Firm Wage

741 Macroeconomics Topic 6

Masao Fukui

2024 Spring

Is the Labor Market Competitive?

- In Hopenhayn-Rogerson, all firms pay the same wage to all workers
- This is a natural consequence of the competitive labor market
- Of course, in the data, average wages differ greatly across firms
- Is this a rejection of the competitive labor market?
 not necessarily because firms employ different workers

- - w_{it} : wage of worker *i* at time *t*
 - j(i, t): firm employing worker *i* at time *t*
 - ψ_i : wage premium of firm *j*
- Assume $\mathbb{E}[\epsilon_{it} | j(i, s)] = 0$ for all *i*, *t*. This embeds:
- Then, worker's movements across firms identify ψ_j (up to a constant):

 $\mathbb{E}[\ln w_{it'} - \ln w_{it}] | j(i, t)$

AKM Model

Consider the following statistical model by Abowd, Kramarz, and Margolis (1999):

 $\ln w_{it} = \alpha_i + \psi_{j(i,t)} + \epsilon_{it}$

1. Worker's mobility decisions are not driven by time-varying wage fluctuations

2. log wages are additively separable between worker- and firm-components

$$f') = j, j(i, t) = k] = \psi_j - \psi_k$$

Firm Wage and Wage Inequality (US)

			Interval 1 (1980–1986)		Interval 2 (1987–1993)		Interval 3 (1994–2000)		Interval 4 (2001–2007)		Interval 5 (2007–2013)	
		Comp. (1)	Share (2)	Comp. (3)	Share (4)	Comp. (5)	Share (6)	Comp. (7)	Share (8)	Comp. (9)	Share (10)	Comp. (11)
Total variance	Var(y)	0.708		0.776		0.828		0.884		0.924		0.216
Components of variance	Var(WFE) Var(FFE) Var(Xb) Var(ϵ) 2*Cov(WFE, FFE)	$\begin{array}{c} 0.330\\ 0.084\\ 0.055\\ 0.154\\ 0.033\end{array}$	$46.6 \\ 11.9 \\ 7.8 \\ 21.7 \\ 4.7$	$0.375 \\ 0.075 \\ 0.065 \\ 0.148 \\ 0.057$	$48.3 \\ 9.7 \\ 8.4 \\ 19.1 \\ 7.3$	$0.422 \\ 0.067 \\ 0.079 \\ 0.146 \\ 0.076$	51.0 8.1 9.5 17.6 9.2	$0.452 \\ 0.075 \\ 0.061 \\ 0.149 \\ 0.094$	51.2 8.5 6.9 16.8 10.6	0.476 0.081 0.059 0.136 0.108	51.5 8.7 6.4 14.7 11.7	$0.146 \\ -0.003 \\ 0.004 \\ -0.018 \\ 0.075$

Source: Song, Price, Guvenen, Bloom, and Wachter (2019)

Variance in Firm FE accounts for 8-12% of wage inequality

Cov(Worker FE, Firm FE) > 0, more so in the recent periods

Often interpreted as "high-wage workers work for high-wage firms"

Higher Value Added, Higher Firm Wage (Portugal)

Figure IV: Firm Fixed Effects vs. Log Value Added/Worker

Source: Card, Cardoso, & Kline (2016).

Larger Firm, Higher Firm Wage? (US)

Source: Card, Cardoso, & Kline (2016).

Panel B. 1994–2000

Panel C. 2007–2013

Dispaced Workers Suffer Wage Losses...

Source: Bertheau, Accabi, Barcelo, Gulyas, Lambardi & Saggio (2023).

... Because Workers Move to Firms with Lower Firm FE

AKM employer wage

	(1)			
Denmark				
k = 1	-0.025	(0.001)		
k = 5	-0.018	(0.001)		
Observations (thousands)	3,674			
Sweden				
k = 1	-0.027	(0.001)		
k = 5	-0.026	(0.001)		
Observations (thousands)	1,937			
Austria	0.0.44			
k = 1	-0.061	(0.001)		
k = 5	-0.064	(0.001)		
Observations (thousands)	1,048			
France				
k = 1	-0.025	(0.002)		
k = 5	-0.030	(0.002)		
Observations (thousands)	489			
Italy				
k = 1	-0.023	(0.001)		
k = 5	-0.028	(0.002)		
Observations (thousands)	1,262			
Spain				
k = 1	-0.023	(0.003)		
k = 5	-0.045	(0.004)		
Observations (thousands)	259			
Portugal				
k = 1	-0.029	(0.001)		
k = 5	-0.044	(0.001)		
Observations (thousands)	2,525			

Source: Bertheau, Accabi, Barcelo, Gulyas, Lambardi & Saggio (2023).

•	r wage premium 1)	Log dai (2	Ratio (3)		
5	(0.001)	$-0.063 \\ -0.040 \\ 3,674$	(0.002)	0.40	
8	(0.001)		(0.002)	0.44	
7	(0.001)	$-0.098 \\ -0.051 \\ 1,937$	(0.003)	0.28	
6	(0.001)		(0.003)	0.51	
1	(0.001)	$-0.105 \\ -0.112 \\ 1,048$	(0.002)	0.58	
4	(0.001)		(0.002)	0.57	
5	(0.002)	$-0.036 \\ -0.044 \\ 489$	(0.003)	0.70	
0	(0.002)		(0.004)	0.68	
3	(0.001)	$-0.053 \\ -0.057 \\ 1,262$	(0.002)	0.43	
8	(0.002)		(0.003)	0.49	
3	(0.003)	$-0.097 \\ -0.129 \\ 259$	(0.004)	0.24	
5	(0.004)		(0.006)	0.35	
9	(0.001)	$-0.029 \\ -0.043 \\ 2,525$	(0.002)	1.00	
4	(0.001)		(0.002)	1.01	

Discussions

- 1. Even if one believes in AKM model, there are lots of econometrics issues
 - Take labor sequence, or see Kline (2024) for an excellent survey
 - Frontier: clustering approach by Bonhomme, Lamadon & Manresa (2019)
- 2. Do we believe in AKM model?
 - Easy to write down a model that leads to AKM equation But, if all workers equally benefit from high-wage firms, why do high-wage workers
 - work for high-wage firms?
 - See Borovicková & Shimer (2024) for a beautiful criticism of AKM model
- 3. Did we reject the competitive labor market in the end?
 - I am not sure..., but let's pretend we did and move on

Hopenhayn-Rogerson with Search Friction – Based on McCrary (2022)

Environment

Firms

• hire workers by posting a vacancy v

Workers

- search for a job while unemployed
- No on-the-job search for simplicity
- Random matching market with CRS matching function M(u, v)
- Wages are determined by Nash bargaining \Rightarrow "firm wage"

Technology

- Firms hire workers by posting vacancies *v*
 - Each vacancy meets with a worker at rate $q(\theta) = M(1/\theta, 1)$ where $\theta \equiv v/u$
 - The vacancy cost is $\Phi(v, n)$
- Worker separations occur either (i) at exogenous rate s or (ii) firing
- The firm size evolves according to
 - $dn_t = (q(\theta)v sn)dt firing$
- Firms' technology is $y(z, n) = z^{1-\alpha}n^{\alpha}$, where z follows a diffusion process
- Firms can exit to obtain $\underline{J} \equiv 0$
- Firms pay wages w, which are determined through bargaining

Firm Value and Policy Functions

- Firm's policy functions:
 - wage: w(n, z)
 - vacancy: v(n, z)
 - size of retained workers post-firing: $n^{f}(n, z)$
 - exit: $\chi(n, z)$
- When firms do not fire/exit, the HJB equation of a firm for a given wage w(n, z) is
 rJ(n, z) = y(n, z) - c_f - w(n, z)n - Φ(v(n, z), n) + (q(θ)v(n, z) - sn)J_n(n, z)
 +µ(z)J_z(n, z) + ¹/₂σ(z)²J_{zz}(n, z)
 When firms fire: J(n, z) = J(n^f(n, z), z)
- When firms exit: J(n, z) = 0

- Inclusion Unemployed workers receive UI benefits of b, and find jobs at rate $\lambda(\theta)$
- Let U denote the unemployment value
- When firms do not fire or exit in state (n, z): employed worker's HJB solves

$$rW(n,z) = w(n,z) + s(U - W(n,z)) + (q(\theta)v - s)W_n(n,z) + \mu(z)W_z(n,z) + \frac{1}{2}\sigma(z)^2W_{zz}(n,z)$$

When firms fire: $W(n, z) = \frac{n^{f(n, z)}}{n} W(n^{f(n, z)})$

• When firms exit: W(n, z) = U

Worker's HJB

$$(n, z), z) + \left(1 - \frac{n^f(n, z)}{n}\right) U$$

- In each period, a coalition of workers and a firm bargain to determine w, v, n^f, χ
- We assume Nash bargaining with worker bargaining power γ
- The Nash bargaining problem in state (n, z) is

• Noting $\frac{\partial W(n^f, z)}{\partial w} = -\frac{\partial J(n^f, z)}{\partial w}$, FOC w.r.t. *w* is

 $(1 - \gamma) \left(W(n^f, z) n^f - U n^f \right) = \gamma J(n^f, z)$ • Defining joint match surplus $S(n, z) \equiv J(n, z) + (W(n, z) - U)n$, $\left(W(n^f, z)n^f - Un^f\right) = \gamma S(n^f, z), \quad J(n^f, z) = (1 - \gamma)S(n^f, z)$

Wage Barganing

- $\max_{w,v,\gamma,n^f < n} \left(W(n^f,z)n^f Un^f \right)^{\gamma} J(n^f,z)^{1-\gamma}$

Substituting (2) back into (1), we have

Result: vacancy, firing, and exit policies maximize joint match surplus

 $\max_{v,\chi,n^f \le n} \gamma^{\gamma} (1-\gamma)^{1-\gamma} S(n^f, z)$

Joint Match Surplus

Recall when there is no firing or exit

$$rJ(n,z) = y(n,z) - c_f - w(n)$$

 $(n, z)n - \Phi(v, n) + (q(\theta)v - sn)J_n(n, z)$ + $\mu(z)J_z(n,z)$ + $\frac{1}{2}\sigma(z)^2J_{zz}(n,z)$ $rW(n,z)n - rUn = w(n,z)n - rUn + s(Un - W(n,z)n) + (q(\theta)v - sn)W_n(n,z)n$ $+\mu(z)W_{z}(n,z)n + \frac{1}{2}\sigma(z)^{2}W_{zz}(n,z)n$

Joint Match Surplus

Recall when there is no firing or exit $rJ(n, z) = y(n, z) - c_f - w(n + \mu(z)J_z(n, z) + rW(n, z)n - rUn = w(n, z)n - rUn + \mu(z)W_z(n, z)n$

Adding up the above two, and noting $rS(n, z) = y(n, z) - c_f - \Phi(v, n) - rnU$

$$+(q(\theta)v-sn)(S_n(n,z)-($$

$$h, z)n - \Phi(v, n) + (q(\theta)v - sn)J_n(n, z)$$

$$+ \frac{1}{2}\sigma(z)^2 J_{zz}(n, z)$$

$$+ s(Un - W(n, z)n) + (q(\theta)v - sn)W_n(n, z)n$$

$$+ \frac{1}{2}\sigma(z)^2 W_{zz}(n, z)n$$

$$S_{n}(n, z) = J_{n}(n, z) + W_{n}(n, z)n + (W(n, z) - U)$$

$$S_{n}(n, z) - U(n)$$

 $(W(n,z) - U)) + \mu(z)S_{z}(n,z) + \frac{\sigma(z)^{2}}{2}S_{zz}(n,z)$

Joint Match Surplus

Recall when there is no firing or exit r. rW(n,z)n -

Adding up th rS(n,z) = y(

$$J(n, z) = y(n, z) - c_f - w(n, z)n - \Phi(v, n) + (q(\theta)v - sn)J_n(n, z) + \mu(z)J_z(n, z) + \frac{1}{2}\sigma(z)^2J_{zz}(n, z) - rUn = w(n, z)n - rUn + s(Un - W(n, z)n) + (q(\theta)v - sn)W_n(n, z)n + \mu(z)W_z(n, z)n + \frac{1}{2}\sigma(z)^2W_{zz}(n, z)n me above two, and noting $S_n(n, z) = J_n(n, z) + W_n(n, z)n + (W(n, z) - U)n (n, z) - c_f - \Phi(v, n) - rnU - s(W(n, z) - U)n + (q(\theta)v - sn)(S_n(n, z) - (W(n, z) - U)) + \mu(z)S_z(n, z) + \frac{\sigma(z)^2}{2}S_{zz}(n, z) - \frac{\gamma S(n, z)/n}{\gamma S(n, z)/n}$$$

$$\min\left\{rS - \max_{v}\left[y(n,z) - c_f - \Phi(v,n) - rnU + (q(\theta)v - sn)S_n - q(\theta)v\frac{1}{n}\gamma S + \mu(z)S_z + \frac{\sigma(z)^2}{2}S_{zz}\right], S - \underline{S}^f\right\}$$

where dependence on (n, z) is omitted for brevity, and $S^{f}(n,z) = \max \left\{ \right.$

• Entrants draw (n, z) from cdf $\Psi(n, z)$. The entry is given by

$$m_t = M \times \left(\frac{1}{\bar{c}^e} \int \underbrace{(1 - \gamma)S(n, z)}_{J(n, z)} d\Psi(n, z)\right)^{\nu}$$

HJB-QVI

Since v, n^f, χ maximize the joint match surplus, S(n, z) solve the following HJB-QVI:

$$\left\{\max_{n^f \le n} S(n^f, z), 0\right\}$$

$\mathbf{b} = 0$

Wage Formula

Result: The wage function w(n, z) is given by

$$w(n,z) = \gamma \frac{1}{n} \left(y(n,z) - c_f - \Phi(v,n) \right) + (1-\gamma) \left(rU + q(\theta) \frac{v}{n} \gamma S(n,z) \frac{1}{n} \right)$$

- **Proof**: Since $(W(n, z) U)n = \gamma S(n, z)$, worker's HJB can be written as $+\mu(z)\gamma S_{z}(n,z)n+\frac{\sigma(z)^{2}}{2}\gamma S_{zz}(n,z)n$
- The surplus solves $+\mu(z)S_{z}(n,z) + \frac{\sigma(z)^{2}}{2}S_{zz}(n,z)$
- Multiply (4) by γ and subtract from (3) gives the formula

 $r\gamma S(n,z)n = w(n,z)n - rUn - s\gamma S(n,z) + (q(\theta)v - sn)(\gamma S_n(n,z) - \gamma S(n,z)/n)$

 $rS(n,z)n = y(n,z) - c_f - \Phi(v,n) - rUn + (q(\theta)v - sn)S_n - q(\theta)v\gamma S(n,z)/n$

Stationary Distribution

Define \mathscr{A}_{KFE} as the infinitesimal generator defined for a function f(n, z): $\mathscr{A}_{KFE}f(n,z) = \mu(z)f_z(n,z) + \frac{1}{2}$ $+\Lambda^{fire}(n,z)[f$ where $dn(n, z) \equiv q(\theta)v(n, z) - s_{n}$

$$\Lambda^{fire}(n,z) = \begin{cases} \infty & \text{if } n > n^f(n,z) \\ 0 & \text{if } n \le n^f(n,z) \end{cases}, \quad \Lambda^{exit}(n,z) = \begin{cases} \infty & \text{if } \chi(n,z) = 1 \\ 0 & \text{if } \chi(n,z) = 0 \end{cases}$$

• Let $\mathscr{A}_{KFF}^{\dagger}$ be adjoint operator of \mathscr{A}_{KFE} . The steady-state distribution g(n, z) satisfies $0 = \mathscr{A}^{\dagger}_{KFE} g(n, z) + m \psi(n, z)$

$$-\sigma(z)^2 f_{zz}(n,z) + dn(n,z) f_n(n,z)$$

$$f(n,z),z) - f(n,z) \Big] - \Lambda^{exit}(n,z) f(n,z)$$

Rest of the Model

Aggregate employment and unemployment in this economy is

Aggregate vacancy and market tightness are

The value of unemployment can be written as $rU = b + \lambda(\theta)\gamma \int S(n,z) \frac{1}{n} dg(n,z)$

- $N = \iint ng(n, z) dndz$
 - u = 1 N
- $V = \int v(n, z)g(n, z)dndz$
 - $\theta = -$ U

$$+\frac{m\int nd\Psi(n,z)}{u}\int \gamma \frac{n}{\int nd\Psi(n,z)}S(n,z)d\Psi(n,z)$$

Numerical Illustration

Fixed Point Problem

$$\min\left\{rS - \max_{v}\left[y(n,z) - c_f - \Phi(v,n) - rnU + (q(\theta)v - sn)S_n - q(\theta)v\frac{1}{n}\gamma S + \mu(z)S_z + \frac{\sigma(z)^2}{2}S_{zz}\right], S - \underline{S}^f\right\}$$

Firm's problem depends on the aggregate through two endogenous variables:

- 1. Market tightness, θ
- 2. Unemployment value, U
- These two have to be in turn consistent with equilibrium:

1. $\theta = V/u$

2. $rU = b + \lambda(\theta)\gamma \int S(n,z)\frac{1}{n}dg(n,z) + \frac{m}{n}$

Two-dimensional fixed point problem

$$\frac{u \int n d\Psi(n,z)}{u} \int \gamma \frac{n}{\int n d\Psi(n,z)} S(n,z) d\Psi(n,z)$$

Steady State Algorithm

 $\mathsf{Guess}\left(U,\theta\right)$

Solve HJB-QVI to obtain $\{S(n, z), v(n, z), n^f(n, z), \chi(n, z)\}$: $\min \left\{ rS - \max_{v} \left[y(n, z) - c_f - \Phi(v, n) - rnU + (q(\theta)v - sn)S_n - q(\theta)v \frac{1}{n}\gamma S + \mu(z)S_z + \frac{\sigma(z)^2}{2}S_{zz} \right], S - \underline{S}^f \right\} = 0$

Compute entry: $m_t = M \times \left(\frac{1}{\bar{c}^e} \int (1 - \gamma) S(n, z) d\Psi(n, z)\right)^{\nu}$

Solve KFE to obtain $\tilde{g}(z)$: $0 = \mathscr{A}_{KFE}^{\dagger}g(n,z) + m\psi(n,z)$

Compute implied (U^{new}, θ^{new}) . $(U^{new}, \theta^{new}) \approx (U, \theta)$?

yes

Done

Parameterization

- Assume $\Phi(v, n) = \frac{\phi}{\kappa} (v/n)^{\kappa} n$, and set $\phi = 0.1, \kappa = 2$ • Assume $M(u, v) = u^{\eta} v^{1-\eta}$, and set $\eta = 0.5$ • Set $\gamma = 0.5$
- Set c_{ρ} so that $\theta = 1$, and set b so that U = 5
- The rest of the parameters are the same as in the lecture note 2

Labor Share

