Declining Business Dynamism (based on Karahan, Pugsley, and Şahin, 2024)

741 Macroeconomics Topic 3

Masao Fukui

Fall 2024

Firms are Getting Older

Conditional on Age, Firm Size Remains Stable Average Firm Size by Age Group 25^{-1} 20 Number of Workers 15 10 5 1980 1990 2000 2010 2020 Year - Age 0 - 1-5 - 6-10 - 11-15 - 16-20 - 21-25

Conditional on Age, Exit Rates Remain Stable

- 1. Entry rates have been declining, and consequently, firms are getting older
- 2. The firm's life-cycle dynamics (conditional on age) have little changed

Why?

Empirical Facts

If labor supply falls, labor demand needs to fall in equilibrium

- In Hopenhayn-Rogerson, wages do not rise
- Then what adjusts? Entry

9

If labor supply falls, labor demand needs to fall in equilibrium

- In Hopenhayn-Rogerson, wages do not rise
- Then what adjusts? Entry

9

Hopenhayn-Rogerson with Labor Supply Growth

Households

Households solve

 $\max_{\{C_t\}} \int_0^\infty$

- **s.t.** $C_t L_t = w_t L_t$ $\partial_t L_t = \eta_t L_t$
- $\eta_t \ge 0$: population growth rate
- This is the only modification to the previous model

$$^{\circ}e^{-rt}C_{t}L_{t}dt$$

$$L_t + \int \pi(z; w) g(z) dz - m_t c_e$$

HJB block remains completely unchanged

$$\min\left\{rv(z) - \pi(z;w) - \mu(z)v'(z) - \frac{1}{2}\sigma(z)^2v''(z), v(z) - \underline{v}\right\} = 0$$

Consequently, real wage is a constant despite labor supply growth

HJB Block

- $v(\underline{z}) = \underline{v}$
- $\int v(z)\psi(z)dz = c_e$

The distribution satisfies

$$\partial_t g_t(z) = -\partial_z [\mu(z)g_t(z)] + \frac{1}{2}e^{-\frac{1}{2}t}$$

• Conjecture $\tilde{g}(z) = g_t(z)/L_t$ and $\tilde{m} = m_t/L_t$ are stationary so that $\frac{1}{L_t}\partial_t g_t(z) = -\partial_z [\mu(z)\tilde{g}_t(z)] + \frac{1}{2}\partial_{zz}^2 \left[\sigma(z)^2 \tilde{g}_t(z)\right] + \tilde{m}\psi(z) \quad \text{for } z > \underline{z}$ $-\partial_t g_t(z) - \frac{g_t(z)}{I} \frac{\partial_t L_t}{I} + \frac{g_t(z)}{I} \frac{\partial_t L_t}{I} = \partial_t \tilde{g}_t(z) + \tilde{g}_t(z)\eta_t$ $=\partial_t \tilde{g}_t(z)$

KFE Block

- $\partial_{zz}^2 \left[\sigma(z)^2 g_t(z) \right] + m_t \psi(z) \quad \text{for } z > z$
- $| n(z;w)g_t(z)dz = L_t$

Normalized Distribution

$\partial_t \tilde{g}_t(z) = -\eta_t \tilde{g}_t(z) - \partial_z [\mu(z)\tilde{g}_t(z)] + \partial_z [\mu(z)$

 $\int n(z;w)\tilde{g}_t(z)dz = 1$

This does not involve non-stationary variable, \Rightarrow confirming our conjecture that $\tilde{g}(z)$ and \tilde{m} are stationary

$$+\frac{1}{2}\partial_{zz}^{2}\left[\sigma(z)^{2}\tilde{g}_{t}(z)\right] + \tilde{m}_{t}\psi(z) \quad \text{for } z > \underline{z}$$

Comparative Statics Across Steady State

Demographic Origins of Startup Deficits

No Changes in Firm Life Cycle

Alternative Explanation: Changes in Entry Cost, *c*_e

Alternative Explanation: Changes in Fixed Cost, *C_f*

Entry rate

Alternative Explanation: Changes in Real Rate, *r*

Entry rate

Exit rate

Original Results

Panel A. Explaining the long-run decline in the Required parameter change

Panel B. Implied change in each margin
Start-up rate (pp)
Economy-wide exit rate (pp)
Average firm size (emp)
Start-up size (emp)
Young small exit rate (pp)
Young small growth rate (pp)

Source: Karahan-Pugsley-Sahin (2024)

		Potential channels						
Actual change	Entry cost, c_e	Operating cost, c_f	Labor supply growth, η					
he start-u	p rate							
	122.6%	-55.7%	-2.1(pp)					
-2.9	-2.9	-2.9	-2.9					
-0.8	-3.0	-3.0	-1.0					
2.0	6.4	-10.7	3.7					
0.1	3.3	-3.4	0.0					
-0.1	-3.2	-3.6	0.0					
0.5	-0.4	-0.8	0.0					

Conjecture

Suppose the following two holds.

The productivity distribution of entrants follows Pareto (i)

(ii) The productivity process is given by geometric Brownian motion

parameter that only enters into HJB-VI

If you prove the above conjecture, I will count it as a final project

- Then, entry and exit rates in the steady state are invariant to changes in any
- Another thought: Is there a restriction that $c_e, c_f \uparrow$ leads to entry & exit rates \uparrow ?

Transition Dynamics

How Fast is the Transition?

- Comparing across steady states is potentially misleading
- What if it takes a thousand years to reach from one steady state to another?
- To address this issue, we would like to simulate the transition dynamics
- How do we do that?

Block Recursive Property, Again

- In Hopenhayn-Rogerson, this is extremely easy
- Recall that the HJB block is independent of the KFE block: $\min\left\{rv(z) - \pi(z;w) - \mu(z)\right\}$

V

- η_t absent \Rightarrow there is no need to solve the HJB block along the transition

$$z v'(z) - \frac{1}{2} \sigma(z)^2 v''(z), v(z) - v \bigg\} = 0$$

$$(\underline{z}) = \underline{v}$$

 $\int v(z)\psi(z)dz = c_e$

• More generally, the HJB block can be solved without solving for the KFE block • Again, this is "block recursive property" (see Kaas (2023) for a general treatment)

Solving the Transition of KFE Block

The only part we need to simulate is the KFE block:

Starting from $\{\tilde{g}_0(z)\}$, we can simulate any $\{\tilde{g}_t(z)\}_{t>0}$

We already know how to do this!

$$\frac{\tilde{g}_t - \tilde{g}_{t-\Delta t}}{\Delta t} =$$

$$\tilde{g}_t = \left[I - \Delta t\right]$$

- $\partial_t \tilde{g}_t(z) = -\eta_t \tilde{g}_t(z) \partial_z [\mu(z)\tilde{g}_t(z)] + \frac{1}{2}\partial_{zz}^2 \left[\sigma(z)^2 \tilde{g}_t(z)\right] + \tilde{m}_t \psi(z) \quad \text{for } z > \underline{z}$
 - $\int n(z;w)\tilde{g}_t(z)dz = 1$

 $= \widetilde{A}_{t}^{T} \widetilde{g}_{t} + \widetilde{\psi}$

 $\times \tilde{A}_{t}^{T} \Big]^{-1} \left[\tilde{g}_{t-\Delta t} + \Delta t \times \tilde{\psi} \right]$

Transition Dynamics

Empirical Support for "Demographic Origin of Startup Deficits" in the Cross-Section

From Time-Series to Cross-Section

Evaluate the mechanism in the cross-section across U.S. states

Startup Rates & Labor Supply Growth in the Cross-Section

Empirical Speficification $SR_{st} = \beta g_{st} + \alpha_s + \gamma_t + \delta' X_{st} + \epsilon_{st}$

- \blacksquare SR_{st}: startup rate in state s in year t
- \blacksquare g_{st} : labor supply growth rate
- $\ \alpha_{s}, \gamma_{t}$: state- and year- fixed effects
- OLS estimates of β can be biased:
 - A positive TFP shock can bring both new firms and new workers $\Rightarrow \mathbb{E}[g_{st}\epsilon_{st}] \neq 0$
- Need an IV that is (i) correlated with g_{st} ; (ii) uncorrelated with ϵ_{st}

Two Instruments

1. Lagged fertility instrument:

- Fertility rate 20 years ago is a strong predictor of labor supply growth
- Exclusion restriction: Higher fertility 20 years ago affects firm creation only through labor supply
- 2. Migration instrument:

 $IV_{2.st} = \sum$

- $\omega_{s,t-10}^k$: share of residents in state *s* born in state *k* measured 10 years ago
- Labor supply growth predicted by "push" factors and historical migration patterns

 $IV_{1,st} = \text{Fertility}_{s,t-20}$

$$\sum_{k \neq s} \omega_{s,t-10}^k \times g_{kt}$$

32

Startup Rate and Labor Supply Growth

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8
	First Stage		OLS	IV_1	IV_2	$IV_1\&IV_2$	Mo	
WAP Growth $(\%)$				0.61 (0.05)	1.09 (0.32)	1.27 (0.22)	1.19 (0.22)	1. (0.)
Birthrate IV	1.36 (0.24)		1.11 (0.24)					X
Migration IV		1.04 (0.30)	(0.87) (0.28)					
N	$1,\!421$	$1,\!421$	$1,\!421$	$1,\!421$	$1,\!421$	$1,\!421$	$1,\!421$	$1,\!42$
R^2	0.64	0.64	0.65	0.90	0.87	0.85	0.86	0.
<i>F</i> -test	32.63	11.82	17.46					
p-value of J test							0.55	

Empirical Support for "Demographic Origin of Startup Deficits" in the Time-Series

Labor Supply Growth Prior to 1980

Imputing Historical Entry Rates

- How do the entry rates look like before 1980?
- There is no direct measure
- However, County Business Patterns record the number of establishments since 1965
- The flow-stock equation is (in discrete time)

 $e_t = (1)$

- e_t : # of establishments
- *s_t*: establishment entry rates (unobserved) • x_t : establishment exit rates \Rightarrow predict using 1980-2007 data

$$(-x_t)e_{t-1} + s_t$$

Imputed Entry Rates

- Over the past 40 years,
 - 1. Entry rates have been declining
 - 2. Firm life-cycle dynamics have little changed
- Evaluate the demographic origins of startup deficit through
 - 1. structural model of firm dynamics
 - 2. cross-section
 - 3. time-series

Appendix A: Transition Dynamics from Interest Rate Shock

Changes in Interest Rate

- Changes in population growth $\{\eta_t\}$ only shows up in KFE block
- This is why we didn't need to resolve HJB block
- What if we consider a shock that enters into HJB block such as $\{r_t\}$?

HJB Block with Time-Varying Interest Rates

$$\min\left\{r_t v(z) - \pi(z; w_t) - \mu(z) v_t'(z)\right\}$$

• Again, HJB block alone pins down the path of equilibrium wages $\{w_t\}$ How do we solve time-dependent HJB-VI?

- $z_{t} \frac{1}{2}\sigma(z)^{2}v_{t}''(z) \partial_{t}v_{t}(z), v_{t}(z) \underline{v} \right\} = 0$
- $v_t(\underline{z}_t) = \underline{v}$
- $\int v_t(z)\psi(z)dz = c_e$

Moving HJB-VI Backward in Time

- We first assume that, at t = T, the economy is in the steady state, $v_T = v(z)$
- We use forward approximation to approximate the time derivative:

 $\partial_t v_t(z) \approx$

- Can use backward approximation but requires small Δt
- In a matrix form,

$$\min\left\{ [r_t \mathbf{I} - A] \mathbf{v}_t - \boldsymbol{\pi}_t(w_t) - \frac{\mathbf{v}_{t+\Delta} - \mathbf{v}_t}{\Delta t}, \mathbf{v}_t - \underline{v} \mathbf{1} \right\} = 0$$

$$\frac{v_{t+\Delta t}(z) - v_t(z)}{\Delta t}$$

Computation
$$\min \left\{ [r_t \mathbf{I} - A] \mathbf{v}_t - \pi_t(\mathbf{v}) \right\}$$

For $t = T - \Delta t, T - 2\Delta t, \dots, 0$

- Given $v_{t+\Delta t}$, guess w_t
 - Solve (HJB-VI) to obtain v_t using Howard's algorithm
 - Check (Free-entry)
 - If $|(\mathbf{v}_t \cdot \mathbf{\psi}) \times \Delta z c_e| < tol$, break
 - If $(\mathbf{v}_t \cdot \boldsymbol{\psi}) \times \Delta z c_{\rho} > 0$, raise w_t
 - If $(\mathbf{v}_t \cdot \mathbf{\psi}) \times \Delta z c_e < 0$, lower w_t

Appendix B: Joint Distribution of Productivity and Age

Two-Dimensional KFE

• Let $g_t(z, a)$ be the density of the joint distribution of (z, a)The KFE is given by

$\partial_t g_t(z, a) = -\partial_z [\mu(z)g_t(z, a)] - \partial_a [g_t(z, a)] - \partial_a [g_$

which follows from the fact that

(firms age by *dt* within a time interval *dt*)

$$[z, a)] + \frac{1}{2} \partial_{zz}^2 \left[\sigma(z)^2 g_t(z) \right] + m_t \psi(z, 0) \quad \text{for } z > 0$$

da = dt

Exit Rate by Age

The exit rate by age is given by

 $\frac{1}{g_t(a)} \frac{g_{t-dt}(a-dt) - g_t(a)}{dt} = \frac{1}{L_t \tilde{g}(a)} \frac{L_t}{g(a)}$ $L_t \tilde{g}(a)$ $L_t \tilde{g}(a)$

$$\frac{L_{t-dt}\tilde{g}(a-dt) - L_{t}\tilde{g}(a)}{dt}$$

$$\frac{L_{t-dt}\tilde{g}(a-dt) - L_{t-dt}\tilde{g}(a) + L_{t-dt}\tilde{g}(a) - L_{t}\tilde{g}(a)}{dt}$$

$$\left(-L_t\partial_a\tilde{g}(a)-\eta L_t\tilde{g}(a)\right)$$

$$\partial_a \tilde{g}(a)$$

 $\tilde{g}(a)$

