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Now Firms are Younger

Change in firm and employment shares, March 2020 to March 2022
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Now Firms are Smaller

Change in firm and employment shares, March 2020 to March 2022
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Firm Destruction Shock in Hopenhayn-Rogerson

COVID-19 induced a spike in firm exits

With a slight lag, there was a surge in firm entry

Reflecting these exit and entry dynamics, firms are now younger and smaller
With an economy dominated by smaller firms, is the labor demand weaker?

Suppose we feed firm destruction shocks in our model, what happens?
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How Free is Free-Entry?

B How free is free-entry? Is entry infinitely elastic to entry value?
B No existing estimates (if you estimate it, that will be a great paper)
B Why should we relax free-entry assumption then?

1. Free-entry is not necessarily a benchmark assumption

e Some firm dynamics models abstract from entry & exits

* |s this an innocuous assumption or not?

2. There is a general lesson in studying how to solve a model without free-entry

e This is a class of model where distribution matters for macro!

3. Hard to believe entry is infinitely elastic, especially in the short-run




Hopenhayn-Rogerson
without Free-Entry




Relaxing Free-Entry

We assume that the mass of potential firms is finite at M X L,
Potential firms draw entry costs from the distribution H(c) iid across time/firms
Let ¢ be the cut-off such that potential firms are indifferent to enter or not:

[viw(z)dz = ¢,

e Potential firms with ¢¢ < ¢¢ enter

e Potential firms with ¢¢ > ¢© do not enter

The mass of entrants is

m,= M X L, X H(c;




Micro-Founding Inelastic Entry

B Suppose that 1/c¢ follows Pareto so that

Prob(l/&'e < l/ce) — ] — (1/56)1/(1/66)—1/
< H(c®) = Prob(¢¢ < ¢ = ((1/8°)c®)
B The mass of entry is now

m.=MXL X (é fvt(z)l//(z)dz>

e Asv — 00, we recover the case of free entry: fvt(z)l//(z)dz = C°
e Asv — 0, the mass of entry per capita is fixed: m,/L, = M

e More generally, v governs the elasticity of entry w.r.t. firm value
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Equilibrium System

min {m(Z) — (z; wy) — p(2)v(2) — %a(z)zvt”(z) — 0v(2), v(2) —y} = 0
v(z,) =y

m. =M XL, X (é jvt(z)l/f(z)dz>

1
0,8,2) = — 0[u(2)g(2)] + Eaﬁz 06(2)°g(2)| + m(z) forz>z

| n(z; w)g(2)dz = L,
B Now we lost the block recursive property

B Entry alone does not pin down wages. The whole distribution matters!
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Normalized Equilibrium Conditions

m Definem, =m/L and g(z) = g(2)/L,
min {rvt(z) — n(z;w,) — u(2)vi(z) — %a(z)zvt”(z) — 0,v(2), v(2) — y} = ()
v(z,) =v
1 U
m, = M X (E fvt(z)l//(z)dz)

|
0,8/2) = — ng(2) — 0[u(2)g ()] + 502 0(2)°8,(2)| + () forz>z

| n(z;w)g,(2)dz = 1




Lower w Raise w

|n(z;w)g(z)dz > 1?

Steady State Algorithm

Solve HJB VI to obtain {v(2)}, z:
min {W(z) — (3 w) — u(2)v'(z) — %G(Z)ZV”(Z), v(2) —y} =0

Compute entry:

m =M X (é jv(z)w(z)dz)

Solve KFE to obtain g(z):

|
0= —18(2) — 0[u(2)g(2)] + 5032 6(2)°8(2)| + my(z) forz >z

| [n(z;w)g(2)dz — 1] < €?
yes
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Solving Transition Dynamics using
Sequence Space Jacobians




Goal

B Suppose the economy is initially in a steady state at 7 = 0

m Afterr = 0, the population growth changes over time {#,}

B How do we simulate the transition dynamics?
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Equilibrium System

min {m(Z) — (z; w,) — u(2)v(2) — %d(z)zvlf’(z) — 0v(2), v(2) —y} =0

1
0,8(2) = — n,8.2) — 0, [u(2)g(2)] + Eagz 0(2)°8(2)| + my(z) forz>z

| n(z;w)g(2)dz =1

m We need to find a sequence of wages {w,}~, that clear the labor market

B It is useful to start from a “naive” algorithm

(HJB-VI)
(Exit)

(Entry)

(KFE)
(MC)
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Algorithm 10 Years Ago

B Assume that, at 7 = T, the economy is in a steady state

e Make the problem finite-dimensional

B The "naive” algorithm is to keep guessing {w,

T
=0

until labor markets clear for all ¢
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Lower w

“Naive” Algorithm 10 Years Ago

T
Guess {w,}._,

Solve (HJB-VI) and (Exit) to obtain {VZ(Z),_Zt}

Raise w Compute entry {1} using (Entry)

Solve (KFE) to obtain {g(z)}

Jn(z; w)g()dz > 17 | In(z; w)g(z)dz — 1| < e for all #?

yes
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Labor demand,

n(2) }

Labor Market, /' ({w,}, {n,}) = jnt(z)gt(z)dz =3 _



Equilibrium System

N (w,mp) =1

m We look for first-order approximation around the steady state

B Why?
* Instantaneous to obtain a solution, as we will see
e Often cases in practice, there is little non-linearity

* [t can be the basis for solving non-linear solutions
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Linearized Solution

B Discretize time with § grid points, and let Ar = 7/S§ be the time-interval

N aw + N dip =0

0N, 0N, . |
where N = and N, = are § X § Jacobian matrix
oW, oy
[,S )

m Solving for dw,

dw = —(N,)"' N, dn
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Obtaining Sequence Space Jacobians

B How do we obtain the sequence-space Jacobian, [ ], ; ?

e Changesinlabor demand at time 7 in response to changes in w at time s

B Again, let us think through a “naive” algorithm

1. Considerw’' = [w> +dwy, w>, ..., w™]
2. Given w’, solve HIBVI backward to obtain ', 7, {n(z)'}
3. Use m’, 7 to solve KFE forward to obtain {g(z)'}
- oN, N, —N
4. Use {n(z)'} and {g(z)'} to compute A#" and thereby [A4 ] , = —
’ aWS dW()

5. Repeat this with dw_for all s = Ar,2A¢, ..., SAt

m This is very time-consuming! Need $ backward and $ forward iterations

B Can we do better? — Yes, a lot better (Auclert, Barddczy, Rognlie, Straub, 2021)
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Only One Backward Iteration is Needed

B The first key insight:

HJB-Vl is (i) forward-looking and (ii) timeless:
(i) shock that happened in the past is irrelevant to my policy functions

(ii) | care about the distance to the future shock, not the calendar time

az di . . T
_ dwt and dwt can be obtained from a single backward iteration in response to dw;
: L dn L :
m With n(z) = (a/w)T-2z, —— s trivial to obtain

B Reduce computational time by a factor of §
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Matrix Notation

B We write the KFE in a matrix form as

8 — 8i—Ar = -
At

B The labor market clearing is, in a matrix form,
— ! &
N, =ng,

wheren, = [n(z)] and g, = [g/(2)]
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Response atr = 0 to s = 0 Shock

az,  dm, dn(2)
and

we compute
dw,' dw," dw, ' P

dan _ dg dg dP -
[N oo = l—ol S+ [n%]— and <o _ "0 X g

dWO dWO dWO dWO
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Response at7 = 0 to s = 0 Shock

az,  dm, dn(2)

dw,' dw, dw,

. ,~;,~'
’ ,",t,
W O O \t‘
b o

, We compute

8 >"°" -

Impact through changes iholding distribution fixed
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Response atr = 0 to s = 0 Shock

az,  dm, dn(2)
and

we compute
dw,' dw," dw, ' P

dan _ dg dg dP -
[N oo = l—ol S+ [n%]— and <o _ "0 X g

dWO dWO dWO dWO
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Response atr = 0 to s = 0 Shock

Impact through changes in distributions

az,  dm, dn(2)
, —, and , We compute , ,
dw," dw, dw, holding n fixed
[‘/’/‘W]O’O — l dWO ] dWO - dWO X g
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Response atr = 0 to s = 0 Shock

az,  dm, dn(2)
and

we compute
dw,' dw," dw, ' P

dan _ dg dg dP -
[N oo = l—ol S+ [n%]— and <o _ "0 X g

dWO dWO dWO dWO
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Response atr = 0 to s = 0 Shock

G. _Zt Nt ||d nt(Z) m t
m Given——, - a .~ We compute
.| .| .| n .| — .|
[WW]O’O l dWO ] [ ] dWO dWO dWO X

B From this, we can obtain [A4 ], immediatelydas well because
’ , 48,
[e/VW]t,o = [n"] vy
dgt — PSS % dgt—At
dWO dWO
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Response atr = 0 to s = 0 Shock

G. _Zt Nt ||d nt(Z) m t
m Given = =, a .~ We compute
.| .| .| n .| — .|
[QA/‘W]O’O l dWO ] [ ] dWO dWO dWO X

B From this, we can obtain [ ], immediately as well because

d~t
R ) e
dgt — PSS % dgt—Al‘
dWO dWO

e After the shock at 7 = 0, policy functions are the same as ones in the steady-state

e The distribution of transition is governed by steady-state objects P
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Now we know the first column

Y 0

[/VW] At,0
N W [ﬂ/w] 2At,0

[/VW] SxAt,0




m Given

dz.  dm dn
- and —

dw," dw, dw,

[N Joar = |

Second Column

, We compute

dny, ag ag dP,

and =

A\ W B4
n —
dWAt] 5 i [ ] dwp, dwp, dwp,

27



dz,  dm,

dn,
dw," dw,' and dw,

[N Joar = |

m Given

B What about [N Jx;;?

Second Column

, We compute

dny, ag ag dP,

and =

A\ W B4
n —
dWAt] 5 i [ ] dwp, dwp, dwp,

27



Second Column

, dz,  dm, dn,
m Given T dWS,and o e compute
_ | 9o |~ 5517 980 g, _ dby
[WW]O’At B ldWAt] 5 T [n ] dwy, and dwy, N dwy, X8
B What about [N Jx;;?
dny, | . dg A
['/Vw]At,Az = [ ] g7+ [n]
dn dg dg dg
_ 0 '35 + [n*]’ 50 + [n%] 5 At Rk 50
dWO dWO dWAt dWO

— [t/’/W]O’O _|_ [nSS]/PSS

g
dWAt
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G dz,  dm, q dn, X
n n , W m
m Give v’ a . e compute

dan

['/Vw]O,At = ldWZt] g + [nSS]

B What about [N Jx;;?
dn dg p;

[N arn: =

[ w](),()

— [/V ]OO+ [nss]/Pss

ag

~SS _I_ [n SS] /

— /g.SS _|_ [nSS]’

dg 0

0 [l’l SS]/
dwo dw_,_

and

9N

Second Column

_[ SS]

ag,
dwy

27



Second Column

we compute

dz,  dm, dn,

dw," dw,' and dw,’

m Given

dan

~ ag dg dP
. 0 Y SS 0 0 0
['/VW]O,At — ldWAt] /g + [n ]/

B What about [N Jx;;?

[N arn: =

[ w](),()

||
)
)
_|_
)
2

dgo
dWAt

[,/l/ ]OO+ [nss]/Pss

27



Second Column

dn,

m Forr> At i,

an dg g, dg,_
— [ t—Al‘] ,§SS+[nSS]/ gl‘—At | [nSS],[ gt gt At]

[‘/Vw]t,At = [ ] g7+ [n]

g, dg,
= [N )—aro + 7] [ t t At]
dwp, dw

dpP dg._,, dP,_ ds.
— [‘/Vw]t—At,O + [nss]/ [ 4 gss _|_Pss gt At [ Afgss _ PSS gt 2At]
dwy, dwp, dw dwy

dg dg
— ['/Vw]t—At,O_l_ [nSS]/PSS [ 81— At gt—2At]

aw IN; dWO

% Repeat the above step

480 until time O

=[N, ]i_pro + [RF] (P¥)27
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Now we know the first two columns

[‘/VW] 0.0 ['/VW] 0,At

['/VW] At,0 ['/’/W] At, At ?
N [/VW] IALO [‘/VW] 2At,At

[WW] SxAt,0 [/VW] SXAt,At




Recursive Expression for SSJ

m Fort=0andanysy,

d ag dpP.
[N dos = [ n(’]’g”ﬂn“] — and — =—2xg"

dw; dw;
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Recursive Expression for SSJ

m Fort=0andanys,

4 g _ dP
W= [+ 1 and o
m For7> (0andanysy,
dg, dg,_
['/VW]Z‘,S - ['/Vw]t—At,s—At = [n”’]’ - (Al
dWS dws—At
dP do AP
— [nSS]/ tgss + PSS 81— At B —At gss _ pss
dws dWS de-At

— [nSS] ' PSS l B

— [n SS] ’(PSS)#
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Recursive Expression for SSJ

m Fort=0andanysy,

[./VW]O,S = |

~"->'— .

- N : - :
N 2 LY -SRI~y p— = - D
B ¥ AU =B W - Y o S
»
/) >

['/V ]ts ['/V ]t—At S—Al"

dn,, ag b

dw; d

and

dw;

|2 + i

- Fort>

o dg t dg’ t—At
(™’ —
dWS dWS—At

- ,_45' ’ . -4 . - 3 - : -, - = =
e _°© o La . . R N S_ - h=d

:.The difference btwn : dpP ag,_n;  AP,_y,

(ns)’ ! gss 1 PSS _

"'1 Response at f to shock at s ;«' dw, Aw; AWs_ar

2 Response at t — At to shock at S — At ~ ~
[P ag,_n; A8

dws de-At

dg
= [ (PP

aw,
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Recursive Expression for SSJ

m Forfr=0andanys,

[./VW]O,S = |

.'_.;5.‘ -

» N g - )
Y & LY il Qo - _ 5
~N v QAL A W - Y e W .
»
I D

['/V ]ts ['/V ]t—Ats—At.

dny, ag, dP,

dw; d

and

] '2° + [n

dw;

l Fort>

'S dg [ dg —At
[n™) —
dws dws—At

23 SR : - o Fi-Snk P
" ea ERN Y . T > e -, oy

:.The difference btwn : dpP ag,_n  AP,_x, A8 o

. [nss]/ tgss 1 Pss N gss _ pss _
1 .Response at f to shock at s dw, dw, dw,_, dw,_n,

22. Response at r — At to shock at S — At T~-'-

2 el T T _ 800 e : o SCD S - _* ) =Xy FL WS
--- . - o . > . . =g - - , _ . -.‘ o . <

dg (—A dg (—2A1

F|rms had one more perlod in advance to prepare for the shock

<' = ', ‘”- - 0, y J - _ . ‘\- _*a -
"’-""/ ‘ ’ ‘ TIPSR\ V- U TRV T IV TS = = ‘

g Z 2 _-Vl" ‘.'~
g() -.'.'-’v .
.[
D fj ‘.)"
.7
WS . ,_; .. e ‘ot" o 30
N e, D h- 47‘ - L

SS/SS |

> . - Sy

[l”l ss] (PSS) +

.ﬂ-.- -



Sequence Space Jacoblan Algorlthm

1 Solve HJB-VI backward in response to a shock at the termmal perlod dwT ‘

dz dm dx dx
=1 t T
o This gives {dw i -1 for any ¢, s because .
2. Foreachs = 0,At, ..., SAt
dn, |  _ dg dg dP -
e Compute [N ], = ldwol '+ |n and dwo = dwo xXg"

e Foreacht = 0,Ar, ..., SAt, compute [/I/W]LS recursively using

. dgy
dw,

['/V ]ts — [/V ]t At,s— At+ [nSS] (PSS)AI

A Fort<QOors<O0,set[H |,,=0
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Sequence Space Jacobians:
Application




Elements of Jacobian [/ ],

m Solid:
low entry elasticity, v

B Dashed:
high entry elasticity, v
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Elements of Jacobian [/ ],

-~d! e —m—_ - -
(||
I\ m Solid:
| | low entry elasticity, v
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Elements of Jacobian [/ ],

m Solid:
low entry elasticity, v

B Dashed:
high entry elasticity, v
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Demographic Origins of Startup Deficits Revisited

Population growth rate Wage
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Firm Exit Shocks Revisited
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