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Firm Employment is Log-Linear in TFP
■ In Hopenhayn-Rogerson, firm-level employment is given by 

 
 
 
 

■ Two implications: 
1. The elasticity of firm employment w.r.t. (firm-level) TFP shock is above 1 
2. The elasticity is symmetric to positive & negative shocks 

■ Is this true in the data?
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Ilut, Kehrig & Schneider (2018)
■ Focus on US manufacturing establishments (Census data) 

■ Construct firm-level TFP using Solow residual: 
 

■ Construct firm-level TFP shocks, , assuming 
 

■ Q: How does firm-level employment respond to TFP shocks?

Zit
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log srit = log yit − (βn log nit + βk log kit + βm log mit)

log srit = g × t + αi + log Zit

Δ log nit = h(Δ log Zit) + γ′￼Xit + ϵit



Firm Employment Response to TFP Shocks
■ Positive 1 std shock: 

 
 
 
 

■ Negative 1 std shock:
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tive to negative TFP innovations than to positive ones: g 0ð2zÞ > g 0ðzÞ for
all z ≥ 0. For example, the slope of the nonparametric estimate at a neg-
ative TFP shock is more than twice as strong compared to the slope at a
positive TFP shock (0.073 compared to 0.029).
Anonparametric measure of asymmetry.—Ourfinal statistic captures the in-

crease in volatility contributed by nonlinearity in the estimated employ-
ment response function g:

fg ; 1 2
g 0 0ð Þ2var zð Þ
var g zð Þð Þ

: (12)

If the estimated function g is close to linear and g(z) is thus a scaled copy of
TFP z, then fg is close to zero. In contrast, for strongly concave g, the vari-
anceof g(z) is larger than that of g 0(0)z, andfg is positive. For example, the
concavity inoverall hiring as displayed infigure 8 implies thatfg 5 0:210.24

The asymmetry is stronger when we estimate a firm’s response for hours
worked instead of employment. We emphasize that we measure hours
worked only for production workers; their hours worked asymmetry mea-

FIG. 8.—Employment growth and TFP innovations. Nonparametric regression of em-
ployment growth on TFP innovations for manufacturing firms. The nonparametric esti-
mate is displayed as the solid black line (right scale); dashed lines are 95 percent error
bands. TFP innovations are obtained as described in Section IV.A, and their density is plot-
ted in gray bars (left scale). Indicated data points display employment growth at a typical
positive/negative (11/21 standard deviation) technology shock relative to no shock.

24 By itself, the statistic fg measures the contribution of nonlinearity rather than concav-
ity; for example, fg > 0 could be generated by convexity in g. Empirically, however, the es-
timated function g(⋅) is always concave.
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Facts

In the data, 

1. The elasticity of firm employment to TFP shock is far below 1 

2. Elasticity is two times larger for negative shocks than positive shocks 
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Hopenhayn-Rogerson 
with Labor Adjustment Costs
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Slow to Hire, Quick to Fire

■ The simplest explanation: 
• it is costly to hire workers 
• less so to fire workers
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Labor Adjustment Cost

■ Suppose that firms face 

• a flow adjustment cost in hiring  of the form  with  
• no cost from firing workers:  for  

 convex cost in hiring & free firing 

■ The firm employment evolves  

■ Firms never want to jump  upward  

• Why? — The cost of doing so is  with  and  

■ But firms may jump  downward

h ≥ 0 Φ(h, n) ∂hΦ > 0,∂2
hhΦ > 0

Φ(h, n) = 0 h ≤ 0

⇒

dnt = hdt

n

limdt→0 Φ(h, n)dt = ∞ h = n′￼− n
dt n′￼ > n

n
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Rest of the Model

■ The rest of the model remains the same as before 

■ The production function is 
 
 
and firms incur a fixed operating cost  

■ Firm’s productivity evolves according to a diffusion process

cf
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f(z, n) = z1−αnα

dz = μ(z)dt + σ(z)dW



Start from Discrete Time
■ Start from a discrete-time setup with time interval  

■ The firm’s value function is 
 

• the value of hiring is 
 
 
 
 

• the value of firing is 
 

• the value of exit is , as before

dt

v
10

v*(n, z) = max
h≥0 (f(n, z) − wn − cf

π(n,z)

− Φ(h, n))dt + e−rdt𝔼 [v(n′￼, z′￼)]

s.t. n′￼ = n + hdt

v(n, z) = max {v*(n, z), max{v, vf(n, z)}

vf(n, z) = max
nf≤n

v(nf, z)

(1)

(2)

(3)

≈ 1 − rdt



Continuous Time Limit
■ Add and subtract  and defining , we have 

 
 

■ Apply Ito’s lemma to : 
 

■ Substitute (5) back into (4) and dropping  term

(1 − rdt)v(n, z) dv(n, z) ≡ v(n′￼, z′￼) − v(n, z)

dv(n, z)

dt2
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v*(n, z) = max
h≥0

(π(n, z) − Φ(h, n)) dt + (1 − rdt)𝔼 [dv(n, z)] + (1 − rdt)v(n, z)

s.t. n′￼ = n + hdt

dv(n, z) = vn(n, z)dn⏟
hdt

+ vz(n, z)(μ(z)dt + σ(z)dZ) +
1
2

σ(z)2vzz(n, z)dt

(4)

(5)

v*(n, z) = max
h≥0 (π(n, z) − Φ(h, n) + vn(n, z)h + vz(n, z)μ(z) +

1
2

σ(z)2vzz(n, z)) dt

+v(n, z) − rdtv(n, z)



Bellman Equation in Continuous Time
■ Therefore, we have 

 
 
where: 
 
 
 

■ Three cases 

1. Firms do not fire or exit:  and  

2. Firms fire workers: , and  

3. Firms exit: , and 

v(n, z) > vf(n, z) v(n, z) = v*(n, z)

v(n, z) = vf(n, z) > v v(n, z) > v*(n, z)

v(n, z) = v > vf(n, z) v(n, z) > v*(n, z)
12

v(n, z) = max {v*(n, z), vf(n, z)}

v*(n, z) = max
h≥0

(π(n, z) − Φ(h, n) + vn(n, z)h + vz(n, z)μ(z) +
1
2

σ(z)2vzz(n, z))dt

+v(n, z) − rdtv(n, z)

vf(n, z) = max { max
n′￼≤n

v(n′￼, z), v}



HJB-QVI

■ Compactly, we can write 
 
 
 

■ This is called HJB Quasi-Variational Inequality (HJB-QVI) 

■ Distinct from HJB-VI because now the stopping value  is endogenous to vf(n, z) v(n, z)

13

min
rv(n, z) − maxh≥0 (π(n, z) − Φ(h, n) + vn(n, z)h + vz(n, z)μ(z) + 1

2 σ(z)2vzz(n, z)),

v(n, z) − vf(n, z)
= 0



Policy Functions of HJB-QVI

■ When firms hire ), the FOC implies  

• Let  denote the policy function 

■ When firms fire , firms cut down employment to  

■ The employment evolution is 
 

■ Let  denote an indicator function of exiting decision

(h ≥ 0 ∂hΦ(h, n) = vn(n, z)

h(n, z)

(h < 0) nf(n, z) = arg maxnf≤n v(nf, z)

χ(n, z)
14

dn(n, z) = {h(n, z)dt if n ≤ nf(n, z)
nf(n, z) − n if n > nf(n, z)

min
rv(n, z) − maxh≥0 (π(n, z) − Φ(h, n) + vn(n, z)h + vz(n, z)μ(z) + 1

2 σ(z)2vzz(n, z)),

v(n, z) − vf(n, z)
= 0



Entry

■ When firms enter, they draw  from cdf  

■ We assume (potentially) inelastic entry:

(n, z) Ψ(n, z)
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mt = M × ( 1
c̄e

∫ v(n, z)dΨ(n, z))
ν

(6)



Stationary Distribution
■ Define  as the infinitesimal generator defined for a function : 

 
 
 
 
where 
 
 

■ Let  be adjoint operator of  . The steady-state distribution  satisfies

𝒜KFE f(n, z)

𝒜†
KFE 𝒜KFE g(n, z)

16

𝒜KFE f(n, z) = μ(z)fz(n, z) +
1
2

σ(z)2 fzz(n, z) + (h(n, z) − sn)fn(n, z)

+Λf(n, z)[f(nf(n, z), z) − f(n, z)] − Λe(n, z)f(n, z)

Λf(n, z) = {∞ if n ≥ nf(n, z)
0 if n < nf(n, z)

, Λe(n, z) = {∞ if 𝕀e(n, z) = 1
0 if 𝕀e(n, z) = 0

0 = 𝒜†
KFEg(n, z) + mψ(n, z)



Equilibrium Definition

Equilibrium consists of  such that 

1. Value and policy functions  solve HJB-QVI 

2. Stationary distribution  solve KFE 

3. Entry  is given by (6) 

4. Labor market clears: 

{v(n, z), h(n, z), nf(n, z), χ(n, z), g(n, z), w, m}

{v(n, z), h(n, z), nf(n, z), χ(n, z)}

g(n, z)

m

∫ ∫ ng(n, z)dndz = L

17



Numerically Solving HJB-QVI 
— Nested Howard Algorithm

18



How to Solve HJB-QVI?

■ Relative to the case without adj. costs, there are two additional complications: 

1. optimization w.r.t.  
2. optimization w.r.t.  inside  

■ Discrezie the state space  and  

■ Use short-hand notation of, e.g.,  

■ We will use nested Howard’s algorithm (Azimzadeh, Bayraktar, Labahn, 2018)

h
nf vf(n, z)

n1, …, nI z1, …, zJ

vi,j ≡ v(ni, zj)

19

min {rv(n, z) − max
h≥0 (π(n, z) − Φ(h, n) + vn(n, z)h + vz(n, z)μ(z) +

1
2

σ(z)2vzz(n, z)), v(n, z) − vf(n, z)} = 0



No Firing or Exit
■ Start from the case where firms do not fire or exit,  

 

■ We can solve the above problem using Howard’s algorithm: 

1. Guess  for each  
2. Compute optimal hiring using the FOC: 

                                  

3. Solve the linear system to obtain  
 

4. Update  and repeat until convergence

vf
i,j = − ∞

vk(ni, zj) (i, j)

hk
i,j = max{h*,0} where ∂hΦ(h*, ni) = ∂nvk

i,j

vk+1
i,j

vk
i,j := vk+1

i,j
20

rv(n, z) − max
h≥0 (π(n, z) − Φ(h, n) + vn(n, z)h + vz(n, z)μ(z) +

1
2

σ(z)2vzz(n, z)) = 0

rvk+1
i,j − (πi,j − Φ(hk

i,j, ni) + ∂nvk+1
i,j hi,j + μj∂zvk+1

i,j +
1
2

σ2
j ∂2

zzvk+1
i,j ) = 0



Linear System
■ In a matrix form, 

 

• ’ is a  vector 
•  is  matrix, whose elements are 

 
 
 
 
 
 
 

since , we always use forward approximation for : 

v ≡ [v1,1, …, vI,1, v1,2, …, vI,2, …, vI,j] (I × J)
AHJB (I × J) × (I × J)

dn = h ≥ 0 ∂nv ∂nvi,j ≈
vi+1,j − vi,j

Δn 21

(r𝕀 − Ak
HJB)

Bk

vk+1 = π − Φk ⇔ vk+1 = (Bk)−1[π − Φk]

[AHJB]ij,kl =

hi,j
1

Δn for k = i + 1,l = j

−hi,j
1

Δn for k = i, l = j
1
2 σ2

j
1

(Δz)2 for k = i, l = j + 1

μj
1

Δz − σ2
j

1
(Δz)2 for k = i, l = j

−μj
1

Δz + 1
2 σ2

j
1

(Δz)2 for k = i, l = j − 1



Howard Algorithm with Exit & Firing
■ For a fixed value of , we can incorporate exit & firing as follows 

1. Guess  
2. For , given , construct  as described earlier, and set 

 
 
 

3. Set 
 
 
 

4. Update  solving 

vf ≡ [vf
i,j]i,j

v0

k ≥ 0 vk Bk

vk+1

22

di,j =
0 [Bkvk − π − Φ]i ≤ vk

i,j − vf
i,j

1 [Bkvk − π − Φ]i > vk
i,j − vf

i,j

[B̃k]ij,lm = {
[Bk]ij,lm if di,j = 0

[I]ij,lm if di,j = 1
, [qk]i,j =

[π − Φ]i,j if di,j = 0

vf
i,j if di,j = 1

B̃kvk+1 = qk ⇔ vk+1 = [B̃k]−1qk



Nested Howard’s Algorithm
The outer loop keeps updates   starting from  

1. Set the value of firing to  for all  

2. For each  

i. Given , set   

ii. Given , solve HJB-VI (not QVI) using Howard’s algorithm 

iii. Compute the new value of firing as 

• If  is close enough to , we are done.  

• Otherwise, set  and go back to 2.i.

vf vf = − ∞

vf,0
i,j = − ∞ i, j

k = 0,1,…

{vf,k
i,j }i,j v f

i,j ≡ max {v, vf,k
i,j }

vf ≡ [vf
i,j]i,j

v f,k+1
i,j v f,k

i,j

v f,k
i,j := vf,k+1

i,j

23

vf,k+1
i,j = max

i′￼≤i
vi,j



Can We Do Better?

■ Some use algorithms that simultaneously update  in inner loop 

■ Never do this. I wasted my entire summer because of it. 

■ At the same time, the nested Howard algorithm is inefficient 
• Need many outer loop iterations to converge 

■ Alternative algorithms that improve speeds have been proposed: 
• The most successful one seems to be penalized Howard algorithm  

(Azimzadeh and Forsyth, 2016; Azimzadeh, Bayraktar, and Labahn, 2018) 
• I tried to implement it but failed 

■ If you implement Penalized Howard’s algorithm, I will count it as a final project

vf

24



Numerically Computing 
Steady State Equilibrium

25



Steady State Algorithm

26

Guess w

Solve HJB QVI to obtain {v(n, z)}

Compute entry: 
m̃ = M × ( 1

c̄e
∫ v(n, z)ψ(z)dz)

ν

yes

Solve KFE to obtain g(n, z)

| ∫ ng(n, z)dzdn − L | < ϵ?∫ ng(n, z)dzdn > 1?

Raise wLower w

yesno

no

Done



Discretized Kolmogorov Forward Equation

■ The matrix  takes care of transitions associated with jump in the state variables 

■ The matrix  ensures that  for states  that are never reached

M

D [g]ij = 0 (ni, zj)

27

[D + (AHJBM)′￼]g + mψ = 0

[M]ij,kl = {1 for nf(ni, zj) = nk, χ(ni, zj) = 0,l = j

0 otherwise

[D]ij,kl = {1 for i = k, j = l, nf(ni, zj) < ni, χ(ni, zj) = 1
0 otherwise



Macroeconomic Implications of  
Slow to Hire, Quick to Fire

28



Parameterization

■ Assume 
 

■ I set  and contrast with  

■ All the other parameters are unchanged from the lecture note 2

ϕ = 10 ϕ = 0

29

Φ(h, n) =
ϕ
2 ( h

n )
2

n



Slow to Hire, Quick to Fire
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SS Distribution of Employment Growth
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SS Distribution of Employment Growth
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SS Distribution of Employment Growth
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Aggregate Positive Productivity Shocks
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Aggregate Positive Productivity Shocks
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Aggregate Positive Productivity Shocks
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Aggregate Positive Productivity Shocks
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Aggregate Positive Productivity Shocks
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Aggregate Positive Productivity Shocks
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Countercyclical Volatility

34

Concave hiring rules also explain why we observe negative skewness
and countercyclical volatility at the aggregate level. Indeed, a bad aggre-
gate shock makes the sum of all firms respond more sharply. It thus gen-
erates negative skewness of aggregate employment growth (“macro skew-
ness”) and ensures that movements in aggregate employment growth are
stronger in recessions (countercyclical “macro” volatility). Existing mod-
els that link countercyclical macro volatility to countercyclical cross-
sectional (“micro”) volatility have relied on correlated shocks to themean
and volatility of productivity. With concave hiring rules, the link emerges
endogenously and such shocks are not needed.
This paper starts from a simple model that illustrates the key mecha-

nism and derives predictions for micro and macro moments. Our empir-
ical analysis then proceeds in two steps. The first is to document volatility
and skewness patterns for employment growth. It thus checks predictions
of the model that do not depend on which shocks firms respond to. The
second step studies firms’ responses to specific shocks, namely, innova-
tions to total factor productivity (TFP).2 We show that those responses
are concave and transform symmetric shocks into skewed employment

2 Formally, we consider innovations to profitability, or revenue total factor productivity
(TFPR as in Foster, Haltiwanger, and Syverson [2008] and Hsieh and Klenow [2009]). For
simplicity we refer to this variable as TFP.

FIG. 1.—Time-varying employment volatility. This figure plots demeaned aggregate em-
ployment growth in the private economy (left axis in gray) together with the year-by-year
cross-sectional interquartile range (right axis in black) of employment growth rates in the
sample of manufacturing establishments described in Section III. NBER dated recessions
are marked by the vertical gray bars.

employment dynamics with asymmetric responses 2013

Source: Ilut, Kehrig & Schneider (2018)



Countercyclical Volatility & Skewness

35
If firms’ hiring rules were linear, then symmetry and homoskedasticty of
shocks would imply a constant IQR over the business cycle, as indicated
by a ratio of one in the second row.
In contrast, with a concave hiring rule the IQR depends on the reali-

zation ua
t . In fact, there is a closed-form solution for the IQR given ua:

IQRðni
t jua

t Þ ; 2a 2 4bua
tð ÞjiF

21 0:75ð Þ, (15)

where F is the standard normal CDF. The IQR also depends on the de-
gree of concavity in the hiring function here measured by b (relative to
a), as well as the idiosyncratic dispersion of shocks ji.
The third row reports the ratio of the IQR after a negative one stan-

dard deviation shock to aggregate TFP versus a positive one standard de-
viation shock. A concave hiring rule induces a lot of countercyclical vol-
atility: feeding aggregate shocks alone increases the IQR in “bad times”
by 22 percent. These numbers illustrate that our estimated concavity is
sufficiently strong to generate the same order of magnitude of fluctua-
tions in dispersion as in the data.

Negative Skewness at the Firm Level

Columns 2 and 3 of table 8 and column 4 of table 9 show that concave
hiring rules together with symmetric TFP shocks generate significant neg-

TABLE 8
Cross-Sectional Moments of Employment Growth

with Different Hiring Responses

Moments

IQRðni jua52jaÞ
IQRðni jua51jaÞ g(niFua 5 0) k(niFua 5 0)

(1) (2) (3)

Data 1.278 2.495 2.048
Linear hiring 1 0 0
Concave hiring 1.220 21.172 2.269

Note.—Moments of the employment growth distribution are defined in eqq. (15) for
col. 1, (16) for col. 2, and (17) for col. 3.

TABLE 9
Time-Series Moments of Employment Growth with Different Hiring Responses

Firm
Skewness

Aggregate
Skewness !nðua50Þ2!nðua52jaÞ

aja
!nðua51ja Þ2!nðua50Þ

aja

Moments (4) (5) (6) (7)

Data 2.386 2.937 1.103 .899
Linear hiring 0 0 1 1
Concave hiring 21.037 2.244 1.049 .950

Note.—Equation (18) defines the moment of the employment growth distribution for
col. 4. Aggregate employment, used in cols. 5–7, is defined in eq. (19).

2056 journal of political economy

Source: Ilut, Kehrig & Schneider (2018)



Firing Cost and Misallocation 
— Hopenhayn & Rogerson (1993)
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Employment Protection Index

37Data source: OECD



Question

■ What is the cost of strict firing regulations? 

■ Suppose that in order to fire a worker, firms have to pay  

• US:  
• Europe: high  

■ Firing costs take the form of taxes 

■ The collected tax revenue is rebated back to households as lump-sum transfers

τ × annual wage salary

τ = 0
τ

38



HJB-QVI

■ This is the only modification 

■ No firing tax when exiting (maybe I should have assumed otherwise)

39

min {rv(n, z) − max
h≥0 (π(n, z) − Φ(h, n) + vn(n, z)h + vz(n, z)μ(z) +

1
2

σ(z)2vzz(n, z)), v(n, z) − vf(n, z)} = 0

vf(n, z) = max { max
nf≤n

v(nf, z) − τw(n − nf), v}



HJB-QVI

■ This is the only modification 

■ No firing tax when exiting (maybe I should have assumed otherwise)

39

min {rv(n, z) − max
h≥0 (π(n, z) − Φ(h, n) + vn(n, z)h + vz(n, z)μ(z) +

1
2

σ(z)2vzz(n, z)), v(n, z) − vf(n, z)} = 0

vf(n, z) = max { max
nf≤n

v(nf, z) − τw(n − nf), v}
firing tax



Misallocation Cost of Firing Regulations

■ Firing costs lead to the misallocation of workers because 
1. Unproductive firms cannot downsize 
2. Productive firms become hesitant to expand

40



Idiosyncratic Distortion
■ Firing tax is a distortion at the aggregate level 

■ There is no shortage of reasons to expect firms to face idiosyncratic distortions 
• Corruption, firm-level taxes/subsidies, financial frictions, incomplete contracts 

■ Restuccia & Rogerson (2008) consider wedges in the form of 
 
 
 

where  

■  is assigned when firm  is born and fixed over time

τi = { τ with prob 1/2
−τ with prob 1/2

τi i

41

(1 + τi)z1−αnα



Misallocation from Idiosyncratic Distorton

42

716 D. Restuccia, R. Rogerson / Review of Economic Dynamics 11 (2008) 707–720

Table 3
Effects of idiosyncratic distortions—uncorrelated case

Variable τt

0.1 0.2 0.3 0.4

Relative Y 0.98 0.96 0.93 0.92
Relative TFP 0.98 0.96 0.93 0.92
Relative E 1.00 1.00 1.00 1.00
Ys/Y 0.72 0.85 0.93 0.97
S/Y 0.05 0.08 0.09 0.10
τs 0.06 0.09 0.10 0.11

Table 4
Relative TFP—uncorrelated distortions

Fraction of
establishments taxed (%):

τt

0.1 0.2 0.3 0.4

90 0.92 0.84 0.78 0.74
80 0.95 0.89 0.84 0.81
60 0.98 0.94 0.91 0.89
50 0.98 0.96 0.93 0.92
40 0.99 0.97 0.95 0.94
20 1.00 0.99 0.98 0.97
10 1.00 0.99 0.99 0.99

We begin with the qualitative patterns. As expected, as the distortion increases so does the effect on output and TFP.
Although not reported in the table, output shares across establishment productivity types remain constant across all of these
experiments. The source of the TFP differences is that subsidized establishments become larger and taxed establishments
become smaller, so that whereas in the undistorted economy all establishments with the same value of s are of the same
size, in these economies there is a non-degenerate distribution of establishment size within an establishment level TFP class.
With decreasing returns, this entails an efficiency loss. There is also potentially a change in the number of establishments,
but as the third row of the table indicates, this effect is zero, so that there is no change in the average level of capital or
labor per establishment. As the distortion increases, the share of output accounted for by subsidized firms increases, as do
the subsidy rate and the total payment of subsidies relative to output.

Next we turn to the quantitative magnitudes of these effects. Perhaps the most relevant result is that the overall magni-
tude of the effect on output and TFP is somewhat limited. As the table indicates, the maximum effect on TFP through this
channel is around 8 percent. Note that it takes a relatively small tax rate to generate the bulk of this effect. Even with a 10
percent tax rate the output share of subsidized firms is equal to 80 percent, and the maximum effect is virtually attained
with a tax rate of 30 percent. Although the maximum drop in TFP is relatively small, it is also interesting to note that few
resources are required to finance this distortion. In particular, the total revenues needed to finance this maximum drop in
TFP of 8 percent is only 10 percent of output. For the higher tax rates the values of S/Y and τs are virtually identical since
the tax rate has decreased the tax base by so much that there is virtually no revenue generated.

It is of interest to note that the overall aggregate impact of idiosyncratic distortions depends on the fraction of establish-
ments that are taxed and subsidized. In our previous experiment we assumed that 50 percent of the establishments were
taxed and 50 percent subsidized. For the purpose of illustration, Table 4 reports the results on TFP relative to the undistorted
economy for different configurations on the fraction of establishments that are taxed. If 90 percent of the establishments
are taxed and 10 percent subsidized, the impact of a 40 percent tax would be a reduction in TFP of 26 percent (as compared
to 8 percent when 50 percent of the establishments are taxed). When fewer establishments are subsidized, a larger subsidy
rate is needed to keep the aggregate capital stock constant and, as a result, it produces a larger reallocation of factors and
output across establishments. This reallocation makes establishments operate much farther away from their optimal size,
ensuring the larger aggregate effects.

5.2. Correlated idiosyncratic distortions

The distortions considered in the last section were in some sense adding noise to the competitive market. Instead of all
firms facing the same prices, each firm faces a different price, but there is nothing systematic about who faces what price.
We found that unless the majority of establishments are taxed, the consequences of this were relatively minor. We now
consider distortions which at least on the surface would seem to have the potential to do much more damage. In particular
we consider the case where establishments with low TFP receive a subsidy and establishments with high TFP are taxed.
In particular, we assume that 50 percent of the establishments receive a subsidy while the rest are taxed. In this case,

Source: Restuccia & Rogerson (2008)



Non-Parametric Identification of  
Misallocation 
 
— Carrillo, Donaldson, Pomeranz, & Singhal (2023)
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What is the Cost of Misallocation?
■ How large is the cost of misallocation in the data? 

■ Let us step back and consider a static model with a fixed mass of firms 

■ Each firm  produces using 

■ The efficient allocation solves 
 
 

■ The solution features equalization of MPL:

i
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yi = fi(ni)

Y* ≡ max
{ni}

∫ fi(ni)di

s.t. ∫ nidi = L

f′￼i(ni) = w for all i

(7)



Variance of MPL
■ Take arbitrary allocation . Up to a second order around the efficient allocation 

 
 
 
where ,  and  

■ (Weighted) variance of MPL is the key moment for the cost of misallocation 

■ Testing the presence of misallocation  testing  

■ How do we get the distribution of MPL? 

1. Assume , and then  (Hsieh & Klenow, 2009) 
2. Nonparametrically identify the distribution of MPL (Carrillo et al. 2023)

{ni}

MPLi = f′￼i(ni) λi = wini/Y* ϵi ≡ −
d log MPLi

d log ni

⇔ Var(MPLi) = 0

fi(ni) = Zinα
i MPLi = α

yi

ni
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Y − Y*
Y*

≈ −
1
2

∫ λiϵi log(MPLi/w)2di



Nonparametric Identification

■ Taking the first-order approximation of equation (7), 
 

• : technology shocks (i.e., changes in ) 
• : treatment effect of exogenously increasing  on  

■ With suitable instruments  that exogenously shift ,  ( ) are identified 
(Masten & Torgovitsky, 2016)

ϵi fi( ⋅ )
βi = f′￼i(ni) = MPLi ni yi

Zi ni 𝔼[βk
i ] k = 1,2,…

46

Δyi = βiΔni + ϵi



Empirical Implementation

■ Construction sector in Ecuador, 2009-2014 

■ Public construction projects were allocated through a randomized lottery  

■ Lottery serves as an ideal instrument 

• exogeneity: orthogonal to technology shocks  or   
• relevance: winning a lottery does shift 

ϵi MPLi
ni
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Heterogenous Treatment Effects by Firm Size?
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Figure 6: E↵ects on Total Sales by Firm Size

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly e↵ects of an additional $1,000
in procurement winnings shocks on total sales by firm size, following equation (18). Total sales are based
on monthly purchase annexes reported by client entities’ VAT filings. Panel (a) presents estimates for firms
with above- and below-median total sales prior to the start of the lottery system (i.e., in 2008), based on
firms’ annual income tax filings. Panel (b) shows the same but partitioning the sample by quintiles of 2008
sales. Dashed lines in panel (a) indicate 95% confidence intervals that allow for clustering at the firm level.

Figure 7: E↵ects on Total Wage Payments by Firm Size

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 4 Panel (b), estimating the monthly e↵ects of an additional
$1,000 in procurement winnings shocks on total wage payments by firm size, following equation (18), using
data from social security records. Panel (a) presents estimates for firms with above- and below-median total
sales prior to the start of the lottery system (i.e., in 2008), based on firms’ annual income tax filings. Panel
(b) shows the same but partitioning the sample by quintiles of 2008 sales. Dashed lines in panel (a) indicate
95% confidence intervals that allow for clustering at the firm level.
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Small Cost of Misallocation

■ Assume  for all   

■ The welfare cost of misallocation is 1.6% 

■ Hsieh-Klenow type calculation implies 48% of welfare loss in the same dataset

ϵi = 3 i
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Table 4: Estimated Cost of Misallocation

E�̄[sµ] Var�̄[sµ] �W
W

(1) (2) (3)

Panel (a): IVCRC estimates

Baseline 1.126 0.014 0.016

[1.093, 1.161] [0, 0.341] [0, 0.261]

No trimming 1.129 0 0.006

[1.098, 1.188] [0, 0.329] [0, 0.253]

5% trimming 1.111 0 0.005

[1.078, 1.157] [0, 0.394] [0, 0.301]

Gaussian kernel 1.125 0 0.006

[1.095, 1.145] [0, 0.040] [0, 0.035]

Uniform kernel 1.126 0.014 0.016

[1.093, 1.161] [0, 0.341] [0, 0.261]

10 sales bins 1.115 0 0.005

[1.067, 1.158] [0, 0.617] [0, 0.468]

s!C = 0.75 1.126 0.014 0.020

[1.093, 1.161] [0, 0.341] [0, 0.387]

s!C = 0.25 1.126 0.014 0.010

[1.093, 1.161] [0, 0.341] [0, 0.132]

Panel (b): Alternative procedure assuming common scale elasticities

Constant returns-to-scale (� = 1) 1.240 0.611 0.479

[1.223, 1.257] [0.544, 0.730] [0.427, 0.572]

Decreasing returns-to-scale (� = 0.85) 1.054 0.441 0.332

[1.040, 1.068] [0.393, 0.528] [0.296, 0.397]

Increasing returns-to-scale (� = 1.15) 1.426 0.807 0.674

[1.407, 1.445] [0.720, 0.966] [0.601, 0.798]

Notes: Columns (1) and (2) report estimates of the 2008 sales-weighted expectation and variance
of the wedge distribution that enter the total cost of misallocation formula in equation (16);
variance estimates are truncated at zero from below. Column (3) reports the corresponding
estimated cost of misallocation �W/W = 1

2 s!C✓Vars� [µ] +
1
2 s!C(1� s!C)⌘ (Es� [sµ]� 1)2 implied by

that formula (using parameter values of ✓ = 3, ⌘ = 3, and s!C = 0.5, unless noted otherwise). Panel
(a) shows estimates from the IVCRC method described in Section 6.1 with di↵erent specifications
(with 2% trimming, Epanechnikov kernel, and 5 sales bins, unless noted otherwise). Panel (b)
follows the alternative parametric procedure for estimating wedges, which assumes that firms use
technologies with common scale elasticities �, as described in Section 6.3. The ranges reported in
square brackets are two-sided 95% confidence intervals in column (1) of panel (a) and all of panel
(b), but one-sided intervals for columns (2) and (3) of panel (a); all such intervals are calculated
on the basis of a block bootstrap procedure, with values reported in Appendix Figure A.12.
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Questions

■ Laissez-faire of Hopenhayn-Rogersion with labor adjustment costs is efficient 

■ But,  is not equalized in a static sense 

■ Firms hire workers until  
           (present discounted value of hiring a worker) = (hiring cost today) 

■ Hiring a worker is an investment 

■ How do we incorporate dynamics without imposing strong assumptions? 

■ How do we incorporate entry & exit dynamics?

MPL
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https://www.google.com/search?sca_esv=2e08a6d3b8f5b541&q=Laissez-faire&spell=1&sa=X&ved=2ahUKEwjBp97zheqJAxWUlIkEHVY-A-YQkeECKAB6BAgPEAE

