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Firm Employment is Log-Linear in TFP

B In Hopenhayn-Rogerson, firm-level employment is given by

n=(z"% alw)=
=/
<  logn = : log Z + const
—Q

B Two implications:

1. The elasticity of firm employment w.r.t. (firm-level) TFP shock is above 1
2. The elasticity is symmetric to positive & negative shocks

B |s this true in the data?




llut, Kehrig & Schneider (2018)

Focus on US manufacturing establishments (Census data)

Construct firm-level TFP using Solow residual:
log sr;, = logy;, — (ﬁn logn;, + p,logk;, + p,,log mit)

Construct firm-level TFP shocks, Z., assuming

logsr, =g X1+ a' + log Z,

Q: How does firm-level employment respond to TFP shocks?

Alogn, = h(AlogZ,) +v'X; + €;




Density of TFP innovations

Firm Employment Response to TFP Shocks
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In the data,
1. The elasticity of firm employment to TFP shock is far below 1

2. Elasticity is two times larger for negative shocks than positive shocks




Hopenhayn-Rogerson
with Labor Adjustment Costs




Slow to Hire, Quick to Fire

B The simplest explanation:

* itis costly to hire workers
e |ess so to fire workers




Labor Adjustment Cost

Suppose that firms face

e aflow adjustment cost in hiring & > 0 of the form ®(A, n) with 0, > O,a,%hd) > ()
e no cost from firing workers: ®(h,n) = 0forh <0

= convex cost in hiring & free firing
The firm employment evolves dn, = hdt

Firms never want to jump n upward

n—n

and n’' > n
dt

e Why? —The cost of doing sois lim,_,, ®(h, n)dt = co with i =

But firms may jump n downward




Rest of the Model

B The rest of the model remains the same as before
B The production function is
flz,n) = z'~n”
and firms incur a fixed operating cost ¢,

B Firm’s productivity evolves according to a diffusion process

dz = u(z)dt + o(z)dwW




Start from Discrete Time

m Start from a discrete-time setup with time interval dt

B The firm’s value function is

v(n, z) = max {v*(n, z), max{v,/(n, z)}

e the value of hiring is =~ 1 —rdt
v¥(n, z7) = max (f(n, z) —wn — ¢, — O(h, n))dt [v(n’, Z')]
h>0 \ ) |

o

n(n,2)
S.t. n'=n+ hdt
e the value of firing is
v (n,7) = max v(nf , 2)
nfSn

e the value of exitis v, as before
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Continuous Time Limit

B Add and subtract (1 — rdt)v(n, z) and detining dv(n, z) = v(n', 7') — v(n, z), we have

v¥(n,2) = max (a(n,2) = D(h,m)) di + (1 = rdb)E [dv(n. )] + (1 = rdi)v(n. 2 )

S.t. n'=n+ hdt

B Apply Ito’s lemma to dv(n, z):

dv(n, z) = v,(n,z)dn + v(n,2)(u(2)dt + o(z)dZ) + %d(z)zvzz(n, z)dt (5)

hdt
m Substitute (5) back into (4) and dropping dt* term

v¥(n,z) = max (ﬂ(n, z) — O(h,n) +v,(n,2)h + v.(n,2)u(z) + %a(z)zvzz(n, z)) dt

+v(n,z) — rdtv(n, 7)
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Bellman Equation in Continuous Time

B Therefore, we have

v(n, z) = max {v*(n, 2), VI(n, z)}

where:

V*(lfl, Z) — Izlagg (]z'(n, Z) — (I)(h, I”l) + vn(n, Z)h + Vz(na Z)/’t(z) T %G(Z)ZVZZ(I/I, Z))dt

+v(n, 7) — rdtv(n, )

Vl(n,z) = max { max v(n’, Z),l’}
n'<n
B Three cases
1. Firms do not fire or exit: v(n,z) > v/ (n, z) and v(n, 2) = v¥(n, 2)
2. Firms fire workers: v(n, 7) = vf(n, z) > v,and v(n,z) > v¥*(n, z)

3. Firms exit: v(n,z) = v > vf(n, z), and v(n, ) > v¥*(n, 7)
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HJB-QVI

m Compactly, we can write

9(n, 2) = Maxysg ( 201,2) = D 1) + v, (01, D + v,(n, () + 301, 2) ).

min = ()

v(n,z) =V (n,z)

B This is called HJB Quasi-Variational Inequality (HJB-QVI)

m Distinct from HJB-VI because now the stopping value v/(n, 7) is endogenous to v(n, 7)
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Policy Functions of HJB-QVI

(1, 2) = Maxs ( 7(01,2) = Ok, 1) +v,(1, D + v,00, D) + 20 (P (1,2)),

min = ()

v(n,z) — ¥ (n,z)
When firms hire (h > 0), the FOC implies 0,®(h,n) = v, (n, 7)

e Let ii(n,z) denote the policy function

When firms fire (h < 0), firms cut down employment to nf(n, 7) = arg max, s, v(nf, 2)

The employment evolution is
h(n, z)dt if n <n(n,z2)
dn(n,z) = .
Wn,z)—n ifn>nn,z2)

Let y(n, 7) denote an indicator function of exiting decision
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Entry

B When firms enter, they draw (n, z) from cdf W(n, z)

B We assume (potentially) inelastic entry:

m, = M X (_i | v(n, 2)d¥(n, Z))
Ce
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Stationary Distribution

B Define o/ 1 as the infinitesimal generator defined for a function f(#, z):

1
A xpefn,2) = p(2)f.(n, 2) + Eﬂ(z)zfzz(n, 2) + (h(n,z) — sn)f,(n, 2)

+ N (n, 2)|[f(n (n,2),2) = f(n, 2)| = A°(n, 2)f(n, 2)

where

if n > n(n,2) o iflén,z) =1
Af : — o0 | ’ : A€ : — { ’
) {O if n < n(n,z2) (.2 0 iflén,z)=0

m Let ‘Q[;{FE be adjoint operator of < ... The steady-state distribution g(n, z) satisfies

_ ot
0= 801N, 2) +myn,z)
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Equilibrium Definition

Equilibrium consists of {v(n, 2), h(n, 2), #/ (n, 2), ¥(n, 2), g(n, 7), w, m} such that
1. Value and policy functions {v(n, 2), h(n, z), #/ (n, 2), y(n, 7)} solve HJB-QVI
2. Stationary distribution g(n, z) solve KFE

3. Entry mis given by (6)

4. Labor market clears: ”ng(n, 2)dndz = L
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Numerically Solving HJB-QVI
— Nested Howard Algorithm




How to Solve HJB-QVI?

min {rv(n, 7) — rqulagc (Jr(n, 2) — Dh,n) +v,(n,2)h +v,(n,2)u(z) + %a(z)zvzz(n, Z)), v(n,z) — VI (n, z)} =0

B Relative to the case without adj. costs, there are two additional complications:
1. optimization w.r.t. &

2. optimization w.r.t. #/ inside v/(n, 7)

m Discrezie the state space ny,...,n;and z;, ..., g,

m Use short-hand notation of, e.g., v; ; = v(n;, ;)

B We will use nested Howard’s algorithm (Azimzadeh, Bayraktar, Labahn, 2018)
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No Firing or Exit

m Start from the case where firms do not fire or exit y]:] — 00

rv(n,z) — max (ﬂ(n, 2) — ®(h,n)+v,(n,20h+v,(n,2)uz) + %G(Z)zvzz(n, z)) —

h>0

B We can solve the above problem using Howard’s algorithm:

1. Guess vk(nl-, Zj) for each (i, /)
2. Compute optimal hiring using the FOC:

h{jj=max{h*,0} where 9, ®(h*,n) = 0,V l]

3. Solve the linear system to obtain vl.k;“l

1
k+1 k+1 k+1 232 k+1
ot = (= @, 1) + 0,05+ 0 v + Soros ) 0

k . ,k+1 -
4. Update Vi =V and repeat until convergence
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Linear System

B In a matrix form,
(rl= AL v =72 -® < y =Bz - ®"

Bk
* V=[vi s Vi Vi oo Vips - Vil is @ (I X J) vector

* Aypis (I XJ) X (IXJ)matrix, whose elements are

hlJA—n fork=i+1,l=]
—hl]A—n fork=1il=
1 2 1 o oq
[Apsslin =13 2% G fork=il=j+1
1 2 1 s oq
Hins = % o fork=1i1=

1 1 o o
’ujAz 26j(AZ)2 fork—z,l—] |

since dn = h > 0, we always use forward approximation for d,v: d,v; ; ®




Howard Algorithm with Exit & Firing

m For afixed value of v/ = [vl]] we can incorporate exit & firing as follows

l_]’

1. Guess P’

2. Fork > 0, given v*, construct B* as described earlier, and set

0 [Bvk—rx— (I)]<v v
d. . = Ity
i) k.. k o
1 [BYY — 7 — D] >v — Vi
3. Set

[B k] ij,lm

{ [Bk]zj,lm if di,j = () [T — (I)]i,j if di,j —

’ | k]i = .
Ny fdy=1 vy it d; ;=

4. Update v**! solving

Bkvk+1 — qk o V — [Bk] 1qk
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Nested Howard’s Algorithm

The outer loop keeps updates ¥/ starting from v/ = — oo

1. Set the value of firing to wY'= — o forall i,j

isJ
2. Foreachk=0.1,...
i. Given {vi,j }ipset Vi = max {y, Vi }

ii. Giveny/ = [y];j]i,j, solve HJB-VI (not QVI) using Howard'’s algorithm

iii. Compute the new value of firing as

L — max v,
l,] l,Sl l,]

o If v{f“ is close enough to vlfjk, we are done.

e Otherwise, set v{]k L= vlf’;‘H and go back to 2.i.
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Can We Do Better?

Some use algorithms that simultaneously update v/ in inner loop

Never do this. | wasted my entire summer because of it.

At the same time, the nested Howard algorithm is inefficient

e Need many outer loop iterations to converge

Alternative algorithms that improve speeds have been proposed:

e The most successful one seems to be penalized Howard algorithm
(Azimzadeh and Forsyth, 2016; Azimzadeh, Bayraktar, and Labahn, 2018)

e |tried to implement it but failed

If you implement Penalized Howard'’s algorithm, | will count it as a final project
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Numerically Computing
Steady State Equilibrium




Lower w Raise w

fng(n, 2)dzdn > 17

Steady State Algorithm

Solve HJB QVI to obtain {v(n, 7)}

Compute entry:

m= M X (é | v(n, Z)w(z)dz)

Solve KFE to obtain g(n, z)

| jng(n, 2)dzdn — L| < €
yes
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Discretized Kolmogorov Forward Equation

[D + (AHJBM)’]g + my = 0

1 fOr nf n,z.) = n,y\n,7.) = O’l —
(M ;1 = ( . 2 X5 3) /
0 otherwise

1 fori=kj=1I, nf(nl-, zj) <n;,yn, zj) = ]
[D]ij,kl — ,
0 otherwise

B The matrix M takes care of transitions associated with jump in the state variables

B The matrix D ensures that [g];; = 0 for states (n;, z;) that are never reached
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Macroeconomic Implications of
Slow to Hire, Quick to Fire




Parameterization

B Assume

2
D(h,n) = % <ﬁ> n

n

B |set® = 10 and contrast with ¢ = 0

m All the other parameters are unchanged from the lecture note 2
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SS Distribution of Employment Growth
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Aggregate Positive Productivity Shocks
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Aggregate Positive Productivity Shocks
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Aggregite Positive Productivity Shocks
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Aggregate Positive Productivity Shocks

0.00

—0.02

A log n

—0.04

—0.06

~0.10 ~0.05 0.00 0.05 0.10
A log 7




Aggregate Positive Productivity Shocks
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Aggregate Positive Productivity Shocks

| |
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Countercyclical Volatility & Skewness

IQR( u'=—og")

IQR(n'|u=4+0")
Moments (1)
Data 1.278
Linear hiring 1
Concave hiring 1.220

Source: llut, Kehrig & Schneider (2018)
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Firing Cost and Misallocation
— Hopenhayn & Rogerson (1993)




Employment Protection Index

Employment Protection Index
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Data source: OECD
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Question

What is the cost of strict firing regulations?

Suppose that in order to fire a worker, firms have to pay 7 X annual wage salary

e US:7=0
e Europe: highr

Firing costs take the form of taxes

The collected tax revenue is rebated back to households as lump-sum transfers
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HJB-QVI

min {rv(n, 7) — Izlagc <7z(n, 2) — ®(h,n)+v,(n,2)h +v,(n,2)u(z) + %G(Z)ZVZZ(H, Z)), v(n,z) — v/ (n, z)} =0

Vv (n,z) = max { max v(r/, 2) — tw(n — nf),y}

n' <n

B This is the only modification

B No firing tax when exiting (maybe | should have assumed otherwise)
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HJB-QVI

min {rv(n, 7) — Izlagc <7z(n, 2) — ®(h,n)+v,(n,2)h +v,(n,2)u(z) + %G(Z)ZVZZ(H, Z)), v(n,z) — v/ (n, z)} =0

v (n, z7) = max { max v(r/, 7) ‘.

,‘
. . ' ) 8
> > 2 f.

ring tax

B This is the only modification

B No firing tax when exiting (maybe | should have assumed otherwise)
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Misallocation Cost of Firing Regulations

Wage Labor Productivity
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B Firing costs lead to the misallocation of workers because

1. Unproductive firms cannot downsize
2. Productive firms become hesitant to expand




Idiosyncratic Distortion

Firing tax is a distortion at the aggregate level

There is no shortage of reasons to expect firms to face idiosyncratic distortions

e Corruption, firm-level taxes/subsidies, financial frictions, incomplete contracts

Restuccia & Rogerson (2008) consider wedges in the form of

(1 + Tl-)zl_“n“

T with prob 1/2
where 7; = ,
—71  with prob 1/2

7. is assigned when firm i is born and fixed over time
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Misallocation from Idiosyncratic Distorton

Table 3
Effects of idiosyncratic distortions—uncorrelated case
Variable Tt

0.1 0.2 0.3 0.4
Relative Y 0.98 0.96 0.93 0.92
Relative TFP 0.98 0.96 0.93 0.92

Source: Restuccia & Rogerson (2008)
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Non-Parametric Identification of
Misallocation

— Carrillo, Donaldson, Pomeranz, & Singhal (2023)




What is the Cost of Misallocation?

How large is the cost of misallocation in the data?

Let us step back and consider a static model with a fixed mass of firms

Each firm i produces using

y; = fi{n)

The efficient allocation solves

Y* = max | fi(n,)di
n;}

st. [ndi=L

The solution features equalization of MPL.:

fiin) =w foralli
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Variance of MPL

Take arbitrary allocation {n.}. Up to a second order around the efficient allocation

y-vs o
o — — j A€ 1og(MPL,/w)~dr
dlog MPL,
where MPL; = f/(n;), A; = wn;/Y* and ¢; = — ;gogn. l

(Weighted) variance of MPL is the key moment for the cost of misallocation

Testing the presence of misallocation < testing Var(MPL,) = 0

How do we get the distribution of MPL?

1. Assume fi(n,) = Zn, and then MPL,; = a _ (Hsieh & Klenow, 2009)
2. Nonparametrically identify the dlstrlbutlon of MPL (Carrillo et al. 2023)
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Nonparametric Identification

m Taking the first-order approximation of equation (7),

Ay; = piAn; + ¢

e ¢:technology shocks (i.e., changesinf(-))

o [.=f(n)= MPL: treatment effect of exogenously increasing n, on y,

m With suitable instruments Z; that exogenously shift n,, —[ﬁik] (k= 1,2,...) are identified
(Masten & Torgovitsky, 2016)
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Empirical Implementation

B Construction sector in Ecuador, 2009-2014

B Public construction projects were allocated through a randomized lottery

B |ottery serves as an ideal instrument

* exogeneity: orthogonal to technology shocks €; or MPL,

e relevance: winning a lottery does shift n,
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Heterogenous Treatment Effects by Firm Size?

Sales
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Small Cost of Misallocation

Table 4: Estimated Cost of Misallocation

57 Vars [ A
(1) (2) (3)
Panel (a): IVCRC estimates
Baseline 1.126 0.014 0.016
11.093, 1.161] 0, 0.341) 0, 0.261]
Panel (b): Alternative procedure assuming common scale elasticities
Constant returns-to-scale (y = 1) 1.240 0.611 0.479

1.223, 1.257]  [0.544, 0.730]  [0.427, 0.572]

m Assume €; = 3 forall
B The welfare cost of misallocation is 1.6%

m Hsieh-Klenow type calculation implies 48% of weltare loss in the same dataset




Questions

Laissez-faire of Hopenhayn-Rogersion with labor adjustment costs is efficient

But, MPL is not equalized in a static sense

Firms hire workers until
(present discounted value of hiring a worker) = (hiring cost today)

Hiring a worker is an investment
How do we incorporate dynamics without imposing strong assumptions?

How do we incorporate entry & exit dynamics?
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