Offer-matching and Counter-offers: the Role of Origin Firms?

741 Macroeconomics
Topic 3

Masao Fukui

2025 fall

Counter-Offers?

- In wage-posting models, firms are passive to outside offers
- Firms let workers leave even when counter-offers are profitable
- Is this true in the data?

NY Fed Job Search Suvery (2013-2021)

Q [already accepted an offer]. Did your previous employer match the wage that was offered on your new job, or do you think they would have if you asked?

A. 10% matched, 10% would have matched if asked, 80% no

Q [received an offer but not accepted]. Do you think your current employer would match the wage that was offered (on your best job offer)?

A. 63% yes, 37% no

Q [hypothetical]. Suppose you are offered the same line of job with a 10% higher salary. Would you ask your current employer for a counteroffer? If yes, what is the chance they will match?

A. 46% yes, 54% no; 37% chance on average conditional on asking

Perceived Counter-Offer Probability

	(1)	(2)	(3)	(4)	(5)	(6)
Female	-0.035					-0.028
	(0.009)					(0.010)
Non-white		-0.030				-0.032
		(0.011)				(0.011)
Log wage			0.024			0.022
			(0.004)			(0.004)
College and above				0.021		0.000
				(0.008)		(0.009)
Blue-collar occupation					-0.031	-0.038
					(0.015)	(0.015)
Observations	6146	6138	6114	6147	5794	5757

Notes: Dependent variable is the perceived probability that the current employer matches an outside offer. Robust standard errors in parentheses.

A Model of Counter-Offers (a.k.a "Sequential Auction")

based on Postel-Vinay & Robin (2002) Cahuc, Postel-Vinay & Robin (2006) Fukui & Mukoyama (2025)

Preferences and Technology

- Continuous time & focus on the stationary environment
- Workers $i \in [0,1]$ with heterogeneous productivity z with measure μ_z
- Firms with heterogenous productivity p
 - Let F(p) denote vacancy-weighted CDF (exogenous)
 - Support $[p, \infty)$, where p is the productivity below which firms exit
- Technology:
 - The match (z, p) produces $z \times p$ units of output
 - Unemployed produces $z \times b$
- lacksquare Both workers and firms are risk-neutral with discount rate ho

Search Friction

- Search is random:
 - ullet All unemployed workers receive a job offer at an exogenous rate λ^U
 - All employed workers receive a job offer at an exogenous rate λ^E
- lacksquare All jobs exogenously separate at rate δ
- Value functions:
 - U_{it} : unemployment value of worker i at time t
 - $W_{it}(p)$: employment value of worker i at firm p at time t
 - $J_{it}(p)$: value of a filled job at firm p employing worker i at time t
 - V(p): value of vacancy after meeting, which we assume is zero, V(p) = 0
 - Assumption in the background is that a vacancy is not durable

Bargaining

Match surplus:

$$S_{it}(p) \equiv W_{it}(p) + J_{it}(p) - U_{it} - V(p)$$

■ We assume the split of the pie is determined by a version of Nash bargaining:

$$\max_{w} \left(W_{it}(p) - U_{it} - O_{it}(p) \right)^{\gamma} \left(J_{it}(p) - V(p) \right)^{1-\gamma}$$

- γ : bargaining power of workers, w: wage
- $O_{it}(p)$: outside option of worker in addition to U_{it} (to be determined)
- Standard Nash: $O_{it}(p) = 0$

Sequential Auction

- When an unemployed worker meets a firm, $O_{it}(p) = 0$
- When an employed worker at firm p meets firm p':
 - Two firms compete for a worker
 - If $S_{it}(p) > S_{it}(p')$, incumbent firm wins & the worker stays
 - Worker can use the outside option $O_{it}(p) = S_{it}(p')$
 - Worker can move to the poaching firm and extract full surplus there
 - if the worker already has higher outside option, nothing happens
 - If $S_{it}(p) < S_{it}(p')$, poaching firm wins & the worker moves
 - Worker bargains with the poacher with the outside option $O_{it}(p) = S_{it}(p)$
 - Worker can go back to the previous firm and extract full surplus there

Guess and Verify

- We will guess and verify that the following property holds
 - 1. $S_{it}(p) = S_z(p)$
 - Suprlus is only a function of the productivity of the current match
 - Sequential auction only matters in how to split the pie
 - 2. $W_{it}(p) = W_z(p, O)$ and $J_{it}(p) = J_z(p, O)$
 - The current outside option O summarizes the history
 - O = the second-best offer the worker has received besides the current firm
- We write $w_z(p, O)$ as the wage of worker z at firm p with outside option O

Bellman Equations

$$\rho U_z = bz + \lambda^U \int_{\underline{p}}^{\infty} \max\{W_z(p,0) - U_z,0\} dF(p)$$

$$\rho W_z(p,O) = w_z(p,O) + \lambda^E \int_p^\infty \left[W_z(\tilde{p}, S_z(p)) - W_z(p,O) \right] dF(\tilde{p})$$

$$+ \lambda^E \int_p^p \left[W_z(p, \max\{S_z(\tilde{p}), O\}) - W_z(p,O) \right] dF(\tilde{p}) + \delta(U_z - W_z(p,O))$$

$$\begin{split} \rho J_z(p,O) &= pz - w_z(p,O) - \lambda^E \int_p^\infty dF(\tilde{p}) J_z(p,O) \\ &+ \lambda^E \int_p^p \left[J_z \Big(p, \max\{S_z(\tilde{p}),O\} \Big) - J_z(p,O) \right] dF(\tilde{p}) - \delta J_z(p,O) \end{split}$$

Match Surplus

Nash bargaining implies:

$$W_z(p, O) = U_z + O + \gamma [S_z(p) - O]$$

$$J_z(p, O) = (1 - \gamma)[S_z(p) - O]$$

Imposing these conditions, the match surplus $S_z(p)$ solves

$$(\rho + \delta)S_z(p) = pz - bz + \lambda^E \gamma \int_p^{\infty} \left[S_z(\tilde{p}) - S_z(p) \right] dF(\tilde{p}) - \lambda^U \gamma \int_0^{\infty} S_z(\tilde{p}) dF(\tilde{p})$$

- This confirms that $S_z(p)$ is only a function of (p,z) and not a function of O
- Boundary condition: $S_z(\underline{p}) = 0$

Match Surplus Solution

Match surplus is given by

$$S_{z}(p) = z \int_{\underline{p}}^{p} \frac{1}{\rho + \delta - \lambda^{E} \gamma (1 - F(\tilde{p}))} d\tilde{p}$$

where p solves

$$0 = \underline{p} - b - (\lambda^{U} - \lambda^{E})\gamma \int_{p}^{\infty} \int_{p}^{\tilde{p}} \frac{1}{\rho + \delta - \lambda^{E}\gamma(1 - F(p'))} dp'dF(\tilde{p})$$

Proof

1. We can guess and verify that $S_z(p) = z S(p)$, where S(p) solves

$$(\rho + \delta)S(p) = p - b + \lambda^{E}\gamma \int_{p}^{\infty} \left[S(\tilde{p}) - S(p) \right] dF(\tilde{p}) - \lambda^{U}\gamma \int_{0}^{\infty} S(\tilde{p}) dF(\tilde{p})$$
 (S-1)

2. Differentiate w.r.t. p to obtain

$$(\rho + \delta)S'(p) = 1 + \lambda^E \gamma (1 - F(p))S'(p)$$

3. With the boundary condition S(p)=0, we solve the above ODE to obtain

$$S(p) = \int_{\underline{p}}^{p} \frac{1}{(\rho + \delta - \lambda^{E} \gamma (1 - F(\tilde{p})))} d\tilde{p}$$

4. Evaluate (S-1) at p = p to obtain

$$0 = \underline{p} - b - (\lambda^{U} - \lambda^{E})\gamma \int_{\underline{p}}^{\infty} S(\tilde{p})dF(\tilde{p})$$

Wage Equation

The wage of worker z at firm p with previous offer from firm q < p is:

$$\begin{split} w_z(p,S_z(q)) &= \rho U_z + \gamma \left[(\rho + \delta) S_z(p) - \lambda^E \int_p^\infty \partial_p S_z(\tilde{p}) (1 - F(\tilde{p})) d\tilde{p} \right] \\ &+ (1 - \gamma) \left[(\rho + \delta) S_z(q) - \lambda^E \int_q^p \partial_p S_z(\tilde{p}) \left(1 - F(\tilde{p}) \right) d\tilde{p} \right] \end{split}$$

Wage Equation

Option value from finding a better match

The wage of worker z at firm p with previous offer from firm a < p is:

$$\begin{split} w_z(p,S_z(q)) &= \rho U_z + \gamma \left[(\rho + \delta) S_z(p) - \lambda^E \int_p^\infty \partial_p S_z(\tilde{p}) (1 - F(\tilde{p})) d\tilde{p} \right] \\ &+ (1 - \gamma) \left[(\rho + \delta) S_z(q) - \lambda^E \int_q^p \partial_p S_z(\tilde{p}) \left(1 - F(\tilde{p}) \right) d\tilde{p} \right] \end{split}$$

Wage Equation

Option value from finding a better match

The wage of worker z at firm p with previous offer from firm a < p is:

$$\begin{split} w_z(p,S_z(q)) &= \rho U_z + \gamma \left[(\rho + \delta) S_z(p) - \lambda^E \int_p^\infty \partial_p S_z(\tilde{p}) (1 - F(\tilde{p})) d\tilde{p} \right] \\ &+ (1 - \gamma) \left[(\rho + \delta) S_z(q) - \lambda^E \int_q^p \partial_p S_z(\tilde{p}) \left(1 - F(\tilde{p}) \right) d\tilde{p} \right] \end{split}$$

Option value from outside-offer matching

Special Cases

- Under $\gamma = 0$, the expression dramatically simplifies (Postel-Vinay & Robin, 2002)
- Consequently,

$$w_z(p, S_z(q)) = z \left(q - \frac{\lambda^E}{\rho + \delta} \int_q^p [1 - F(\tilde{p})] d\tilde{p} \right)$$

- \Rightarrow wage at firm p strongly depends on q not so much on p!
- Notice that workers may accept wage cut, expecting the pay rise in the future
- When $\gamma = 1$, $w_z(p, S_z(q))$ is independent of origin firm q:

$$w_z(p, S_z(q)) = \rho U_z + \left[(\rho + \delta) S_z(p) - \lambda^E \int_p^{\infty} \partial_p S_z(\tilde{p}) (1 - F(\tilde{p})) d\tilde{p} \right]$$

Empirical Content of Sequential Auction Protocol?

DiAddario, Kline, Saggio & Sølvsten (2020)

Empirical Application of Sequential Auction

Postel-Vinay & Robin (2002):

- Assume $\gamma = 0$ and argue AKM model is "mis-specified"
- Part of what AKM attributes to "worker effect" is persistent outside option

Cahuc, Postel-Vinay & Robin (2006):

- \blacksquare Estimate γ using French employee-employer matched data
- The majority of workers have low γ but extract surplus through counter-offers

Bagger, Fontaine, Postel-Vinay & Robin (2014):

- Incorporate human capital accumulation to decompose the source of wage growth
- Counter-offers relatively unimportant compared to human capital & job-ladder

Putting Sequential Auction to the Test

- All studies in the previous slide assume a sequential auction wage-setting protocol
- This leaves the sequential auction untested
- In fact, the survey evidence suggests many receive no offer-matching
- Can we test sequential auction vs. no offer matching (e.g., Burdett-Mortensen)?

AKM with Orign Firm

 \blacksquare To a first-order approximation around $p=q=\bar{p}$ (mass point at \bar{p}), we have

$$\ln w_z(p, S_z(q)) \approx \ln z + \psi(p) + \lambda(q)$$

where

$$\psi(p) \equiv \ln \Gamma(\bar{p}) + S'(\bar{p})\gamma \frac{\rho + \delta + \lambda^{E}}{\rho U + (\rho + \delta)S(\bar{p})} (p - \bar{p})$$

$$\lambda(q) \equiv (1 - \gamma)S'(\bar{p}) \frac{\rho + \delta + \lambda^{E}}{\rho U + (\rho + \delta)S(\bar{p})} (q - \bar{p})$$

Empirical Implementation

$$\ln w_{im} = \alpha_i + \underbrace{\psi_{j(i,m)}}_{\text{destination effect}} + \underbrace{\lambda_{h(i,m)}}_{\text{destination effect}} + X'_{im}\gamma + \epsilon_{im}$$

- \blacksquare w_{im} : hiring wage of worker i in her m-th match
- j(i, m): firm employing worker i in the m-th match

- Implement using Italian employer-employee matched data 2005-2015
- Call this model DWL (dual wage-ladder) model

DWL Yields <1pp Improvement in R^2

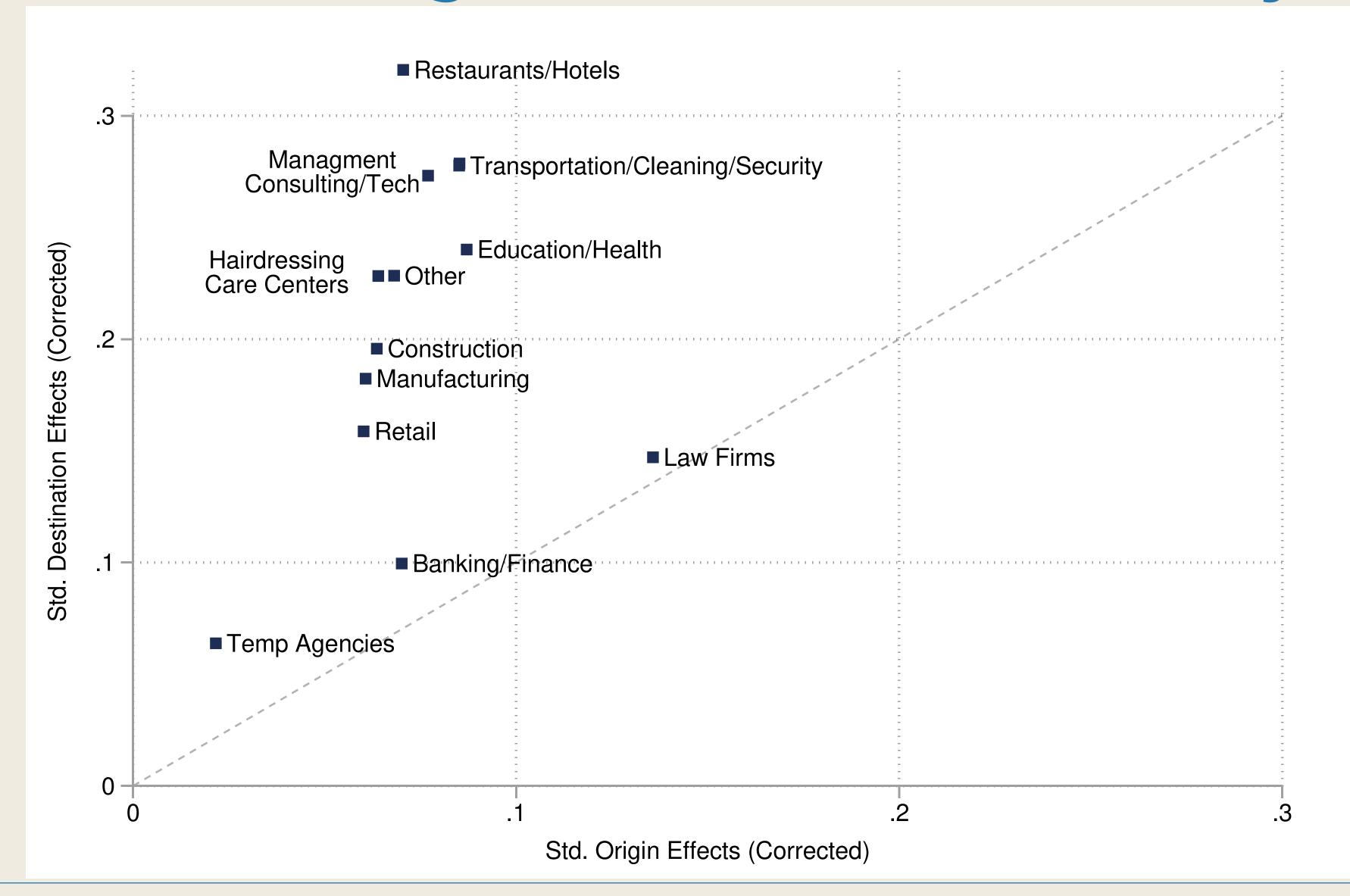
Goodness of fit, R^2

	Pooled	Men	Women
AKM (Gender-interacted)	0.7199 0.7349	0.7311	0.6822
Origin effects Origin effects (Gender-interacted)	0.5809 0.5871	0.5660	0.5452
DWL DWL (Gender-interacted)	0.7245 0.7427	0.7370	0.6854

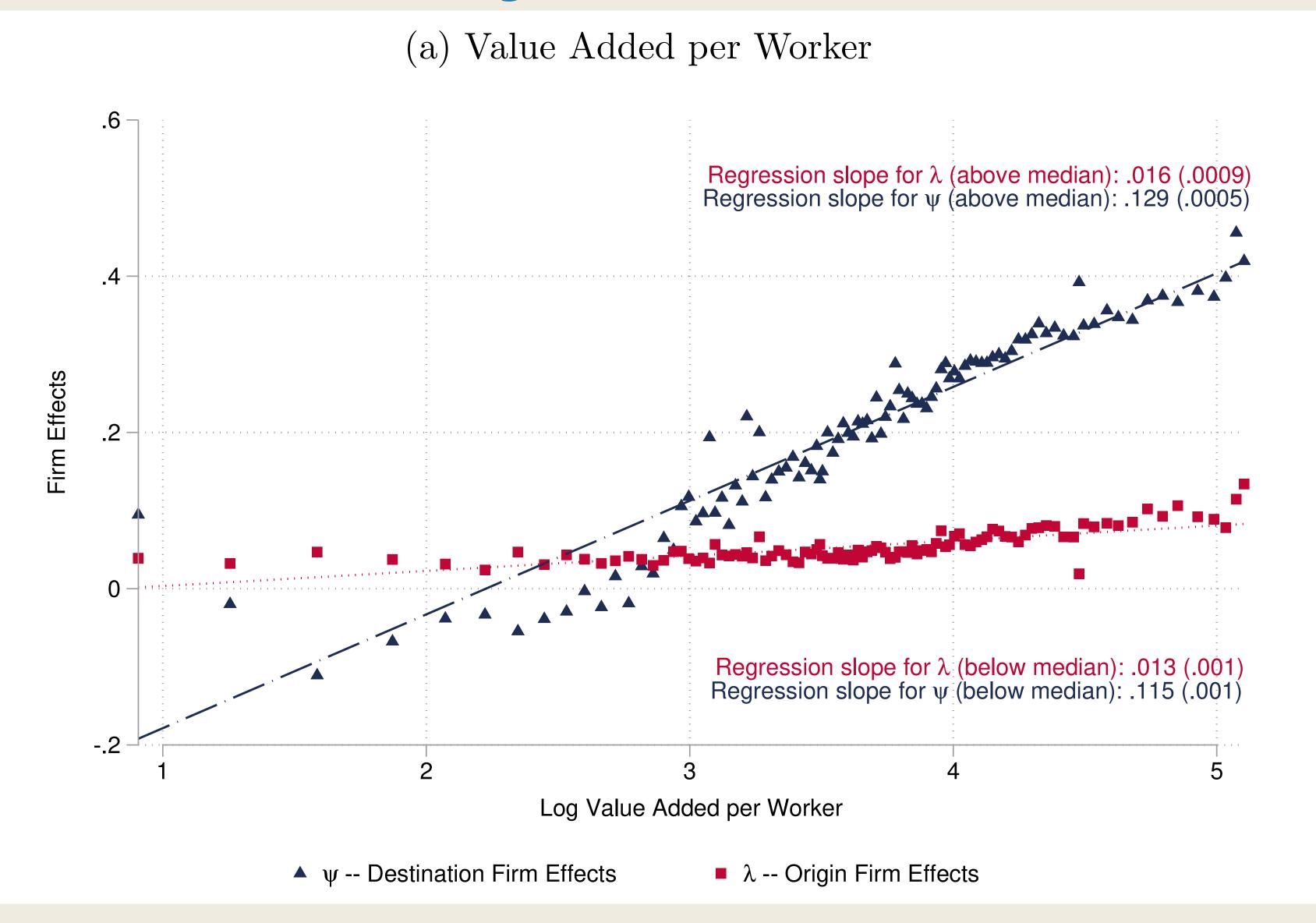
It ain't where you're from...

	Pooled	Men	Women
Std Dev of log hiring wages	0.5286	0.4706	0.5623
Mean $\lambda_{j(i,m-1)}$ among displaced workers	0.0414	0.0536	0.0687
Mean $\lambda_{j(i,m-1)}$ among poached workers	0.0508	0.0543	0.0690
Origin effect when hired from non-employment (λ_U)	0.0163	0.0136	0.0220
Percent of Total Variance Explained by			
Worker effects	28.52%	27.75%	24.77%
Destination firm effects	23.81%	26.74%	25.29%
Origin effects	0.69%	0.93%	0.59%
Covariance of worker, destination	16.46%	12.81%	17.23%
Covariance of worker, origin	1.06%	1.66%	0.58%
Covariance of destination, origin	0.26%	0.31%	0.00%
X'8 and associated covariances	1.66%	3.51%	0.09%
Residual	27.55%	26.30%	31.46%

Variance of Origin/Destination Effects by Sectors



Origin Effect Barely Varies with Value-Added



Summary

- Sequential auction wage-setting protocol has been extremely popular
- Until very recently, the assumption has never been tested
- DKSS: hiring wage is almost unrelated to the worker's origin
 - ⇒ "It ain't where you're from, it's where you're at"!
- This casts doubt on the relevance of sequential auction protocol... or not?