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Exit and Entry During COVID-19
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Note: Includes temporary closures and reopenings. Seasonally adjusted. Y axes may not start at zero.
Shaded areas indicate NBER recession dates.
Source: Business Employment Dynamics (BED).

Figure 7: Establishment openings and closures
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Figure 8: Establishment births and exits

In BED data openings include not only establishment births but also reopenings of tem-
porarily closed establishments, and closures include not only establishment deaths but also
temporary closures. Figure 8 shows establishment birth and exit data from the BED. Crit-
ically, an establishment birth is a new establishment with no activity in the past year, and
an exit is a closure that does not reopen within a year. Since exit data require multiple sub-
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Source: Decker and Haltiwanger (2024)



Now Firms are Younger
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Source: Decker and Haltiwanger (2024)
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Figure 22: Changing firm age distribution

As just noted, a challenge associated with firm size distribution analysis is that firms
may move either direction across the distribution. But an attractive feature of the BED is
that statistics on what BLS denotes as dynamic sizing are provided. Dynamic sizing assigns
firm job growth to the size bin in which it occurred. For example, if a firm increases from 0
(i.e., is a firm birth) to 35 over a window of time, the first 19 jobs added are attributed to
the 1�19 size class, and the increase from 20�35 jobs is attributed to the 20�49 size class.
Thus, dynamic sizing provides insights into how much of the change in employment observed
by size class is due to firms moving across size classes relative to changes within size classes.
The BED provides dynamic sizing-based job growth by firm size bin on a quarterly basis.30

The third panel of figure 23 reports both the actual change in the level of employment

30See Helfand et al. (2007) for discussion of the BLS dynamic sizing methodology.
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Now Firms are Smaller
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Figure 23: Changing firm size distribution37

Source: Decker and Haltiwanger (2024)



Firm Destruction Shock in Hopenhayn-Rogerson

■ COVID-19 induced a spike in firm exits 

■ With a slight lag, there was a surge in firm entry 

■ Reflecting these exit and entry dynamics, firms are now younger and smaller 

■ With an economy dominated by smaller firms, is the labor demand weaker? 

■ Suppose we feed firm destruction shocks in our model, what happens?
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Response to Firm Exit Shock
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How Free is Free-Entry?
■ How free is free-entry? Is entry infinitely elastic to entry value? 

■ No existing estimates (if you estimate it, that will be a great paper) 

■ Why should we relax free-entry assumption then? 
1. Free-entry is not necessarily a benchmark assumption 

• Some firm dynamics models abstract from entry & exits 

• Is this an innocuous assumption or not? 
2. There is a general lesson in studying how to solve a model without free-entry 

• This is a class of model where distribution matters for macro! 
3. Hard to believe entry is infinitely elastic, especially in the short-run

7



Hopenhayn-Rogerson  
without Free-Entry
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Relaxing Free-Entry
■ We assume that the mass of potential firms is finite at  

■ Potential firms draw entry costs from the distribution  iid across time/firms 

■ Let  be the cut-off such that potential firms are indifferent to enter or not: 
 

• Potential firms with  enter 

• Potential firms with  do not enter 

■ The mass of entrants is

M × Lt

H(ce)

̂ce

ce ≤ ̂ce

ce > ̂ce

9

∫ vt(z)ψ(z)dz = ̂ce

mt = M × Lt × H( ̂ce
t )



Micro-Founding Inelastic Entry
■ Suppose that  follows Pareto so that 

 
 

■ The mass of entry is now 
 
 

• As , we recover the case of free entry:  

• As , the mass of entry per capita is fixed:  

• More generally,  governs the elasticity of entry w.r.t. firm value

1/ce

ν → ∞ ∫ vt(z)ψ(z)dz = c̄e

ν → 0 mt /Lt = M

ν

10

Prob(1/c̃e ≤ 1/ce) = 1 − (1/c̄e)ν(1/ce)−ν

⇔ H(ce) ≡ Prob(c̃e ≤ ce) = ((1/c̄e)ce)ν

mt = M × Lt × ( 1
c̄e

∫ vt(z)ψ(z)dz)
ν



Equilibrium System

■ Now we lost the block recursive property 

■ Entry alone does not pin down wages. The whole distribution matters!
11

min {rvt(z) − π(z; wt) − μ(z)v′￼t(z) −
1
2

σ(z)2v′￼′￼t (z) − ∂tvt(z), vt(z) − v} = 0

v(zt) = v

mt = M × Lt × ( 1
c̄e

∫ vt(z)ψ(z)dz)
ν

∂tgt(z) = − ∂z[μ(z)gt(z)] +
1
2

∂2
zz [σ(z)2gt(z)] + mtψ(z) for z > zt

∫ n(z; wt)gt(z)dz = Lt



Normalized Equilibrium Conditions
■ Define  and m̃t ≡ mt /Lt g̃t(z) ≡ gt(z)/Lt

12

min {rvt(z) − π(z; wt) − μ(z)v′￼t(z) −
1
2

σ(z)2v′￼′￼t (z) − ∂tvt(z), vt(z) − v} = 0

v(zt) = v

m̃t = M × ( 1
c̄e

∫ vt(z)ψ(z)dz)
ν

∂tg̃t(z) = − ηg̃t(z) − ∂z[μ(z)g̃t(z)] +
1
2

∂2
zz [σ(z)2g̃t(z)] + m̃tψ(z) for z > zt

∫ n(z; wt)g̃t(z)dz = 1



Steady State Algorithm

13

Guess w

Solve HJB VI to obtain : {v(z)}, z

min {rv(z) − π(z; w) − μ(z)v′￼(z) −
1
2

σ(z)2v′￼′￼(z), v(z) − v} = 0

Compute entry: 
m̃ = M × ( 1

c̄e
∫ v(z)ψ(z)dz)

ν

yes

Solve KFE to obtain : g̃(z)
0 = − ηg̃(z) − ∂z[μ(z)g̃(z)] +

1
2

∂2
zz [σ(z)2g̃(z)] + m̃ψ(z) for z > z

| ∫ n(z; w)g̃(z)dz − 1 | < ϵ?∫ n(z; w)g̃(z)dz > 1?

Raise wLower w

yesno

no

Done



Solving Transition Dynamics using  
Sequence Space Jacobians
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Goal

■ Suppose the economy is initially in a steady state at  

■ After , the population growth changes over time  

■ How do we simulate the transition dynamics?

t = 0

t = 0 {ηt}

15



Equilibrium System

■ We need to find a sequence of wages  that clear the labor market 

■ It is useful to start from a “naive” algorithm

{wt}∞
t=0

16

min {rvt(z) − π(z; wt) − μ(z)v′￼t(z) −
1
2

σ(z)2v′￼′￼t (z) − ∂tvt(z), vt(z) − v} = 0

v(zt) = v

m̃t = M × ( 1
c̄e

∫ vt(z)ψ(z)dz)
ν

∂tg̃t(z) = − ηtg̃t(z) − ∂z[μ(z)g̃t(z)] +
1
2

∂2
zz [σ(z)2g̃t(z)] + m̃tψ(z) for z > zt

∫ n(z; wt)g̃t(z)dz = 1

(HJB-VI)

(Exit)

(Entry)

(KFE)

(MC)



Algorithm 10 Years Ago

■ Assume that, at , the economy is in a steady state 
• Make the problem finite-dimensional 

■ The “naive” algorithm is to keep guessing  until labor markets clear for all 

t = T

{wt}T
t=0 t

17



“Naive” Algorithm 10 Years Ago

18

Guess {wt}T
t=0

Solve (HJB-VI) and (Exit) to obtain {vt(z), zt}

Compute entry  using (Entry){m̃t}

yes

Solve (KFE) to obtain {g̃t(z)}

 for all ?| ∫ n(z; wt)g̃t(z)dz − 1 | < ϵ t∫ n(z; w)g̃(z)dz > 1?

Raise wLower w

yesno

no

Done



19

Wage, {wt}

HJB, {vt(z)}

Entry, {m̃t}Exit, {zt}Labor demand, 
{nt(z)} KFE, {g̃t(z)}

Labor Market, 𝒩({wt}, {ηt}) ≡ ∫ nt(z)g̃t(z)dz = 1

Shock, {ηt}



Equilibrium System

■ We look for first-order approximation around the steady state 

■ Why? 
• Instantaneous to obtain a solution, as we will see 
• Often cases in practice, there is little non-linearity 
• It can be the basis for solving non-linear solutions

20

𝒩t (w, η) = 1



Linearized Solution
■ Discretize time with  grid points, and let  be the time-interval 

■ First-order solution: 
 
 
 
 

where  and  are  Jacobian matrix 

■ Solving for , 

S Δt ≡ T/S

𝓝w ≡ [ ∂𝒩t

∂ws ]
t,s

𝓝η ≡ [ ∂𝒩t

∂ηs ]
t,s

S × S

dw

21

𝓝wdw + 𝓝ηdη = 0

dw = − (𝓝w)−1𝓝ηdη



Obtaining Sequence Space Jacobians
■ How do we obtain the sequence-space Jacobian,  ? 

• Changes in labor demand at time  in response to changes in  at time  

■ Again, let us think through a “naive” algorithm 

1. Consider  
2. Given , solve HJBVI backward to obtain  
3. Use   to solve KFE forward to obtain  

4. Use  and  to compute  and thereby  

5. Repeat this with  for all  

■ This is very time-consuming! Need  backward and  forward iterations 

■ Can we do better? — Yes, a lot better (Auclert, Bardóczy, Rognlie, Straub, 2021)

[𝓝w]t,s

t w s

w′￼ ≡ [wss + dw0, wss, …, wss]
w′￼ m̃′￼, z′￼, {n(z)′￼}

m̃′￼, z′￼ {g̃(z)′￼}

{n(z)′￼} {g̃(z)′￼} 𝓝′￼ [𝓝w]t,0 ≡
∂𝒩t

∂ws
=

𝒩′￼t − 𝒩ss

dw0
dws s = Δt,2Δt, …, SΔt

S S

22



Only One Backward Iteration is Needed
■ The first key insight: 

 
 
 
 
HJB-VI is (i) forward-looking and (ii) timeless: 

(i) shock that happened in the past is irrelevant to my policy functions 

(ii) I care about the distance to the future shock, not the calendar time 

■  and  can be obtained from a single backward iteration in response to  

■ With ,  is trivial to obtain 

■ Reduce computational time by a factor of 

dzt

dws

dm̃t

dws
dwT

nt(z) = (α/wt)
1

1 − αz
dnt

dws

S
23

dzt

dws
=

0 s ≤ t
dzT−(s−t)

dwT
s > t

,
dm̃t

dws
=

0 s ≤ t
dm̃T−(s−t)

dwT
s > t



Matrix Notation
■ We write the KFE in a matrix form as 

 
 
 
 
 
 

■ The labor market clearing is, in a matrix form,  
 
 
where  and nt ≡ [nt(z)] g̃t ≡ [g̃t(z)]

24

⇔ g̃t = [I − Δt × [Ãt]T]
−1

≡ Pt

× [g̃t−Δt + Δt × ψ̃]

gt − gt−Δt

Δt
= [Ãt]′￼gt + ψ̃

𝒩t = n′￼t g̃t



Response at  to  Shockt = 0 s = 0
■ Given , , and , we compute 

 
 

dzt

dws

dm̃t

dws

dnt(z)
dws

25

[𝓝w]0,0 ≡ [ dn0

dw0 ]
′￼

g̃ss + [nss]′￼

dg̃0

dw0
and dg̃0

dw0
=

dP0

dw0
× g̃ss



Response at  to  Shockt = 0 s = 0
■ Given , , and , we compute 

 
 

dzt

dws

dm̃t

dws

dnt(z)
dws

25

[𝓝w]0,0 ≡ [ dn0

dw0 ]
′￼

g̃ss + [nss]′￼

dg̃0

dw0
and dg̃0

dw0
=

dP0

dw0
× g̃ss

Impact through changes in  holding distribution fixedn



Response at  to  Shockt = 0 s = 0
■ Given , , and , we compute 

 
 

dzt

dws

dm̃t

dws

dnt(z)
dws

25

[𝓝w]0,0 ≡ [ dn0

dw0 ]
′￼

g̃ss + [nss]′￼

dg̃0

dw0
and dg̃0

dw0
=

dP0

dw0
× g̃ss



Response at  to  Shockt = 0 s = 0
■ Given , , and , we compute 

 
 

dzt

dws

dm̃t

dws

dnt(z)
dws

25

[𝓝w]0,0 ≡ [ dn0

dw0 ]
′￼

g̃ss + [nss]′￼

dg̃0

dw0
and dg̃0

dw0
=

dP0

dw0
× g̃ss

Impact through changes in distributions 
holding  fixedn



Response at  to  Shockt = 0 s = 0
■ Given , , and , we compute 

 
 

dzt

dws

dm̃t

dws

dnt(z)
dws

25

[𝓝w]0,0 ≡ [ dn0

dw0 ]
′￼

g̃ss + [nss]′￼

dg̃0

dw0
and dg̃0

dw0
=

dP0

dw0
× g̃ss



Response at  to  Shockt = 0 s = 0
■ Given , , and , we compute 

 
 

dzt

dws

dm̃t

dws

dnt(z)
dws

■ From this, we can obtain  immediately as well because 
 
 

[𝓝w]t,0

25

[𝓝w]0,0 ≡ [ dn0

dw0 ]
′￼

g̃ss + [nss]′￼

dg̃0

dw0
and dg̃0

dw0
=

dP0

dw0
× g̃ss

[𝓝w]t,0 = [nss]′￼

dg̃t

dw0

dg̃t

dw0
= Pss ×

dg̃t−Δt

dw0



Response at  to  Shockt = 0 s = 0
■ Given , , and , we compute 

 
 

dzt

dws

dm̃t

dws

dnt(z)
dws

■ From this, we can obtain  immediately as well because 
 
 

[𝓝w]t,0

• After the shock at , policy functions are the same as ones in the steady-state t = 0

• The distribution of transition is governed by steady-state objects Pss

25

[𝓝w]0,0 ≡ [ dn0

dw0 ]
′￼

g̃ss + [nss]′￼

dg̃0

dw0
and dg̃0

dw0
=

dP0

dw0
× g̃ss

[𝓝w]t,0 = [nss]′￼

dg̃t

dw0

dg̃t

dw0
= Pss ×

dg̃t−Δt

dw0



Now we know the first column

26

𝓝w ≡

[𝒩w]0,0

[𝒩w]Δt,0

[𝒩w]2Δt,0

⋮
⋮

[𝒩w]S×Δt,0

?



Second Column
■ Given , , and , we compute 

 

dzt

dws

dm̃t

dws

dnt

dws

27

[𝓝w]0,Δt ≡ [ dn0

dwΔt ]′￼g̃ss + [nss]′￼

dg̃0

dwΔt
and dg̃0

dwΔt
=

dP0

dwΔt
× gss



Second Column
■ Given , , and , we compute 

 

dzt

dws

dm̃t

dws

dnt

dws

■ What about  ?[𝓝w]Δt,Δt

27

[𝓝w]0,Δt ≡ [ dn0

dwΔt ]′￼g̃ss + [nss]′￼

dg̃0

dwΔt
and dg̃0

dwΔt
=

dP0

dwΔt
× gss



Second Column
■ Given , , and , we compute 

 

dzt

dws

dm̃t

dws

dnt

dws

■ What about  ?[𝓝w]Δt,Δt

27

[𝓝w]0,Δt ≡ [ dn0

dwΔt ]′￼g̃ss + [nss]′￼

dg̃0

dwΔt
and dg̃0

dwΔt
=

dP0

dwΔt
× gss

[𝓝w]Δt,Δt ≡ [ dnΔt

dwΔt ]′￼g̃ss + [nss]′￼

dg̃Δt

dwΔt

= [ dn0

dw0 ]′￼g̃ss + [nss]′￼

dg̃0

dw0
+ [nss]′￼

dg̃Δt

dwΔt
− [nss]′￼

dg̃0

dw0

= [𝒩w]0,0 + [nss]′￼Pss dg̃0

dwΔt



Second Column
■ Given , , and , we compute 

 

dzt

dws

dm̃t

dws

dnt

dws

■ What about  ?[𝓝w]Δt,Δt

27

[𝓝w]0,Δt ≡ [ dn0

dwΔt ]′￼g̃ss + [nss]′￼

dg̃0

dwΔt
and dg̃0

dwΔt
=

dP0

dwΔt
× gss

[𝓝w]Δt,Δt ≡ [ dnΔt

dwΔt ]′￼g̃ss + [nss]′￼

dg̃Δt

dwΔt

= [ dn0

dw0 ]′￼g̃ss + [nss]′￼

dg̃0

dw0
+ [nss]′￼

dg̃Δt

dwΔt
− [nss]′￼

dg̃0

dw0

= [𝒩w]0,0 + [nss]′￼Pss dg̃0

dwΔt

[𝓝w]0,0



Second Column
■ Given , , and , we compute 

 

dzt

dws

dm̃t

dws

dnt

dws

■ What about  ?[𝓝w]Δt,Δt

27

[𝓝w]0,Δt ≡ [ dn0

dwΔt ]′￼g̃ss + [nss]′￼

dg̃0

dwΔt
and dg̃0

dwΔt
=

dP0

dwΔt
× gss

[𝓝w]Δt,Δt ≡ [ dnΔt

dwΔt ]′￼g̃ss + [nss]′￼

dg̃Δt

dwΔt

= [ dn0

dw0 ]′￼g̃ss + [nss]′￼

dg̃0

dw0
+ [nss]′￼

dg̃Δt

dwΔt
− [nss]′￼

dg̃0

dw0

= [𝒩w]0,0 + [nss]′￼Pss dg̃0

dwΔt

[𝓝w]0,0

dPΔt

dwΔt
g̃ss + Pss dg̃0

dwΔt
=

dP0

dw0
g̃ss + Pss dg̃0

dwΔt

dP0

dw0
g̃ss



Second Column
■ For  

 
t > Δt

28

[𝓝w]t,Δt ≡ [ dnt

dwΔt ]′￼g̃ss + [nss]′￼

dg̃t

dwΔt

= [ dnt−Δt

dw0 ]′￼g̃ss + [nss]′￼

dg̃t−Δt

dw0
+ [nss]′￼[ dg̃t

dwΔt
−

dg̃t−Δt

dw0 ]
= [𝓝w]t−Δt,0 + [nss]′￼[ dg̃t

dwΔt
−

dg̃t−Δt

dw0 ]
= [𝓝w]t−Δt,0 + [nss]′￼[ dPt

dwΔt
g̃ss + Pss dg̃t−Δt

dwΔt
−

dPt−Δt

dw0
g̃ss − Pss dg̃t−2Δt

dw0 ]
= [𝓝w]t−Δt,0 + [nss]′￼Pss [ dg̃t−Δt

dwΔt
−

dg̃t−2Δt

dw0 ]
= [𝓝w]t−Δt,0 + [nss]′￼(Pss) t

Δt
dg̃0

dwΔt

Repeat the above step 
until time 0



Now we know the first two columns

29

𝓝w ≡

[𝒩w]0,0 [𝒩w]0,Δt

[𝒩w]Δt,0 [𝒩w]Δt,Δt

[𝒩w]2Δt,0 [𝒩w]2Δt,Δt

⋮
⋮

[𝒩w]S×Δt,0 [𝒩w]S×Δt,Δt

?



■ For  and any , t = 0 s

Recursive Expression for SSJ

30

[𝓝w]0,s ≡ [ dn0

dws ]′￼g̃ss + [nss]′￼

dg̃0

dws
and dg̃0

dws
=

dP0

dws
× g̃ss



■ For  and any , t = 0 s

■ For  and any , t > 0 s

Recursive Expression for SSJ

30

[𝓝w]t,s − [𝓝w]t−Δt,s−Δt = [nss]′￼[ dg̃t

dws
−

dg̃t−Δt

dws−Δt ]
= [nss]′￼[ dPt

dws
g̃ss + Pss dg̃t−Δt

dws
−

dPt−Δt

dws−Δt
g̃ss − Pss dg̃t−2Δt

dws−Δt ]
= [nss]′￼Pss [ dg̃t−Δt

dws
−

dg̃t−2Δt

dws−Δt ]
= [nss]′￼(Pss) t

Δt
dg̃0

dws

[𝓝w]0,s ≡ [ dn0

dws ]′￼g̃ss + [nss]′￼

dg̃0

dws
and dg̃0

dws
=

dP0

dws
× g̃ss



■ For  and any , t = 0 s

■ For  and any , t > 0 s

Recursive Expression for SSJ

30

[𝓝w]t,s − [𝓝w]t−Δt,s−Δt = [nss]′￼[ dg̃t

dws
−

dg̃t−Δt

dws−Δt ]
= [nss]′￼[ dPt

dws
g̃ss + Pss dg̃t−Δt

dws
−

dPt−Δt

dws−Δt
g̃ss − Pss dg̃t−2Δt

dws−Δt ]
= [nss]′￼Pss [ dg̃t−Δt

dws
−

dg̃t−2Δt

dws−Δt ]
= [nss]′￼(Pss) t

Δt
dg̃0

dws

The difference btwn : 
1. Response at  to shock at   
2. Response at  to shock at  

t s
t − Δt s − Δt

[𝓝w]0,s ≡ [ dn0

dws ]′￼g̃ss + [nss]′￼

dg̃0

dws
and dg̃0

dws
=

dP0

dws
× g̃ss
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[𝓝w]t,s − [𝓝w]t−Δt,s−Δt = [nss]′￼[ dg̃t

dws
−

dg̃t−Δt

dws−Δt ]
= [nss]′￼[ dPt

dws
g̃ss + Pss dg̃t−Δt

dws
−

dPt−Δt

dws−Δt
g̃ss − Pss dg̃t−2Δt

dws−Δt ]
= [nss]′￼Pss [ dg̃t−Δt

dws
−

dg̃t−2Δt

dws−Δt ]
= [nss]′￼(Pss) t

Δt
dg̃0

dws

The difference btwn : 
1. Response at  to shock at   
2. Response at  to shock at  

t s
t − Δt s − Δt

Firms had one more period in advance to prepare for the shock

[𝓝w]0,s ≡ [ dn0

dws ]′￼g̃ss + [nss]′￼

dg̃0

dws
and dg̃0

dws
=

dP0

dws
× g̃ss



Sequence Space Jacobian Algorithm
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1. Solve HJB-VI backward in response to a shock at the terminal period,  

• This gives  for any  because  

2. For each  

• Compute  

• For each , compute  recursively using 
 

⚠︎ For  or , set 

dwT

{
dnt

dws
,

dzt

dws
,

dmt

dws
} t, s

dxt

dws
= dxT

dwT−(t−s)

s = 0,Δt, …, SΔt

[𝓝w]0,s ≡ [ dn0

dws ]′￼g̃ss + [nss]′￼

dg̃0

dws
and

dg̃0

dws
=

dP0

dws
× g̃ss

t = 0,Δt, …, SΔt [𝒩w]t,s

t < 0 s < 0 [𝒩w]t,s = 0

[𝒩w]t,s = [𝒩w]t−Δt,s−Δt + [nss]′￼(Pss) t
Δt

dg̃0

dws



Sequence Space Jacobians: 
Application
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Elements of Jacobian [𝒩w]t,s

■ Solid:  
low entry elasticity,  

■ Dashed:  
high entry elasticity, 

ν

ν
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ν
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Demographic Origins of Startup Deficits Revisited
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Firm Exit Shocks Revisited
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