Sorting and Wages in the Labor Market

741 Macroeconomics
Topic 4

Masao Fukui

2025 fall

Sorting in the Labor Market

- In all the models we considered so far, there is no sorting
- Good workers are equally likely to work for good firms and bad firms
- In the data, "good" workers are substantially more likely to work for "good" firms
 - Recall findings from AKM and BLM in lecture note 1
- Why?

Frictionless Model of Matching

– Becker (1974)

Environment

- Continuum of workers divided into type z with mass m_z
- Continuum of firms divided into type p with mass m_p
- A firm of type p hiring a type z worker produces f(z, p)
- Competitive labor market with wage w(z) for type z workers
- A firm chooses which worker to hire, taking w(z) as given:

$$\zeta(p) = \arg \max_{z} f(z, p) - w(z)$$

■ What can we say about the matching pattern $\zeta(p)$?

Positive Assortative Matching

Suppose f is supermodular:

$$\partial_{z,p} f(z,p) \geq 0.$$

Then, $\zeta(p)$ is increasing in p. That is, there is positive assortative matching (PAM).

- Proof immediately follows from Topkis' monotonicity theorem
- If high z and high p are complementary, high z is matched with high p
- Negative assortative matching (NAM) obtains under $\partial_{z,p} f(z,p) \leq 0$

Matching with Search Friction

- Shimer & Smith (2000)

Why Search Friction?

Becker model predicts that...

- 1. There cannot be unmatched agents on both sides
- 2. No mismatch \Rightarrow all the job-to-job transitions come from a change in fundamentals
- 3. No wage dispersion within a firm

Search theory gives a natural resolution for all of them

Environment

- Continuous time, $t \in [0, \infty)$
- Workers with discrete types z and associated mass of m_z
- lacksquare Jobs (firms) with discrete types p and associated mass of n_p
 - Differently from earlier lecture notes, assume vacancies are durable
 - If workers quit/separate, the job becomes vacant
- \blacksquare All agents are risk-neutral with discount rate ρ
- For notational simplicity, assume flow value of unemployment & vacancy are zero
- A match (z, p) produces f(z, p) units of output

Search Friction

- Search is random, and no on-the-job search for now
- The matching function is

$$M\left(\sum_{z}u_{z},\sum_{p}v_{p}\right)$$

 \blacksquare The rate at which an unemployed worker meets with type p firm is

$$\frac{M\left(\sum_{z} u_{z}, \sum_{p} v_{p}\right)}{\sum_{z} u_{z}} \times \frac{1}{\sum_{p} v_{p}} v_{p} \equiv \chi_{0} v_{p}$$

- Likewise, the meeting rate of a vacancy with type z worker is $\chi_0 u_z$
- We will treat χ_0 as parameters for most part (can always find M to hit any χ_0)
- lacksquare All matches exogenously separate at rate δ

Value Functions

Value functions:

$$\rho U_{z} = \chi_{0} \sum_{p} v_{p} \max\{W_{z,p} - U_{z}, 0\}$$

$$\rho W_{z,p} = w_{z,p} + \delta(U_{z} - W_{z,p})$$

$$\rho V_{p} = \chi_{0} \sum_{z} u_{z} \max\{J_{z,p} - V_{p}, 0\}$$

$$\rho J_{z,p} = f(z,p) - w_{z,p} + \delta(V_{p} - J_{z,p})$$

■ Joint match surplus, $S_{z,p} \equiv W_{z,p} + J_{z,p} - U_z - V_p$, follows

$$(\rho + \delta)S_{z,p} = f(z,p) - \rho U_z - \rho V_p$$

Nash Bargaining

 \blacksquare Assume wage is determined by Nash bargaining with worker bargaining power γ :

$$\max_{w_{z,p}} (W_{z,p} - U_z)^{\gamma} (J_{z,p} - V_p)^{1-\gamma}$$

This results in

$$W_{z,p} = U_z + \gamma S_{z,p}$$

$$J_{z,p} = U_z + (1 - \gamma)S_{z,p}$$

Equilibrium Conditions

 $\blacksquare \{S_{z,p}, V_p, U_z\} \text{ solve}$

$$\rho U_z = \chi_0 \gamma \sum_p v_p \max\{S_{z,p}, 0\}$$

$$\rho V_p = \chi_0 (1 - \gamma) \sum_z u_z \max\{S_{z,p}, 0\}$$

$$(\rho + \delta) S_{z,p} = f(z, p) - \rho U_z - \rho V_p$$

The steady state distribution $\{\phi_{z,p}, u_z, v_p\}$ satisfy

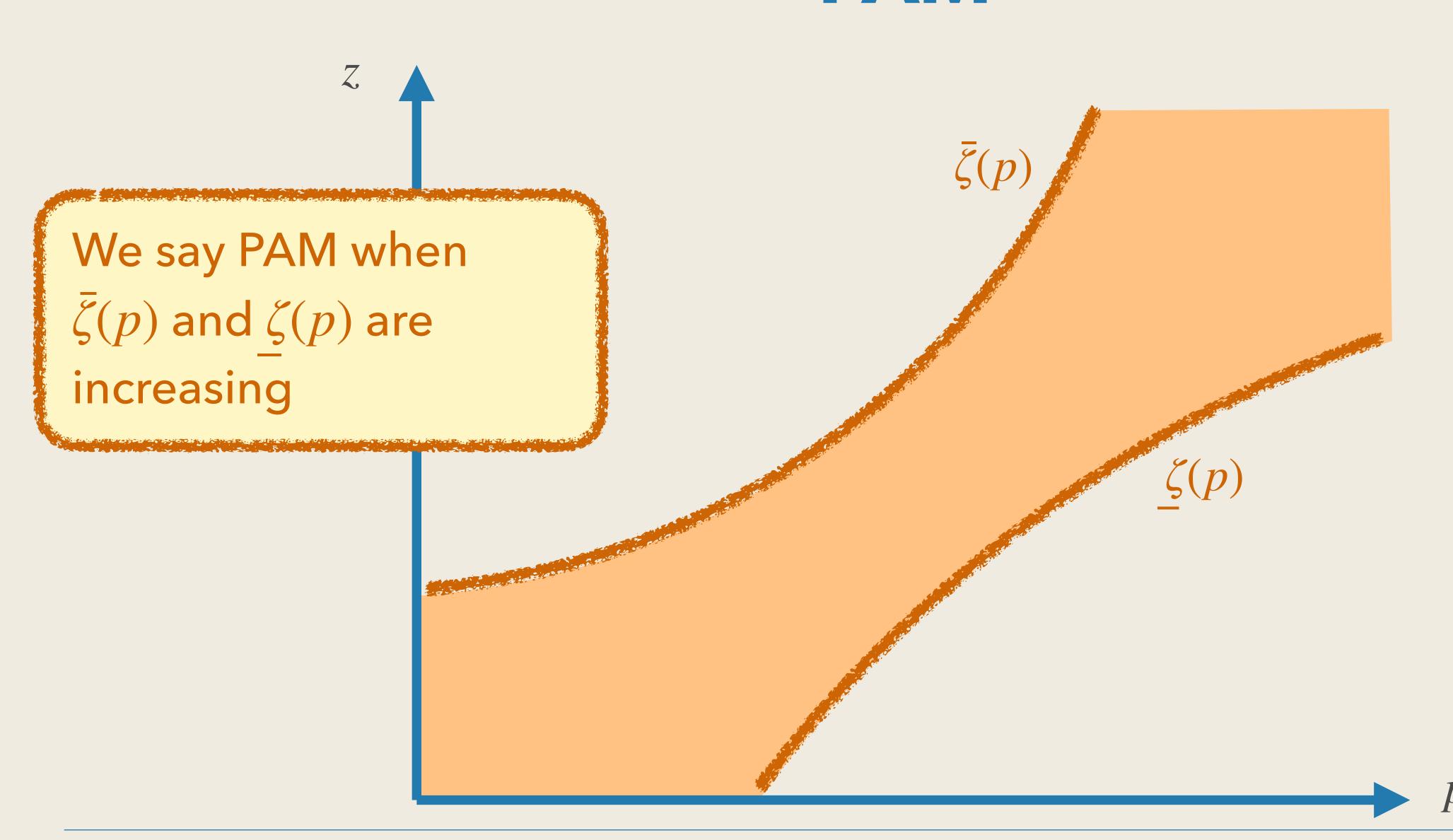
$$\delta \phi_{z,p} = \chi_0 u_z v_p \mathbb{I}[S_{z,p} > 0]$$

$$u_z = m_z - \sum_p \phi_{z,p}, \quad v_p = n_p - \sum_z \phi_{z,p}$$

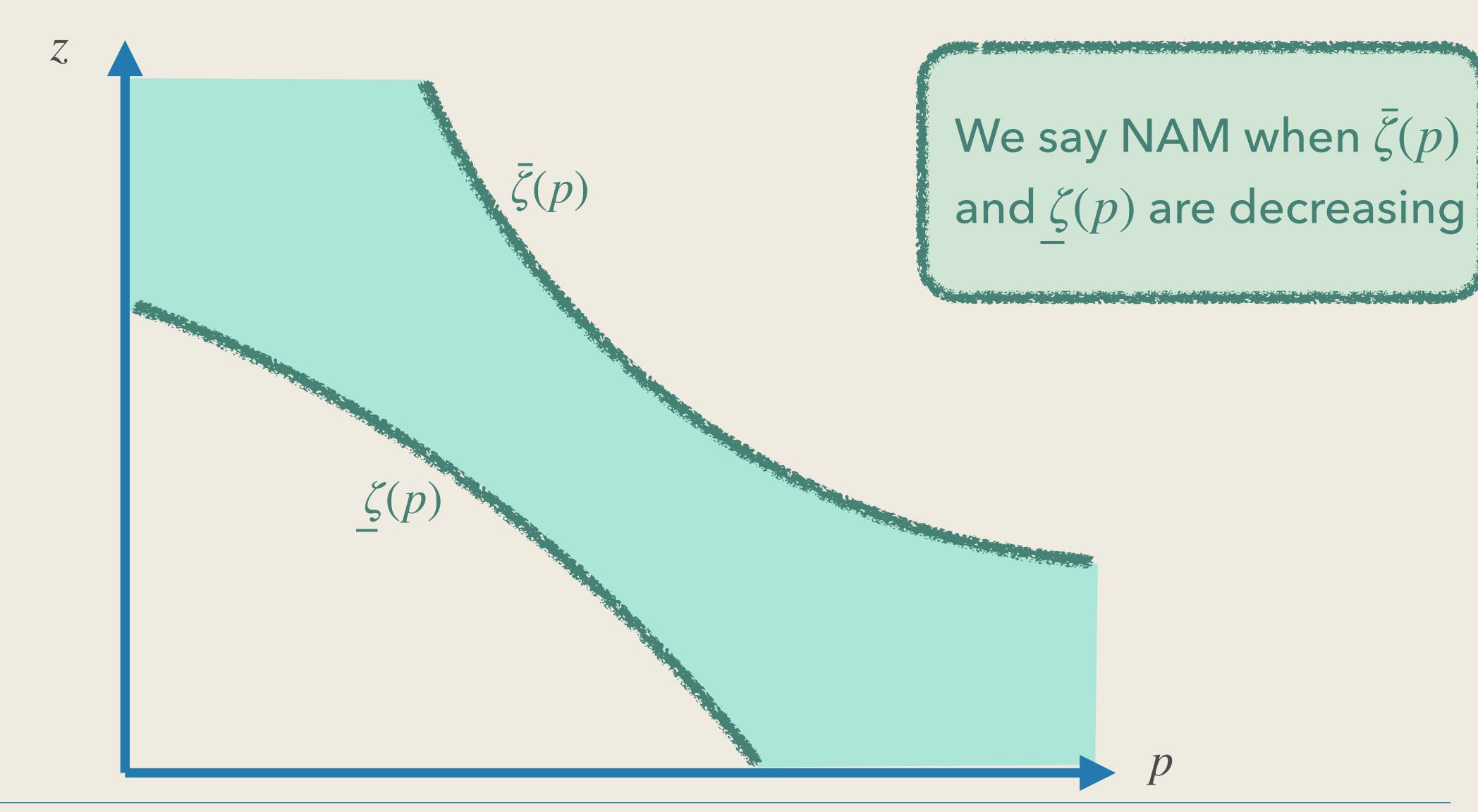
■ Wage is given by $w_{z,p} = \rho U_z + \gamma(\rho + \delta)S_{z,p}$

Frictionless Matching

PAM



NAM



Equilibrium Properties

- Does equilibrium exist? Yes! (Shimer & Smith, 2000)
- Is equilibrium unique? Not in general (Shimer & Smith, 2000)
- Matching pattern (Shimer & Smith, 2000):
 - $\partial_{zp} f \ge 0, \partial_{zp} [\log f_z] \ge 0, \partial_{zp} [\log f_{zp}] \ge 0 \Rightarrow PAM$
 - $\partial_{zp} f \le 0, \partial_{zp} [\log f_z] \le 0, \partial_{zp} [\log f_{zp}] \le 0 \Rightarrow NAM$
- With search friction, a stronger condition is needed than the frictionless case
 - Even when $\partial_{zp}f > 0$, "good" and "middle" form a match due to search friction
 - "Middle" and "middle" then may decide not to form a match
 - But "Low" and "Middle" instead form a match

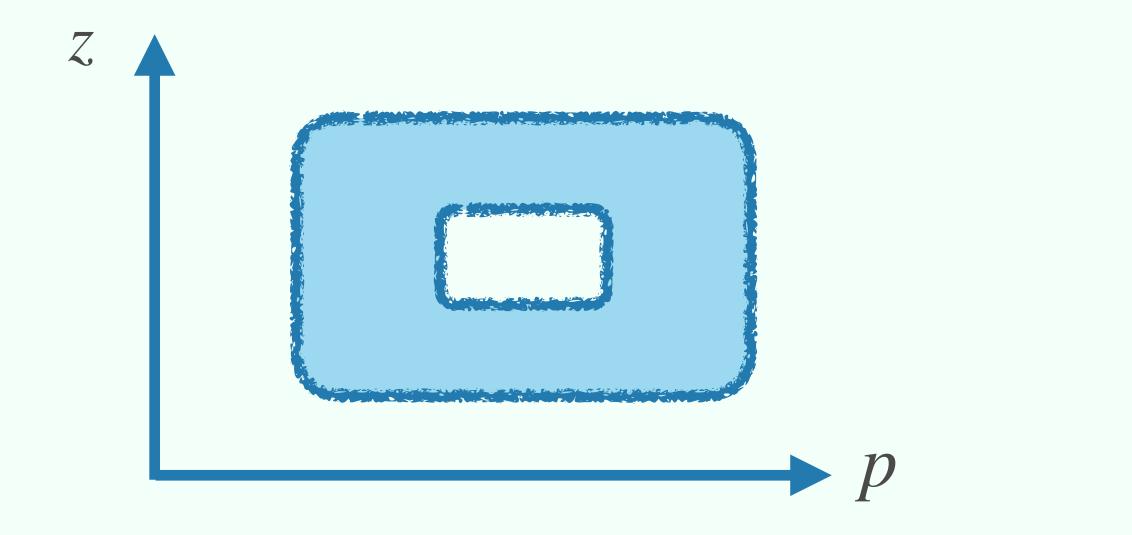
Equilibrium Properties

- Does equilibrium exist? Yes! (Shimer
- Is equilibrium unique? Not in genera
- Matching pattern (Shimer & Smith, 200

•
$$\partial_{zp} f \ge 0, \partial_{zp} [\log f_z] \ge 0, \partial_{zp} [\log f_{zp}] \ge$$

•
$$\partial_{zp} f \ge 0, \partial_{zp} [\log f_z] \ge 0, \partial_{zp} [\log f_{zp}] \ge 0$$

• $\partial_{zp} f \le 0, \partial_{zp} [\log f_z] \le 0, \partial_{zp} [\log f_{zp}] \le 0$



- With search friction, a stronger condition is needed than the frictionless case
 - Even when $\partial_{zp} f > 0$, "good" and "middle" form a match due to search friction
 - "Middle" and "middle" then may decide not to form a match
 - But "Low" and "Middle" instead form a match

Parametric Assumption

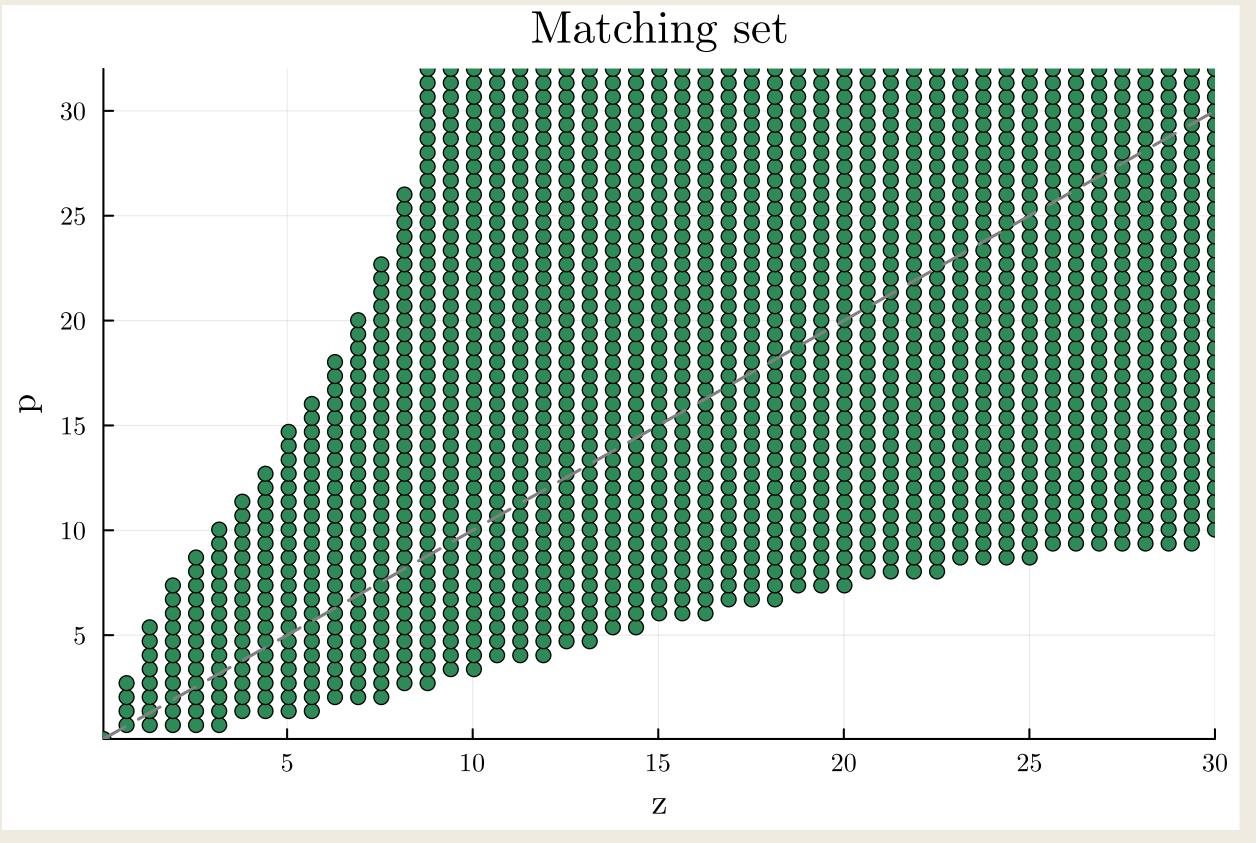
Suppose

$$f(z,p) = \left(\alpha z^{\frac{\varsigma-1}{\varsigma}} + (1-\alpha)p^{\frac{\varsigma-1}{\varsigma}}\right)^{\frac{\varsigma}{\varsigma-1}}$$

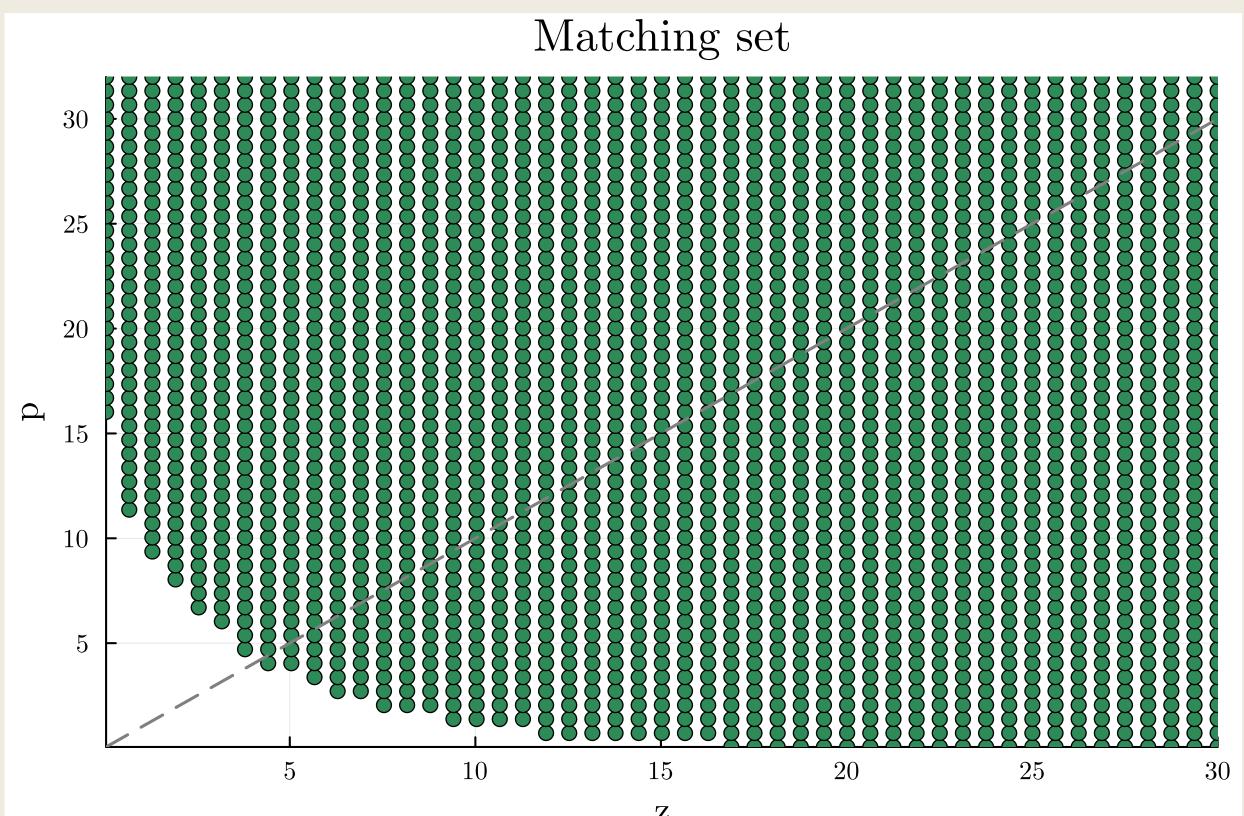
- $\varsigma < 1 \Rightarrow PAM$
- No theoretical result, but numerically, sufficiently high $\varsigma \Rightarrow NAM$

Matching Sets

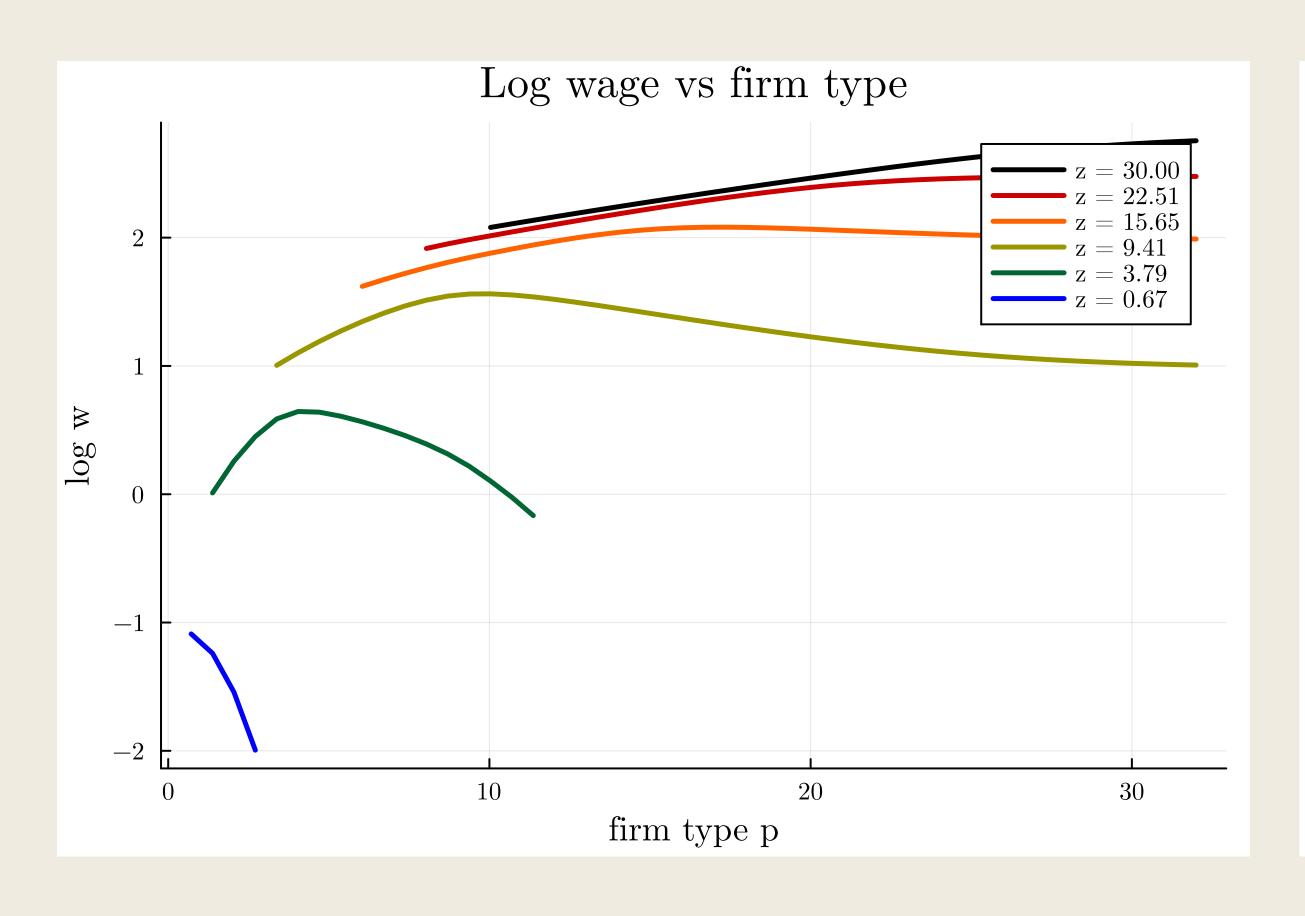
$$\varsigma = 0.1$$

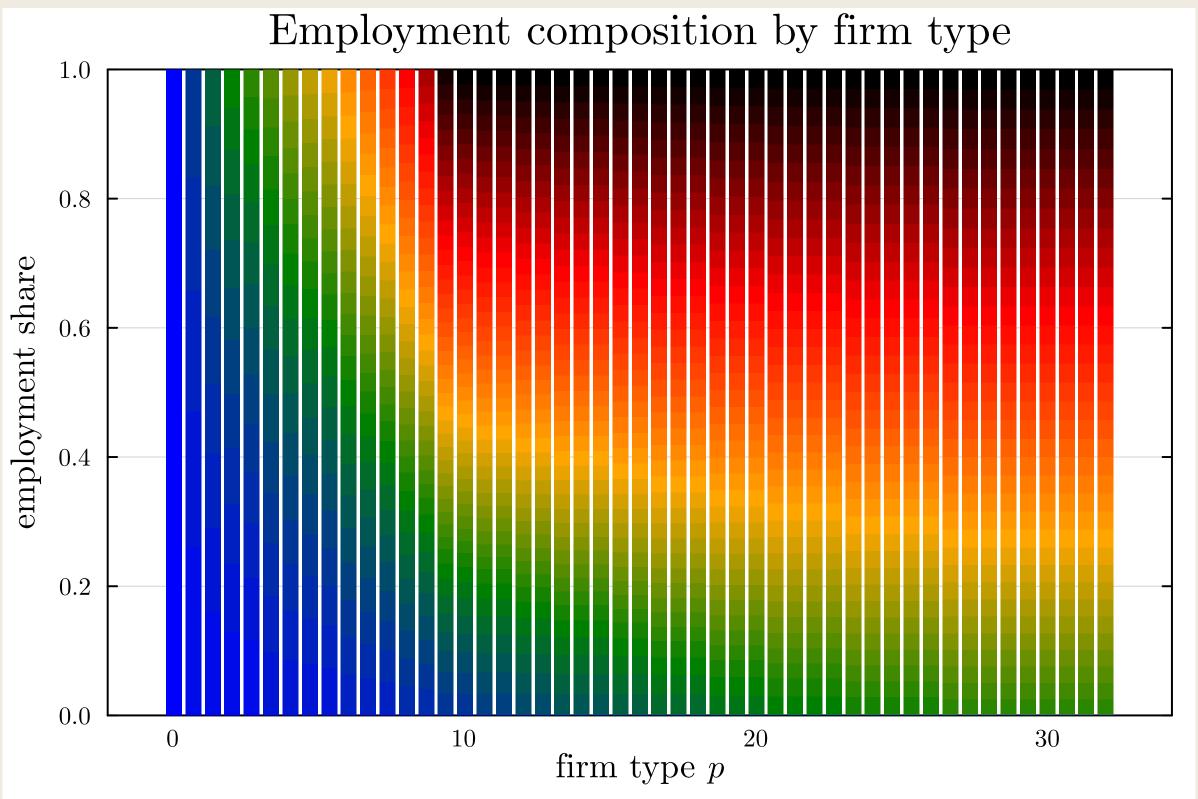


$$\varsigma = 3$$

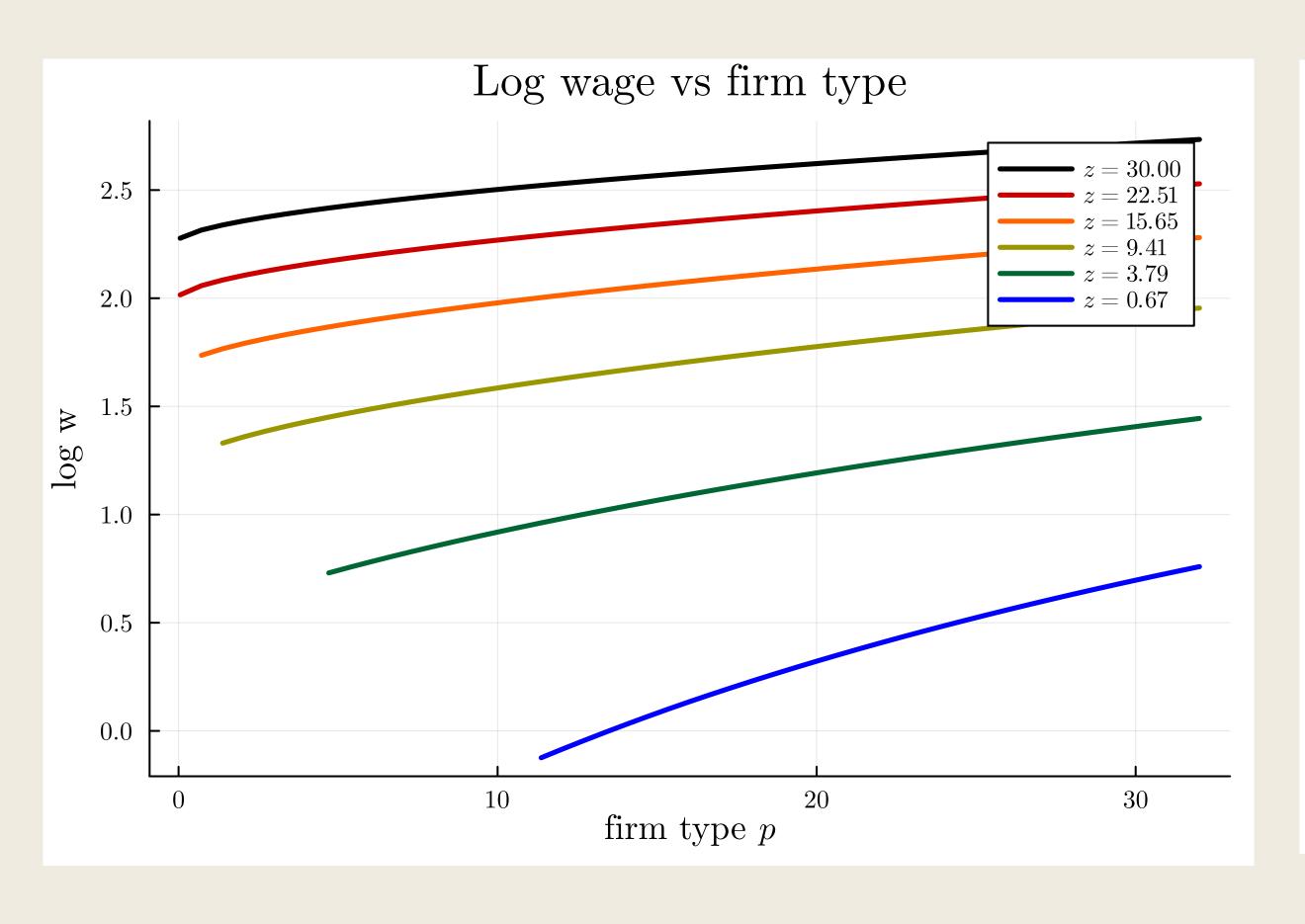


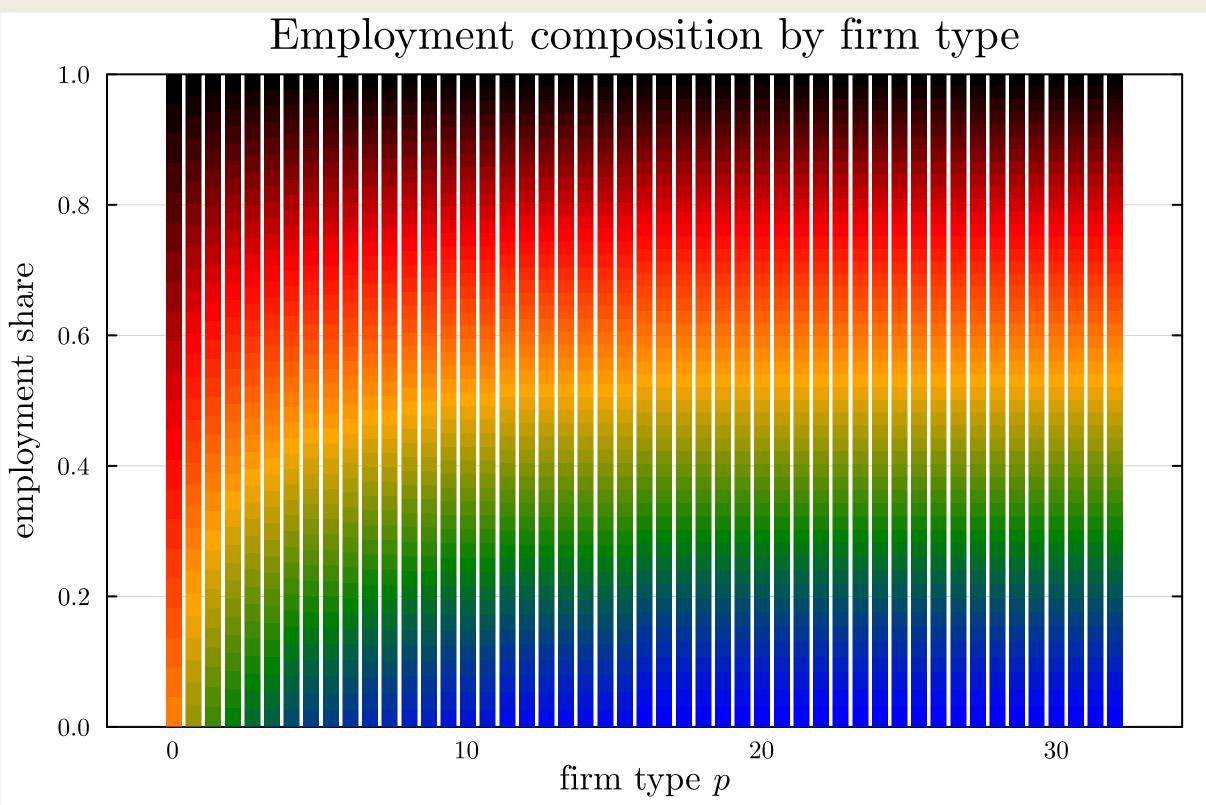
PAM ($\varsigma = 0.1$)



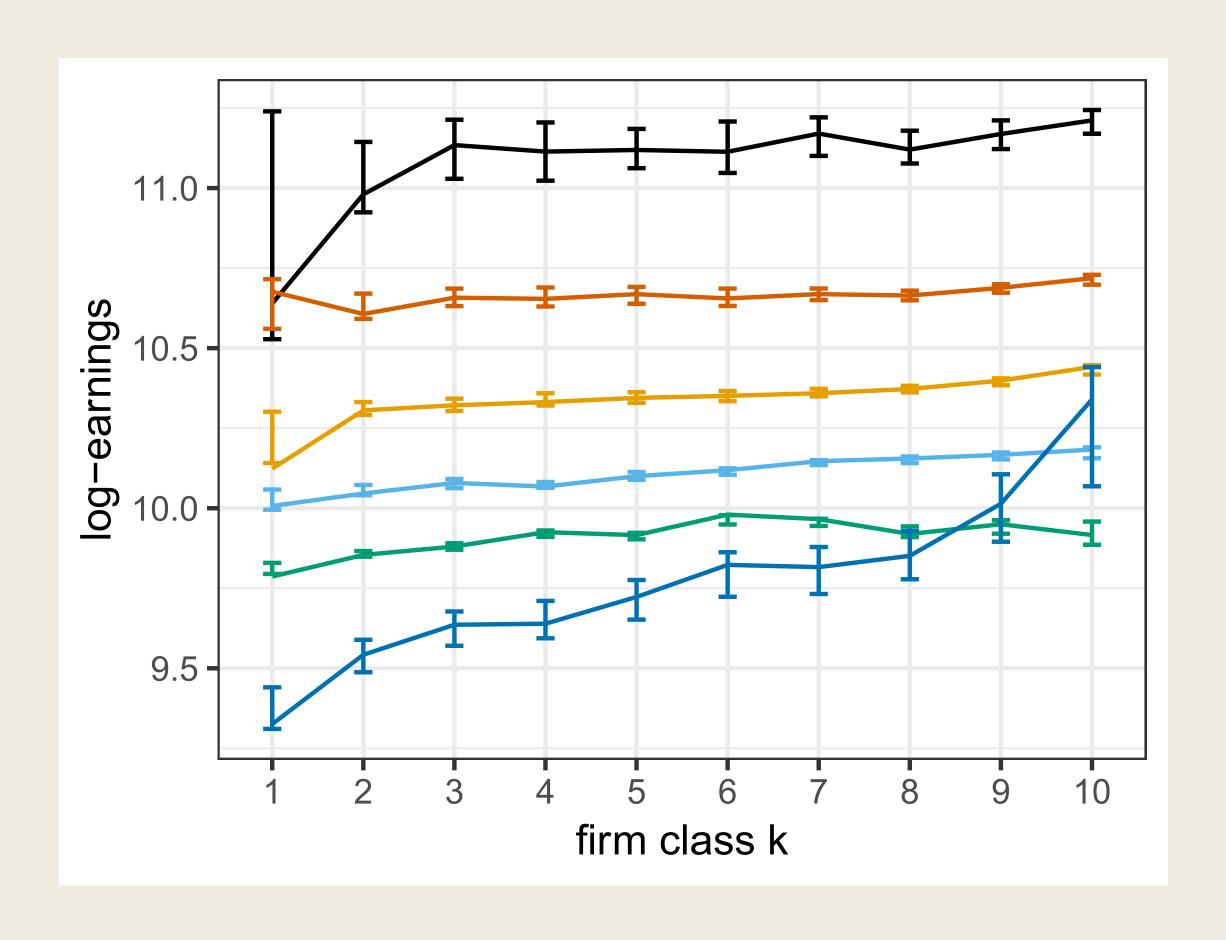


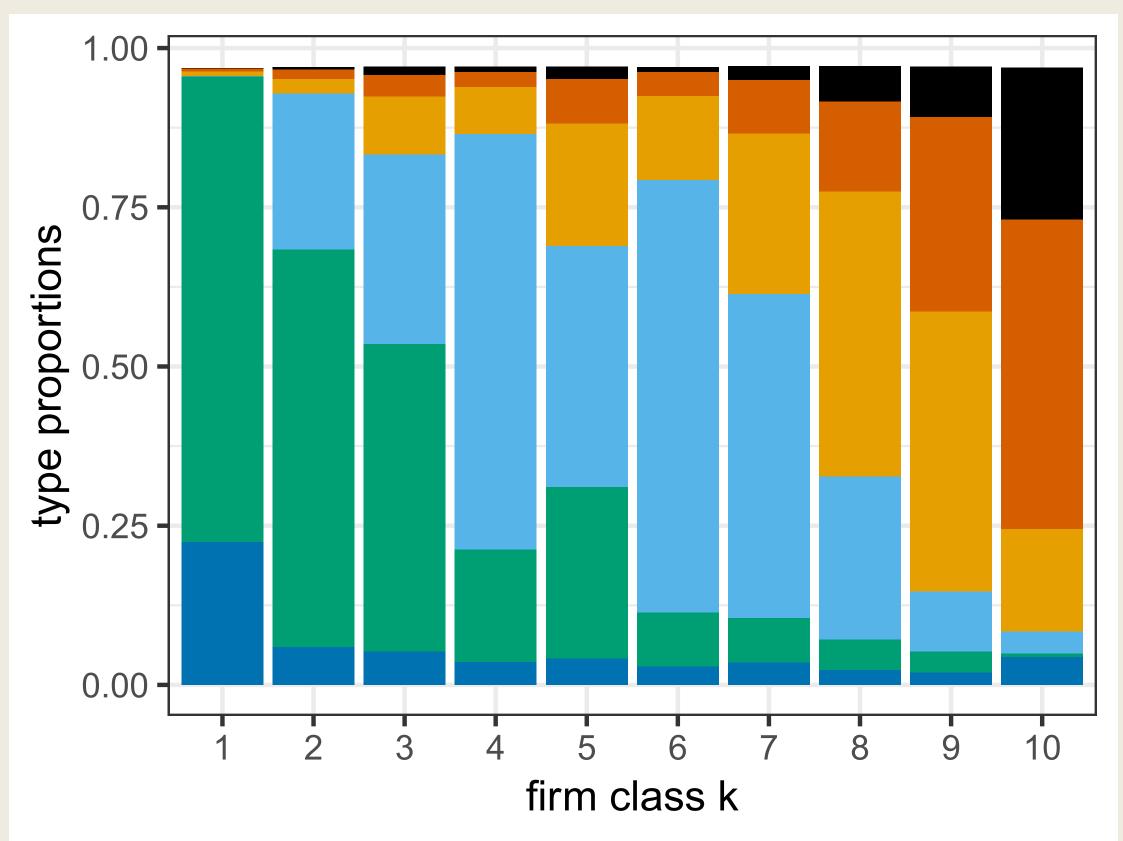
NAM $(\varsigma = 3)$





Recap: Data in BLM (2019)





Puzzle

"the presence of strong sorting, together with the absence of strong complementarities in wages, is difficult to reconcile with models where sorting is driven by complementarities in production"

— Bonhomme, Lamadon and Manresa (2019)

Sorting and Wages with Selection

- Borovičková & Shimer (2025)

Solution to the Puzzle

- Extend Shimer & Smith (2000) with idiosyncratic match quality
- When a worker and a firm meet, they draw a match quality $\omega \sim G(\omega)$
- They then decide whether to form a match or not
- A match (z, p) with match quality ω produces $\omega f(z, p)$
- This is the only modification

Value Functions

Value functions:

$$\rho U_z = \chi_0 \gamma \sum_{p} v_p \int_0^\infty \max\{S_{z,p}(\omega), 0\} dG(\omega)$$

$$\rho V_p = \chi_0 (1 - \gamma) \sum_z u_z \int_0^\infty \max\{S_{z,p}(\omega), 0\} dG(\omega)$$

$$(\rho + \delta)S_{z,p}(\omega) = \omega f(z,p) - \rho U_z - \rho V_p$$

The employment value is (in order to think about wage)

$$\rho W_{z,p}(\omega) = w_{z,p}(\omega) + \delta(U_z - W_{z,p}(\omega))$$

Steady State Distribution

■ The steady state distribution satisfies

$$\delta\phi_{z,p} = \chi_0 u_z v_p (1 - G(\underline{\omega}_{z,p}))$$

$$u_z = m_z - \sum_p \phi_{z,p}$$

$$v_p = n_p - \sum_{z} \phi_{z,p}$$

Equilibrium Analysis

The reservation match quality above which the match is formed, $\underline{\omega}_{z,p}$, satisfies

$$\underline{\omega}_{z,p} = \frac{\rho U_z + \rho V_p}{f(z,p)}$$

The wage is given by

$$w_{z,p}(\omega) = \rho U_z + \gamma \left[\omega f(z,p) - \rho U_z - \rho V_p \right]$$

Combining the above two expressions,

$$w_{z,p}(\omega) = \rho U_z + \gamma (\rho U_z + \rho V_p) \left[\frac{\omega}{\underline{\omega}_{z,p}} - 1 \right]$$

Exact AKM in Level

Suppose G is a Pareto, $G(\omega) = 1 - (\omega/\check{\omega})^{-\theta}$ with sufficiently low $\check{\omega}$.

Then, the wage of worker of i of type z_i employed at firm j of type p_j is

$$w_{i,j} = \alpha_{z_i} + \psi_{p_j} + \epsilon_{i,j}$$

where

$$\alpha_z \equiv \left(1 + \frac{\gamma}{\theta - 1}\right) \rho U_z, \quad \psi_p \equiv \frac{\gamma}{\theta - 1} \rho V_p, \quad \epsilon_{i,j} \equiv \gamma (\rho U_z + \rho V_p) \left(\frac{\omega}{\underline{\omega}_{z,p}} - \frac{\theta}{\theta - 1}\right)$$

and $\mathbb{E}[\epsilon_{i,j} | z = z_i, p = p_j] = 0$.

■ This is an exact AKM equation in level!

Proof

Manipulating the wage equation,

$$\begin{split} w_{z,p}(\omega) &= \rho U_z + \gamma (\rho U_z + \rho V_p) \left[\frac{\omega}{\underline{\omega}_{z,p}} - 1 \right] \\ &= \rho U_z + \gamma (\rho U_z + \rho V_p) \left[\frac{\omega}{\underline{\omega}_{z,p}} - \frac{\theta}{\theta - 1} + \frac{\theta}{\theta - 1} - 1 \right] \\ &= \rho U_z \left(1 + \frac{1}{\theta - 1} \gamma \right) + \frac{1}{\theta - 1} \gamma \rho V_p + \gamma (\rho U_z + \rho V_p) \epsilon_{z,p}(\omega) \end{split}$$

Since $\omega \mid \omega \geq \underline{\omega}_{z,p}$ follows Pareto with shape θ and scale $\underline{\omega}_{z,p}$, we have

$$\mathbb{E}[\epsilon_{z,p}(\omega) | z, p] = 0$$

Unpacking Striking Implications

$$w_{i,j} = \alpha_{z_i} + \psi_{p_j} + \epsilon_{i,j}$$

The previous result is striking in many ways

- The goods news is that it provides a structural interpretation of AKM but in level
 - In practice, whether to take a log or not matters little, so good news
 - Unlike Morchio-Moser (2025), we have an error term satisfying $\mathbb{E}_{z_i,p_i}[\epsilon_{i,j}]=0$
- The bad news is that wages are useless to learn about f(z, p)
- Regardless of f(z, p):
 - ullet High V_p firms pay higher wages for any worker on average
 - In contrast to Shimer-Smith!
 - ullet High U_z firms earn higher wages at any firm

Sorting

- What about sorting?
- lacktriangle We say $\phi_{z,p}$ satisfies the monotone likelihood ratio property (MLRP) if

$$\frac{\phi_{z_2,p_2}}{\phi_{z_1,p_2}} > \frac{\phi_{z_2,p_1}}{\phi_{z_1,p_1}}$$

for all $z_1 < z_2$ and $p_1 < p_2$

- The definition states that we are more likely to find "good" workers at "good" firms
- It is equivalent to say $\phi_{z,p}$ is strictly log-supermodular in (z,p) (i.e., $\partial_{z,p}[\ln\phi_{z,p}]>0$)
- This is an analogue of positive assortative matching in Shimer-Smith

Positive Assortative Matching

■ Under a weak condition on f(z, p), we find positive assortative matching

Suppose G is a Pareto, $G(\omega) = 1 - (\omega/\check{\omega})^{-\theta}$ with sufficiently low $\check{\omega}$.

Also assume f(z,p) is strictly increasing and weakly log-supermodular in (z,p) (i.e., $\partial_z f > 0, \partial_p f > 0$, and $\partial_{z,p}[\log f] \ge 0$).

Then, $\phi_{z,p}$ has a monotone likelihood ratio property.

- Despite wage not being supermodular, positive assortative matching obtains!
- Provides a unified explanation of the wages and sorting patterns in BLM

Proof

1. Since
$$\underline{\omega}_{z,p} = \frac{\rho U_z + \rho V_p}{f(z,p)}$$
,

$$\partial_{z,p} \ln \underline{\omega}_{z,p} = -\frac{\partial_z U_z \partial_p V_p}{(U_z + V_p)^2} - \partial_{z,p} \ln f(z,p) < 0$$

where we used U_z and V_p are strictly increasing and f is log-supermodular.

2. Using $\delta \phi_{z,p} = \chi_0 u_z v_p (1 - G(\underline{\omega}_{z,p}))$ with Pareto distribution,

$$\partial_{z,p}[\ln \phi_{z,p}] = \partial_{z,p}[\ln(1 - G(\underline{\omega}_{z,p}))]$$

$$= -\theta \partial_{z,p}[\ln \underline{\omega}_{z,p}]$$

$$> 0$$

which is equivalent to MLRP of $\phi_{z,p}$

The Role of Selection: ITT and ATT

- lacksquare Suppose a policymaker wants to increase the wages of worker z employed at p
- What if we separate the match and create a meeting between worker z and firm p'?
- A naive policymaker, based on AKM, might conclude that it increases wage by

$$\mathbb{E}_{\omega \geq \underline{\omega}_{z,p'}}[w_{z,p'}] - \mathbb{E}_{\omega \geq \underline{\omega}_{z,p}}[w_{z,p}] = \psi_{p'} - \psi_{p}$$

- In fact, this is the average treatment effect on treated (ATT)
- Such a conclusion is misleading in this model because the intent to treat (ITT) is

$$\mathbb{E}[w_{z,p'}] - \mathbb{E}_{\omega \geq \underline{\omega}_{z,p}}[w_{z,p}] = \left(1 - G(\underline{\omega}_{z,p'})\right) \psi_{p'} - \psi_{p}$$

• may well decrease income even if $\psi_{z,p'} > \psi_{z,p}$

Sorting and Wages with Selection: Quantification with On-the-Job Search

– Borovičková & Shimer (2024)

Quantitative Model

- Now we would like to see whether the model can quantitatively replicate BLM
- In doing so, we introduce the on-the-job search
 - On-the-job search is how a typical worker switch firms in the data
 - It helps us to match the wage dispersion
- At rate $\chi_1 v_p$, an employed worker meets with firm p
- At rate $\chi_1 \phi_{z,p}$, a vacancy meets with an employed worker z at firm p
- Assume Nash bargaining with outside option being unemployment
 - no sequential auction

Worker Value Functions

Unemployed:

$$\rho U_z = \chi_0 \sum_{p} v_p \int_0^\infty \max\{W_{z,p}(\omega), 0\} dG(\omega)$$

Employed:

$$\begin{split} \rho W_{z,p}(\omega) &= w_{z,p}(\omega) + \delta(U_z - W_{z,p}(\omega)) \\ &+ \chi_1 \sum_{p'} v_{p'} \int \max\{W_{z,p'}(\omega') - W_{z,p}(\omega), 0\} dG(\omega') \end{split}$$

Firm Value Functions

Vacant job:

$$\rho V_p = \chi_0 \sum_{z} u_z \int_0^\infty \max\{J_{z,p}(\omega), 0\} dG(\omega)$$

$$+ \chi_1 \sum_{z} \sum_{p'} \int \phi_{z,p}(\omega') \int (J_{z,p}(\omega) - V_p) \mathbb{I}_{W_{z,p}(\omega) > W_{z,p'}(\omega')} dG(\omega) d\omega'$$

Filled job:

$$\begin{split} \rho J_{z,p}(\omega) &= \omega f(z,p) - w_{z,p}(\omega) + \delta(V_p - J_{z,p}(\omega)) \\ &+ \chi_1 \sum_{p'} v_{p'} \int \mathbb{I}_{W_{z,p'}(\omega') > W_{z,p}(\omega)} dG(\omega') (V_p - J_{z,p}(\omega)) \end{split}$$

Nash Bargaining

The wages are determined by Nash bargaining:

$$\max_{w_{z,p}(\omega)} (W_{z,p}(\omega) - U_z)^{\gamma} (J_{z,p}(\omega) - V_p)^{1-\gamma}$$

- Again, no sequential auction here
- This gives:

$$W_{z,p}(\omega) = U_z + \gamma S_{z,p}(\omega)$$

$$J_{z,p}(\omega) = V_p + (1 - \gamma)S_{z,p}(\omega)$$

Match Surplus

Substituting the Nash bargaining equations into the value functions,

$$\rho U_z = \chi_0 \gamma \sum_p v_p \int_0^\infty \max\{S_{z,p}(\omega), 0\} dG(\omega)$$

$$\rho V_p = \chi_0 (1 - \gamma) \sum_z u_z \int_0^\infty \max\{S_{z,p}(\omega), 0\} dG(\omega)$$

where the joint match surplus $S_{z,p}(\omega)$ solves

$$(\rho + \delta)S_{z,p}(\omega) = \omega f(z,p) - \rho U_z - \rho V_p + \chi_1 \sum_{p} v_p \int_{S_{z,p'}(\omega') > S_{z,p}(\omega)} \left[\gamma S_{z,p'}(\omega') - S_{z,p}(\omega) \right] dG(\omega')$$

Steady State Distribution

Steady state employment distribution satisfies:

$$\phi_{z,p}(\omega) \left(\delta + \chi_1 \sum_{p'} v_{p'} \int_0^\infty \mathbb{I}_{S_{z,p'}(\omega') \ge S_{z,p}(\omega)} dG(\omega') \right)$$

$$= v_p g(\omega) \left(\chi_0 u_z \mathbb{I}_{S_{z,p}(\omega) \ge 0} + \chi_1 \sum_{p'=1}^{Y} \int_0^\infty \mathbb{I}_{S_{z,p}(z) \ge S_{z,p'}(\omega')} \phi_{z,p'}(\omega') d\omega' \right)$$

The mass of unemployed and vacant jobs are:

$$u_{z} = m_{z} - \sum_{p} \int \phi_{z,p}(\omega) d\omega$$

$$v_{p} = n_{p} - \sum_{z} \int \phi_{z,p}(\omega) d\omega$$

Calibration

- Annual calibration: $\rho = 0.05$, $\delta = 0.25$, $\gamma = 0.5$, $\chi_1 = 0.2\chi_0$
- \blacksquare 10 worker types, 10 firm types, with each type measure 0.1
 - $\log z \in [0, \log(1 + \Delta_z), 2\log(1 + \Delta_z), ..., 9\log(1 + \Delta_z)]$
 - $\log p \in [0, \log(1 + \Delta_p), 2\log(1 + \Delta_p), ..., 9\log(1 + \Delta_p)]$
- Assume

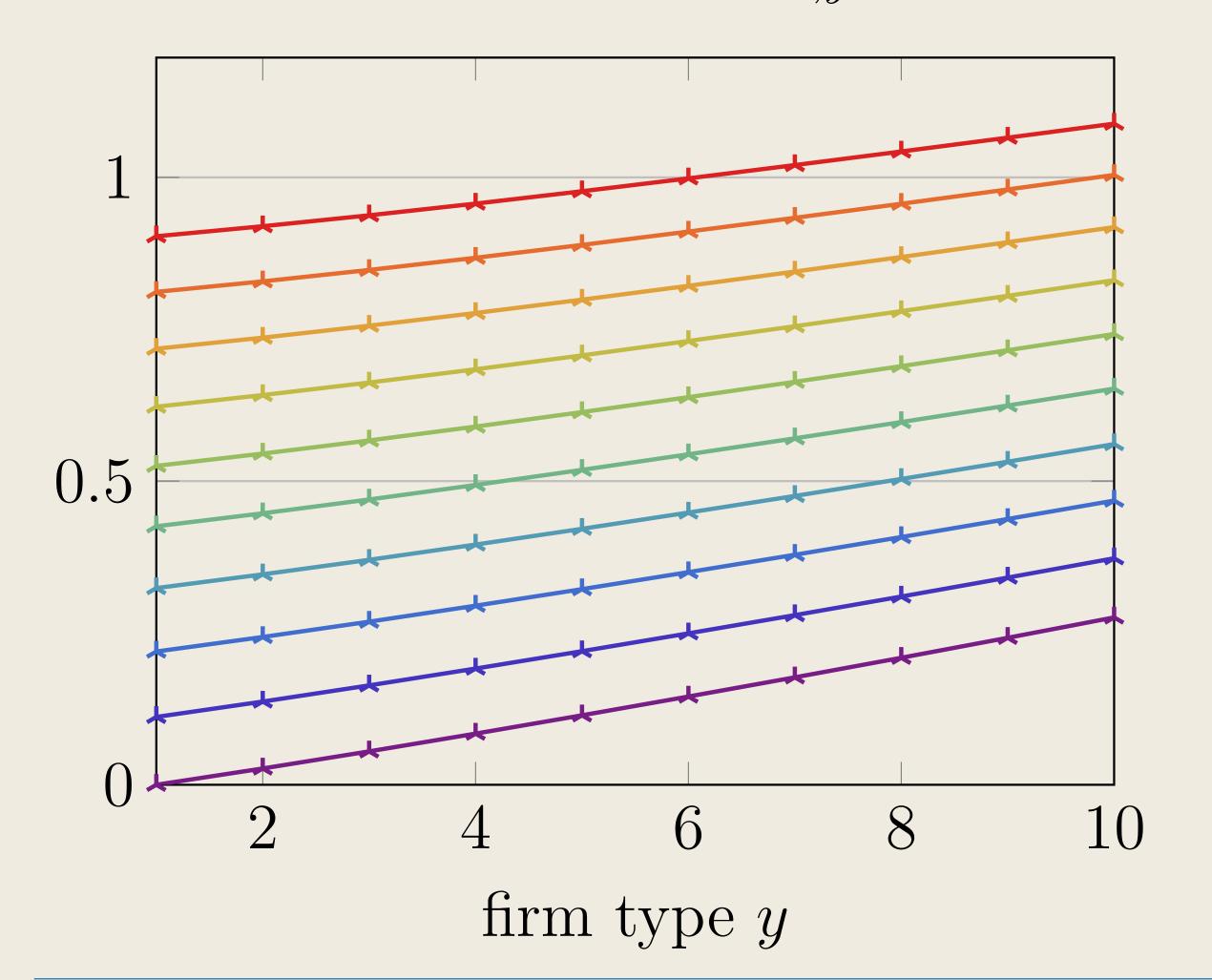
$$f(z,p) = \left(\alpha z^{\frac{\varsigma-1}{\varsigma}} + (1-\alpha)p^{\frac{\varsigma-1}{\varsigma}}\right)^{\frac{\varsigma}{\varsigma-1}} \quad \text{with} \quad \alpha = 1/2$$

■ Estimate $(\Delta_z, \Delta_w, \varsigma, \theta)$ to target the wage decomposition in BLM:

	var(log W)	$\mathrm{var}(\alpha)$	$\mathrm{var}(\psi)$	$2\mathrm{cov}(\alpha,\psi)$	$\mathrm{var}(arepsilon)$
$\overline{~ m BLM}$	0.1240	0.0747	0.0053	0.0166	0.0274

Successfully Replicate BLM

Average log wage $w_{x,y}^*$, BLM



Share of worker types, BLM

