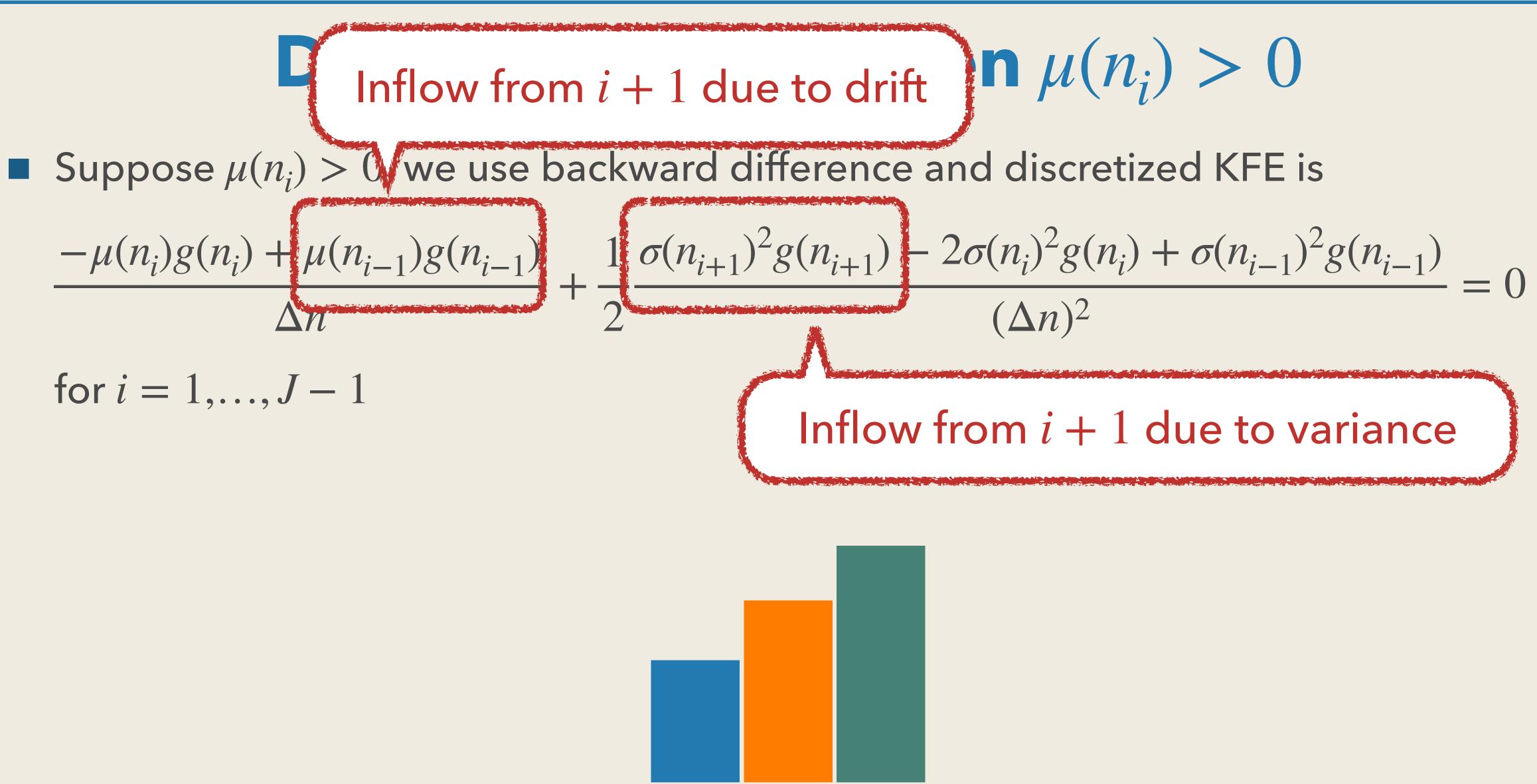
Appendix B: Numerically Solving KFE when $\mu > 0$

Suppose $\mu(n_i) > 0$, we use backward difference and discretized KFE is

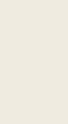
$$\frac{-\mu(n_i)g(n_i) + \mu(n_{i-1})g(n_{i-1})}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})}{\sigma(n_{i+1})}$$

 $\frac{(1)^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$





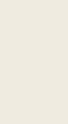
 n_{i-1} n_i n_{i+1}



Suppose $\mu(n_i) > 0$, we use backward difference and discretized KFE is

$$\frac{-\mu(n_i)g(n_i) + \mu(n_{i-1})g(n_{i-1})}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})}{\sigma(n_{i+1})}$$

 $\frac{(1)^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$



Suppose $\mu(n_i) > 0$, we use backward difference and discretized KFE is

$$\frac{-\mu(n_i)g(n_i) + \mu(n_{i-1})g(n_{i-1})}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})}{\sigma(n_{i+1})}$$

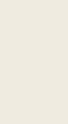
Discretized KFE v Inflow from i - 1 due to variance $\frac{1}{(\Delta n)^2} g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1}) + \sigma(n_{i-1})^2 g(n_{i-1}$

66

Suppose $\mu(n_i) > 0$, we use backward difference and discretized KFE is

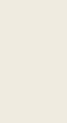
$$\frac{-\mu(n_i)g(n_i) + \mu(n_{i-1})g(n_{i-1})}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})}{\sigma(n_{i+1})}$$

 $\frac{(1)^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$



Suppose $\mu(n_i) > 0$, we use backward difference and discretized KFE is $\frac{-\mu(n_i)g(n_i) + \mu(n_{i-1})g(n_{i-1})}{1 + \frac{1}{2}} + \frac{1}{2}\frac{\sigma(n_{i+1})^2g(n_{i+1}) - 2\sigma(n_i)^2g(n_i) + \sigma(n_{i-1})^2g(n_{i-1})}{1 + \sigma(n_{i-1})^2g(n_{i-1})} = 0$ outflow from *i* due to variance outflow from *i* due to drift

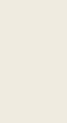
 n_{i-1} n_i n_{i+1}



Suppose $\mu(n_i) > 0$, we use backward difference and discretized KFE is

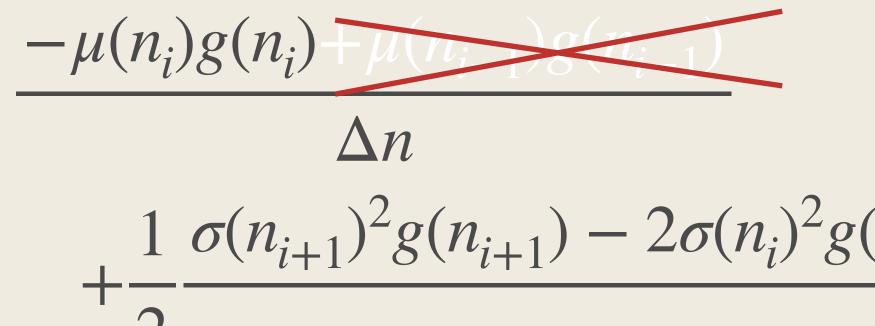
$$\frac{-\mu(n_i)g(n_i) + \mu(n_{i-1})g(n_{i-1})}{\Delta n} + \frac{1}{2}\frac{\sigma(n_{i+1})}{\sigma(n_{i+1})}$$

 $\frac{(1)^2 g(n_{i+1}) - 2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1})}{(\Delta n)^2} = 0$



KFE at the Boundary when $\mu(n_i) > 0$

• At the boundary i = 1,



• Since $g(n_{i-1}) = 0$, inflow from i - 1 is absent • Since mass $\sigma(n_i)^2 g(n_i) \frac{1}{(\Delta n)^2}$ exits, the same mass enters at $n_i = \underline{n}$

• At i = J, assume reflecting barrier so that

 $-\mu(n_i)g(n_i) + \mu(n_{i-1})g(n_{i-1}) + \mu(n_i)g(n_i)$

$$\frac{(n_i) + \sigma(n_i)^2 g(n_i)}{(\Delta n)^2} = 0$$

$$\frac{1}{2} \frac{-2\sigma(n_i)^2 g(n_i) + \sigma(n_{i-1})^2 g(n_{i-1}) + \sigma(n_i)^2 g(n_i)}{(\Delta n)^2}$$

