The Insurance Role of Firms

741 Macroeconomics Topic 5

Masao Fukui

2025 fall

Firms as Insurance Providers

- Knight (1921) ascribes the very existence of the firm to its role as an insurance provider
 - Businesses are inherently risky and uncertain
 - Agents who can tolerate or diversify risk become the owner of firms
 - They then provide insurance to workers through wage contracts
- The models we have seen so far do not capture this idea
- We make the following modifications:
 - workers are risk-averse
 - firms offer long-term contracts
 - allow for time-varying productivity shocks

A Toy Model of Optimal Contract

Environment

- Two periods, t = 0,1
- \blacksquare At t = 0, a worker and a firm are matched
- Preferences:
 - Workers are risk-averse: $u(c_0^w) + \beta \mathbb{E}_0[u(c_1^w)]$
 - Firms are risk-neutral: $c_0^f + \beta \mathbb{E}[c_1^f]$
- Firms produce z_t units of output per worker: z_0 is deterministic & z_1 is stochastic
- lacksquare The firm has to deliver utility of V_0 to the workers (exogenous outside option)
- No financial asset is available

Optimal Contracting Problem

$$\max_{w_0,\{w_1(z_1)\}} z_0 - w_0 + \beta \mathbb{E} \left[z_1 - w_1(z_1) \right]$$

s.t.
$$u(w_0) + \beta \mathbb{E}[u(w_1(z_1))] \ge V_0$$

- Firms write wage contracts contingent on the shocks
- Taking the first-order conditions, (let λ be the Lagrange multiplier)

$$\lambda u'(w_0) = 1$$

$$\lambda u'(w_1(z_1)) = 1$$

- ⇒ perfect wage/consumption smoothing
- Even in the absence of a financial market, firm can instead act as insurance provider

History-Dependence in Wages

■ Eliminating the Lagrange multiplier, we have explicit solutions:

$$w_0 = w_1(z_1) = u^{-1}(V_0/(1+\beta))$$

- A critical aspect, beyond smoothing, is that wage is history-dependent
- Wage at t = 1 is a function of outside option of workers at t = 0
- This is not a feature of most of the models we have seen
 - There, wage is a function of current and future productivity and outside options
 - The only exception is the sequential auction

Beaudry & DiNardo (1991)

- Beaudry & DiNardo (1991) test the prediction using CPS/PSID 1976-1984
- Do the past labor market conditions predict wages...... above and beyond contemporaneous labor market conditions?
- Run the following regression:

$$\ln w_{i,t,t-j} = \beta_1 \operatorname{unemp}_t + \beta_2 \operatorname{unemp}_{t-j} + \beta_3 \operatorname{unemp}_{t-j,t} + \gamma' X_{i,t} + \epsilon_{i,t}$$

- $w_{i,t,t-j}$: wage of worker i at time t hired at time t-j
- unemp $_t$: unemployment at time t
- unemp $_{t-j}$: unemployment when the worker is hired
- unemp $_{t,t-i}^{min}$: the lowest unemployment rate during the tenure

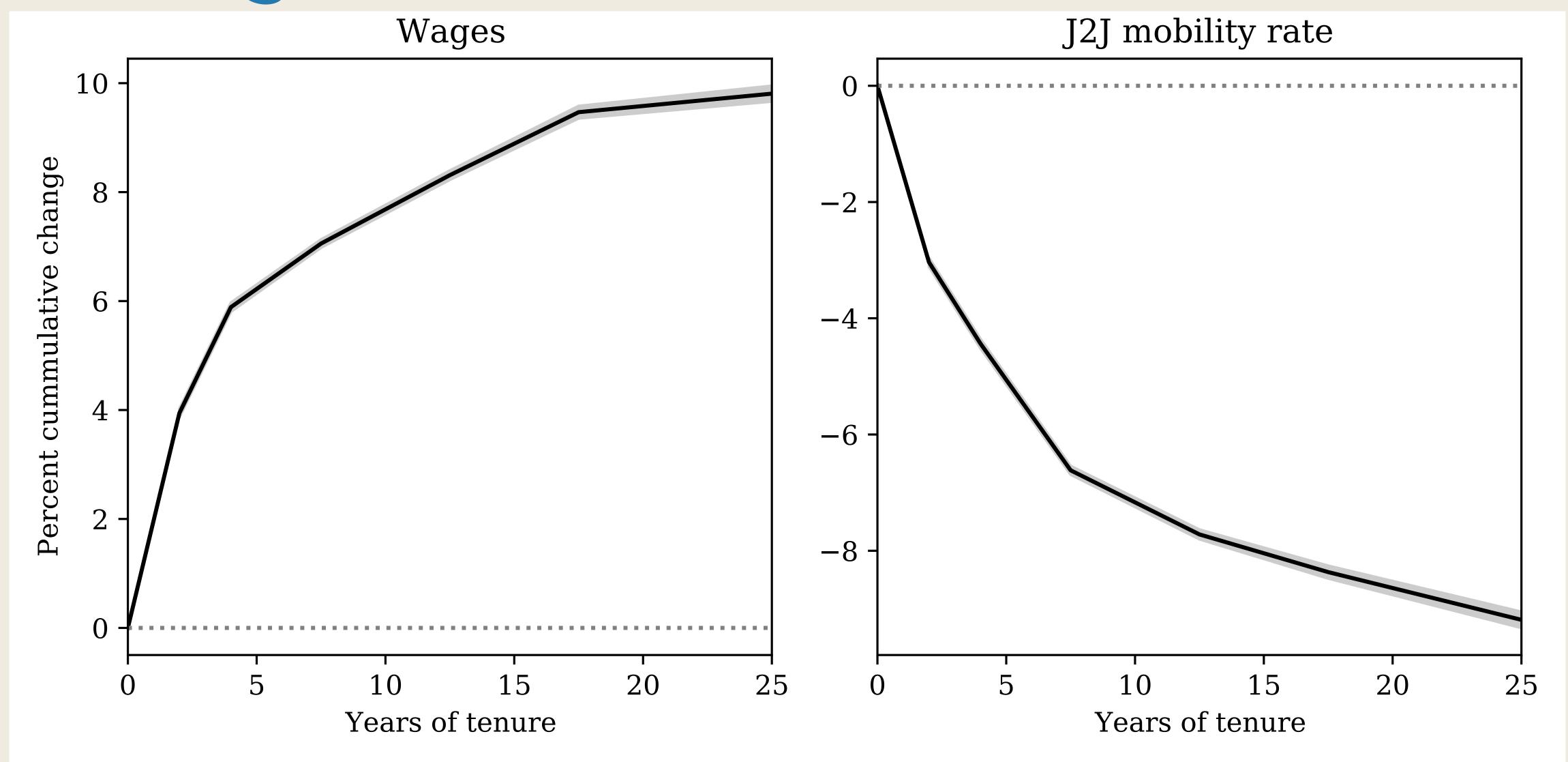
Wages are History Dependent in the Data

	Contemporaneous Unemployment Rate	Unemployment at Start of Job	Minimum Rate since Start of Job	Data
1.	020			PSID
	(.002)			(levels)
2.	• • •	030	• • •	PSID
		(.002)		(levels)
3.			045	PSID
			(.003)	(levels)
4.	010	025	• • •	PSID
	(.002)	(.002)		(levels)
5.	001		044	PSID
	(.002)		(.003)	(levels)
6.	.000	.013	059	PSID
	(.002)	(.004)	(.006)	(levels)
7.	014°	• • •	• • •	PSID
	(.002)			(fixed effect)
8.		021		PSID
		(.003)		(fixed effect)
9.	• • •	• • •	029	PSID
			(.003)	(fixed effect)
10.	007	006	029°	PSID
	(.0025)	(.007)	(.008)	(fixed effect)

Wages are Not Smooth in the Data

- In the data, wages are rarely perfectly smoothed
 - 1. Wages rise with tenure on average
 - 2. Wages respond to idiosyncratic firm-level shocks

Wages Rise and J2J Falls with Tenure



Partial Insurance, More So for Risk-Averse Workers

Shock to value added of firm j

$$\Delta \ln w_{ijt} = \beta \Delta \epsilon_{j,t} + X'_{ijt} \gamma + \nu_{ijt}$$

	Sensitivity to Permanent Shocks (1)	Sensitivity to Transitory Shocks (2)
$\Delta\epsilon_{j,t}$.1096	.0151
<i>J</i> , · ·	(.0324)	(.0144)
	[.0213]	[.1947]
$\Delta \epsilon_{j,t} \times \text{high risk aversion}$	0832	0120
<i>y</i> , •	(.0366)	(.0154)
	[.0157]	[.2468]
$\Delta \epsilon_{i,t} \times \text{manager}$.0778	.0132
<i>J</i> , ·	(.1197)	(.0166)
	[.0237]	[.2572]
$\Delta \epsilon_{j,t} \times \text{s.d.}[\ln (VA_{jt})]$	0268	0040
<i>J</i> , v = <i>J</i> v =	(.0129)	(.0038)
	[.0604]	[.3575]
$\Delta \epsilon_{it} \times \text{bankruptcy index}$.0327	0027^{-}
J ^v 1 /	(.0388)	(.0100)
	[.0118]	[.2474]
Observations	24,956	40,337
<i>J</i> -test (<i>p</i> -value)	.3257	.2863

Moral Hazard

- Now introduce moral hazard frictions into the optimal contracting problem
- At t = 1 (after z_1 realizes), workers receive outside offers
 - Let $F(W_1)$ be the cdf of the offer utility distribution (exogenous)
- Two important assumptions:
 - 1. Contracts cannot depend on the arrival of the outside offer
 - Either because the outside offer is unverifiable or a fairness concern
 - 2. Contracts cannot specify worker's job mobility decisions
 - Unconstitutional in many countries: "no slavery"
- If outside offer provides a better utility, the worker leaves for the other firm

Optimal Contracting Problem

$$\max_{w_0,\{w_1(z_1)\}} z_0 - w_0 + \beta \mathbb{E} \left[F(u(w_1(z_1))) (z_1 - w_1(z_1)) \right]$$

s.t.
$$u(w_0) + \beta \mathbb{E}\left[\int \max\{u(w_1(z_1)), \tilde{W}_1)\} dF(\tilde{W}_1)\right] \ge V_0$$

■ The FOCs are (let $\tilde{F}(w_1) \equiv F(u(w_1))$

$$\lambda u'(w_0) = 1$$

$$-\tilde{F}(w_1(z_1)) + \tilde{F}'(w_1(z_1))[z_1 - w_1(z_1)] + \lambda \tilde{F}(w_1(z_1))u_1'(w_1(z_1)) = 0$$

Getting rid of the Lagrange multiplier,

$$\frac{u'(w_1(z_1))}{u'(w_0)} = 1 - \frac{\tilde{F}'(w_1(z_1))}{\tilde{F}(w_1(z_1))} [z_1 - w_1(z_1)]$$

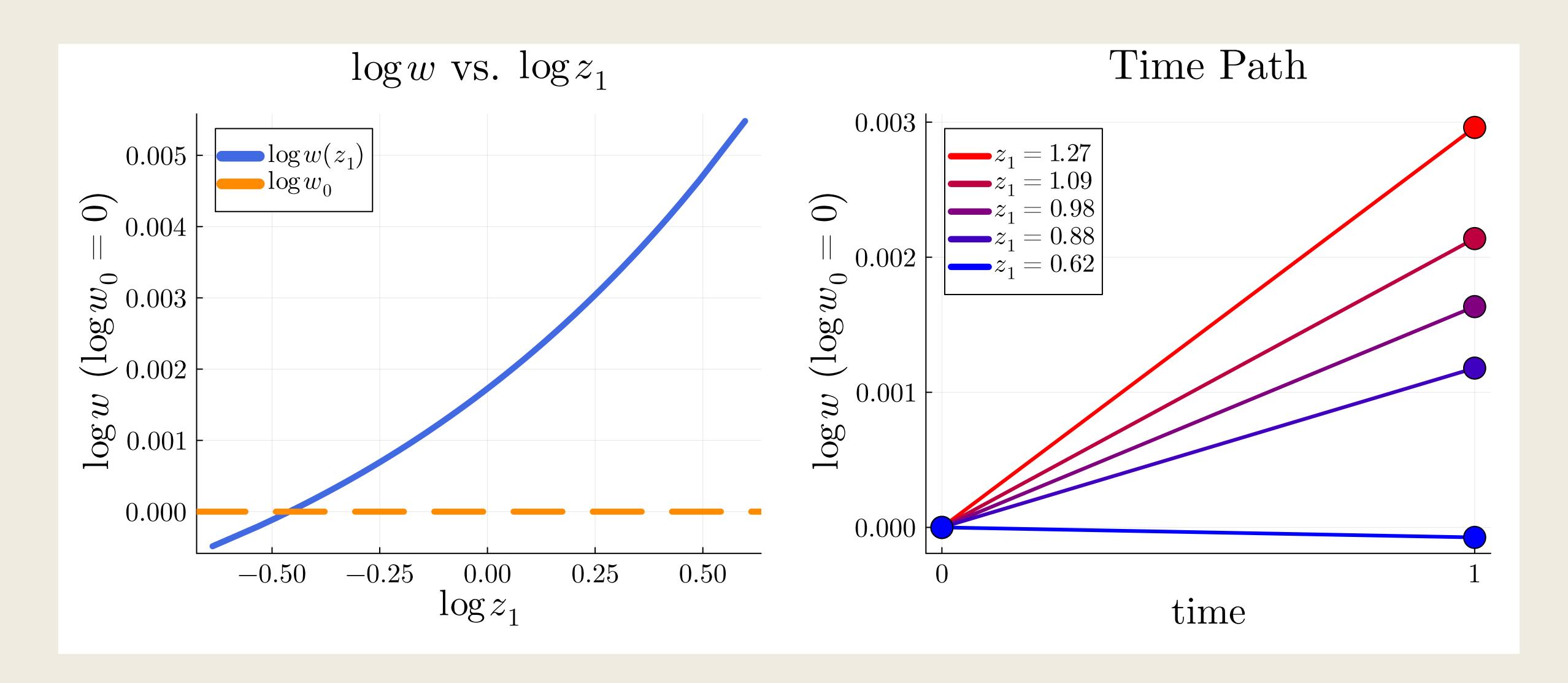
Backloading and Frontloading

$$\frac{u'(w_1(z_1))}{u'(w_0)} = 1 - \frac{\tilde{F}'(w_1(z_1))}{\tilde{F}(w_1(z_1))} [z_1 - w_1(z_1)]$$

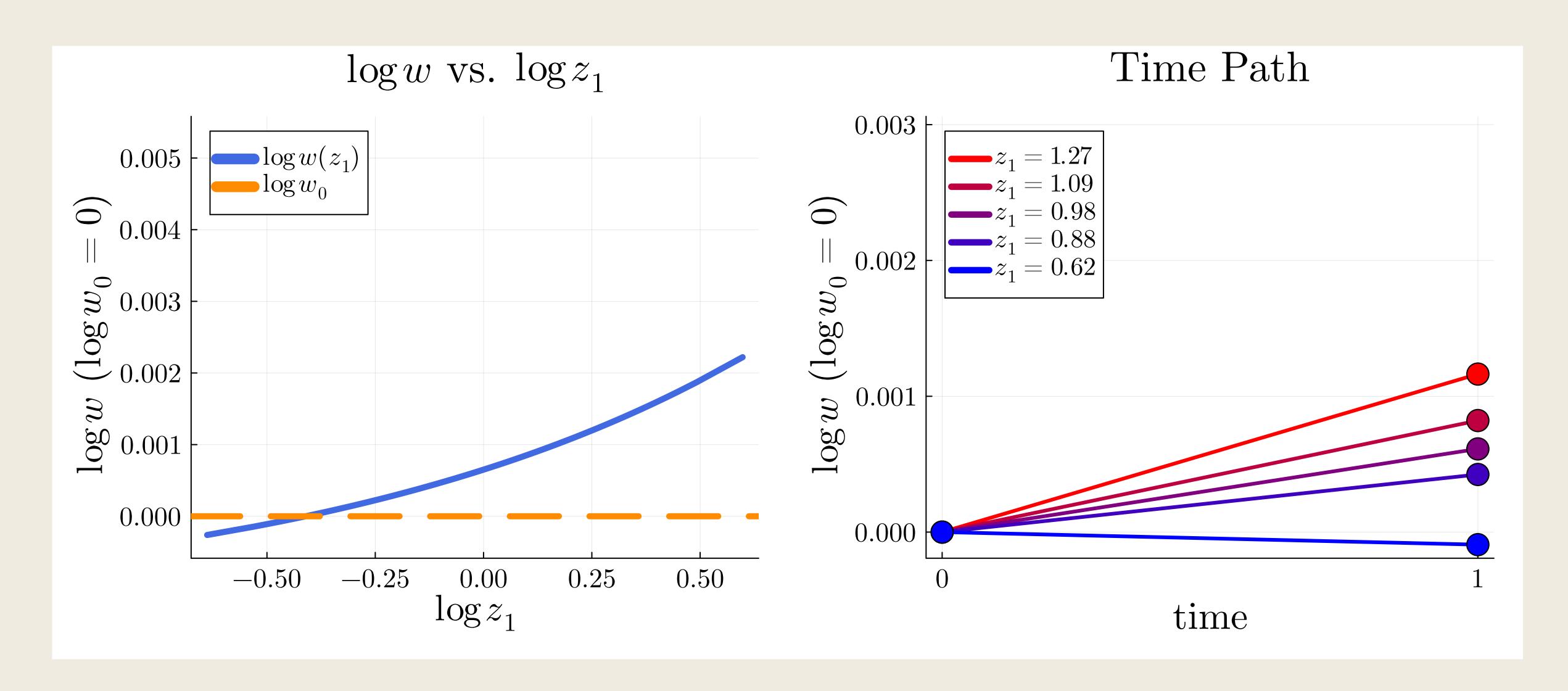
$$\equiv \xi(z_1)$$

- 1. $\xi_1(z_1) > 0 \Leftrightarrow z_1 w_1(z_1) > 0$
 - Raising wages \Rightarrow increased retention \Rightarrow higher profits (since $z_1 w_1(z_1) > 0$)
 - Firms therefore backload wages $w_1(z_1) > w_0$
- 2. $\xi_1(z_1) < 0 \Leftrightarrow z_1 w_1(z_1) < 0$
 - Raising wages \Rightarrow increased retention \Rightarrow lower profits (since $z_1 w_1(z_1) < 0$)
 - Firms therefore frontload wages $w_1(z_1) < w_0$

Numerical Examples with Low Risk Aversion



Numerical Examples with High Risk Aversion



Recursive Contract

We can equivalently rewrite the previous problem in a recursive form

$$\Pi_0(V_0) = \max_{w_0, w_1(z_1)} \quad z_0 - w_0 + \beta \mathbb{E}\left[F(u(w_1(z_1)))(z_1 - w_1(z_1))\right]$$

s.t.
$$u(w_0) + \beta \mathbb{E} \left[\int \max \left\{ u(w_1(z_1)), u(\tilde{w}_1) \right\} dF(\tilde{w}_1) \right] \ge V_0$$

Recursive Contract

We can equivalently rewrite the previous problem in a recursive form

$$\Pi_0(V_0) = \max_{w_0, \{V_1(z_1)\}} \quad z_0 - w_0 + \beta \mathbb{E}\left[F(V_1(z_1))\Pi_1(V_1(z_1), z_1)\right]$$

s.t.
$$u(w_0) + \beta \mathbb{E}\left[\int \max\{V_1(z_1), u(\tilde{w}_1)\}dF(\tilde{w}_1)\right] \ge V_0$$

Recursive Contract

We can equivalently rewrite the previous problem in a recursive form

$$\Pi_0(V_0) = \max_{w_0, \{V_1(z_1)\}} \quad z_0 - w_0 + \beta \mathbb{E}\left[F(V_1(z_1))\Pi_1(V_1(z_1), z_1)\right]$$

s.t.
$$u(w_0) + \beta \mathbb{E}\left[\int \max\left\{V_1(z_1), u(\tilde{w}_1)\right\} dF(\tilde{w}_1)\right] \ge V_0$$

In the next period, firms solve

$$\Pi_1(V_1, z_1) = \max_{w_1} z_1 - w_1$$

s.t. $u(w_1) \ge V_1$

- V_1 is called promised utility
- Constraints are called promise-keeping constraints

Recursive Contracts with Many Periods

- Writing recursively not useful with 2-period, but very useful if more than 2 periods!
- \blacksquare Recursive formulation naturally extends to T-period model:

$$\Pi_{t}(V_{t}, z_{t}) = \max_{w_{t}, \{V_{t+1}(z_{t+1})\}} z_{t} - w_{t} + \beta \mathbb{E}\left[F(V_{t+1}(z_{t+1})) \Pi_{t+1}(V_{t+1}(z_{t+1}), z_{t+1})\right]$$

s.t.
$$u(w_t) + \beta \mathbb{E} \int \max\{V_{t+1}(z_{t+1}), \tilde{W}\} dF(\tilde{W}) \ge V_t$$

and

$$\Pi_T(V_T, z_T) = \max_{w_T} z_T - w_T$$
s.t.
$$u(w_T) \ge V_T$$

Can use the standard Bellman technique to solve the optimal contract!

Long-term Wage Contracts in the Frictional Labor Market

Based on Balke-Lamadon (2022) Souchier (2024)

Preferences and Technology

- Discrete time, $t = 0,..., \infty$. Focus on the steady state (for now).
- Firms:
 - Risk-neutral with preferences $\sum_{t=0}^{\infty} \beta^t c_t^f$
 - Heterogeneous in their productivity z, which follows Markov process
- Workers:
 - Risk-averse with preferences $\sum_{t=0}^{\infty} \beta^t u(c_t^w)$
 - Fixed and homogenous productivity
- A match produces z units of output
- lacksquare Unemployed workers produces b at home

Timing

- 1. Firm-level productivity shocks z_t are realized
- 2. Firms produce and pay wages
- 3. All agents search & match
 - Employed and unemployed workers search for jobs
 - Firms post vacancies
 - new matches are formed and new contracts are signed
- 4. Exogenous separations take place and workers can quit

Directed Search

- Search is directed
 - Random search is a nightmare in this kind of model
- Firms post wage contracts, and workers choose which jobs (submarket) to apply for
- \blacksquare Without loss of generality, submarkets are indexed by worker's continuation value v
 - Continuation value from the job is the only thing that workers care!
- There is a CRS matching function in each submarket $v: M(\phi_u(v) + \zeta \phi_e(v), \phi_f(v))$
 - Define $\lambda^U(v) \equiv M/(\phi_u + \zeta \phi_e)$, $\lambda^E(v) \equiv \zeta \lambda^U(v)$, and $\lambda^F(v) \equiv M/\phi_f$
- Unemployed workers then solve

$$U = u(b) + \beta [\max_{v} \lambda^{U}(v)v + (1 - \lambda^{U}(v))U]$$

Contracts

- Firms offer long-term contracts to workers under full commitment
- Firms specify the wages contingent on the **history** of productivity shocks
 - Again, contracts cannot depend on outside offers or specify mobility decisions
- As before, we can equivalently describe contracts recursively:
 - Given the promised utility V_t and productivity z_t today, firms specify

$$W_t(V_t, z_t), V_{t+1}(z_{t+1}; V_t, z_t)$$

subject to promise-keeping constraint:

$$u(w(V_t, z_t)) + \beta \left[\max_{v} \lambda^E(v)v + (1 - \lambda^E(v)) \Big((1 - \delta) \max\{\mathbb{E}V_{t+1}(z_{t+1}; V_t, z_t), U\} + \delta U \Big) \right] \ge V_t$$

Bellman Equation

lacksquare Value of firm with promised utility V_t and productivity z_t

$$\Pi(V_t, z_t) = \max_{w_t, \{V_{t+1}(z_{t+1})\}} z_t - w_t + \beta (1 - \lambda^E(v))(1 - \delta)(1 - q) \mathbb{E}[\Pi(V_{t+1}(z_{t+1}), z_{t+1})]$$
s.t. $u(w) + \beta \left[\lambda^E(v)v + (1 - \lambda^E(v))W_{t+1}\right] \ge V_t$ (Promise-keeping)

$$v \in \arg\max_{\tilde{v}} \lambda^{E}(\tilde{v})\tilde{v} + (1 - \lambda^{E}(\tilde{v}))W_{t+1}$$

(Incentive compatibility for OJS)

$$q = \mathbb{I}\left[\mathbb{E}[V_{t+1}(z_{t+1})] < U\right]$$

(Incentive compatibility for quit)

where W_{t+1} is the continuation value:

$$W_{t+1} \equiv (1 - \delta)(1 - q)\mathbb{E}[V_{t+1}(z_{t+1})] + (\delta + (1 - \delta)q)U$$

Optimal Wage Formula

$$\frac{u'(w_{t+1}(z_{t+1}))}{u'(w_t)} = 1 - \underbrace{\frac{\partial \ln p_{t+1}}{\partial w_{t+1}(z_{t+1})}}_{\equiv \xi(z_{t+1})} \mathbb{E}\left[\Pi(V_{t+1}(z_{t+1}), z_{t+1})\right]$$

- $ightharpoonup p_{t+1}$ is the probability that workers stay at the current firm
- Since $\frac{\partial \ln p_{t+1}}{\partial w_{t+1}} \ge 0$, $\xi(z_{t+1}) > 0$ if and only if $\mathbb{E}[\Pi] > 0$
 - If $\xi_{t+1} > 0$, it is optimal to backload $(w_t < w_{t+1})$ so as to incentivize workers to stay
 - If $\xi_{t+1} < 0$, it is optimal to frontload $(w_t > w_{t+1})$ so as to incentivize workers to leave

- The cost of vacancy posting is κ , and we assume there is a free-entry
- \blacksquare For each submarket v, free entry implies (whenever there is a positive entry)

$$\lambda^F(v)\beta\Pi(v,z_0)=\kappa$$

- The cost of vacancy posting is κ , and we assume there is a free-entry
- For each submarket v, free entry implies (whenever there is a positive entry)

$$\lambda^F(v)\beta\Pi(v,z_0)=\kappa$$

- 1. $\Pi(v, z_0)$ strictly decreasing in $v \Rightarrow \lambda^F(v)$ strictly increasing in v
 - Low-profits (high wage) are compensated by high vacancy filling rate

- The cost of vacancy posting is κ , and we assume there is a free-entry
- For each submarket v, free entry implies (whenever there is a positive entry)

$$\lambda^F(v)\beta\Pi(v,z_0)=\kappa$$

- 1. $\Pi(v, z_0)$ strictly decreasing in $v \Rightarrow \lambda^F(v)$ strictly increasing in v
 - Low-profits (high wage) are compensated by high vacancy filling rate
- 2. $\lambda^F(v)$ increasing in $v \Rightarrow \theta(v)$ is decreasing in v
 - High-wage postings are associated with fewer vacancies relative to applicants

- The cost of vacancy posting is κ , and we assume there is a free-entry
- For each submarket v, free entry implies (whenever there is a positive entry)

$$\lambda^F(v)\beta\Pi(v,z_0)=\kappa$$

- 1. $\Pi(v, z_0)$ strictly decreasing in $v \Rightarrow \lambda^F(v)$ strictly increasing in v
 - Low-profits (high wage) are compensated by high vacancy filling rate
- 2. $\lambda^F(v)$ increasing in $v \Rightarrow \theta(v)$ is decreasing in v
 - High-wage postings are associated with fewer vacancies relative to applicants
- 3. Consequently, $\lambda^{U}(v) \& \lambda^{E}(v)$ are decreasing in v
 - Good jobs are harder to find in equilibrium

Equilibrium Definition

- A recursive equilibrium consists of value functions $\Pi(V,z)$, policy functions $V_{t+1}(z_{t+1};V,z)$, w(V,z), v(V,z), and q(V,z), as well as meeting rates $\lambda^U(v)$, $\lambda^E(v)$, $\lambda^F(v)$ such that:
 - 1. Value and policy functions solve Bellman equations
 - 2. The free-entry conditions are satisfied
 - 3. Meeting rates are consistent with the matching function

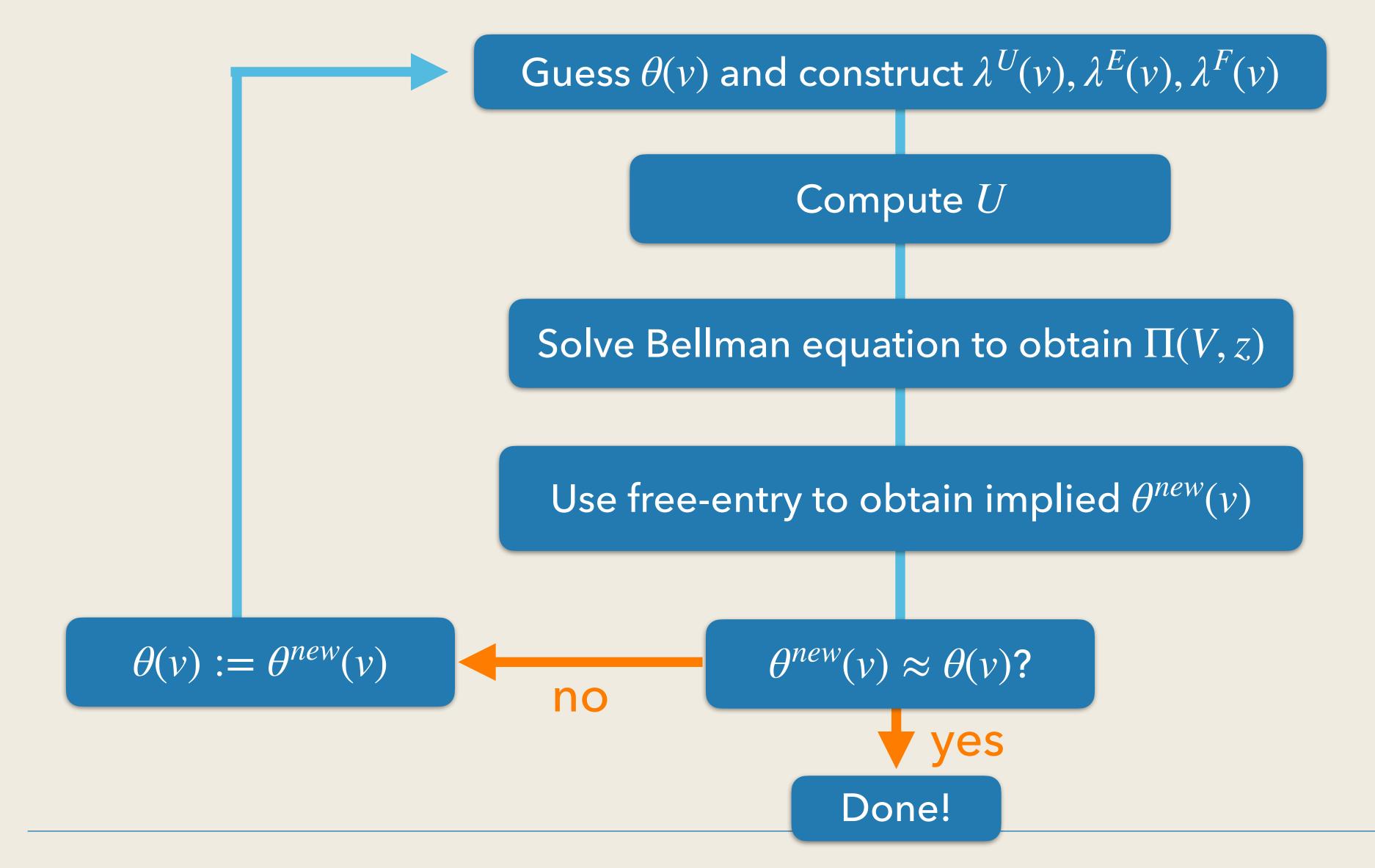
Equilibrium Definition

- A recursive equilibrium consists of value functions $\Pi(V,z)$, policy functions $V_{t+1}(z_{t+1};V,z)$, w(V,z), v(V,z), and q(V,z), as well as meeting rates $\lambda^U(v)$, $\lambda^E(v)$, $\lambda^F(v)$ such that:
 - 1. Value and policy functions solve Bellman equations
 - 2. The free-entry conditions are satisfied
 - 3. Meeting rates are consistent with the matching function
- Realize that the definition does **not** involve employment distribution!

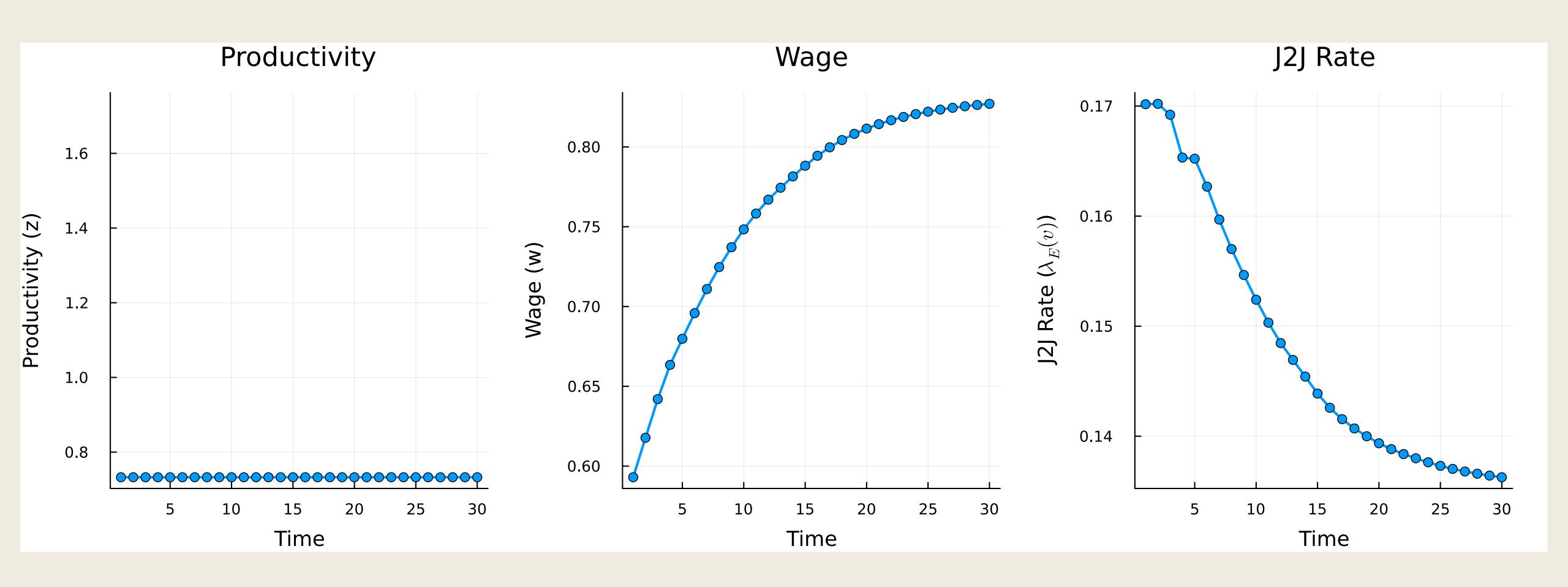
Equilibrium Definition

- A recursive equilibrium consists of value functions $\Pi(V,z)$, policy functions $V_{t+1}(z_{t+1};V,z)$, w(V,z), v(V,z), and q(V,z), as well as meeting rates $\lambda^U(v)$, $\lambda^E(v)$, $\lambda^F(v)$ such that:
 - 1. Value and policy functions solve Bellman equations
 - 2. The free-entry conditions are satisfied
 - 3. Meeting rates are consistent with the matching function
- Realize that the definition does **not** involve employment distribution!
- This is the so-called **block recursive** property (Shi, 2005; Menzio & Shi, 2011): Value and policy functions are indepedent from the distribution.
 - Firms don't need to think about the distribution because of directed search
 - Workers don't need to think about the distribution because of free-entry

Computational Algorithm



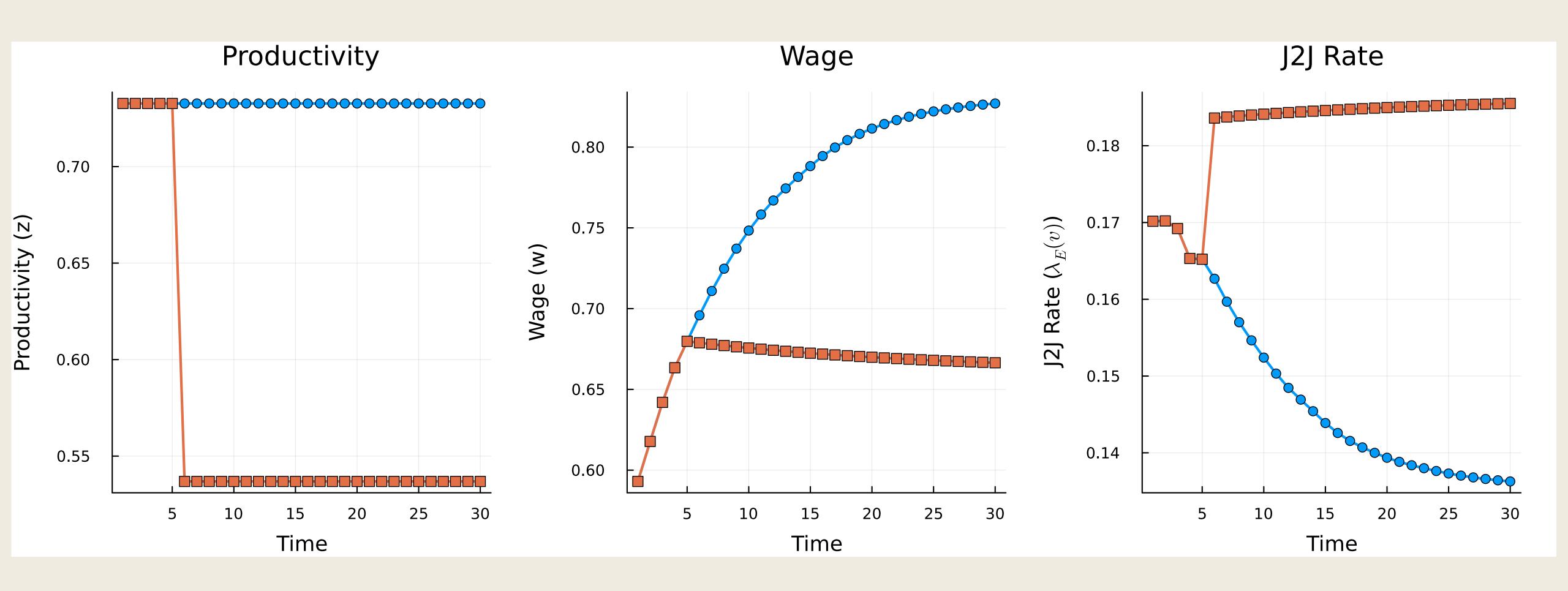
Average Tenure Profile



Positive Shock to Firm Productivity



Negative Shock to Firm Productivity



Which Wage Setting Protocol?

- 1. Wage posting (Burdett-Mortensen, 1998)
- 2. Nash bargaining (including sequential auction)
- 3. Long-term wage contracts

3. Contract

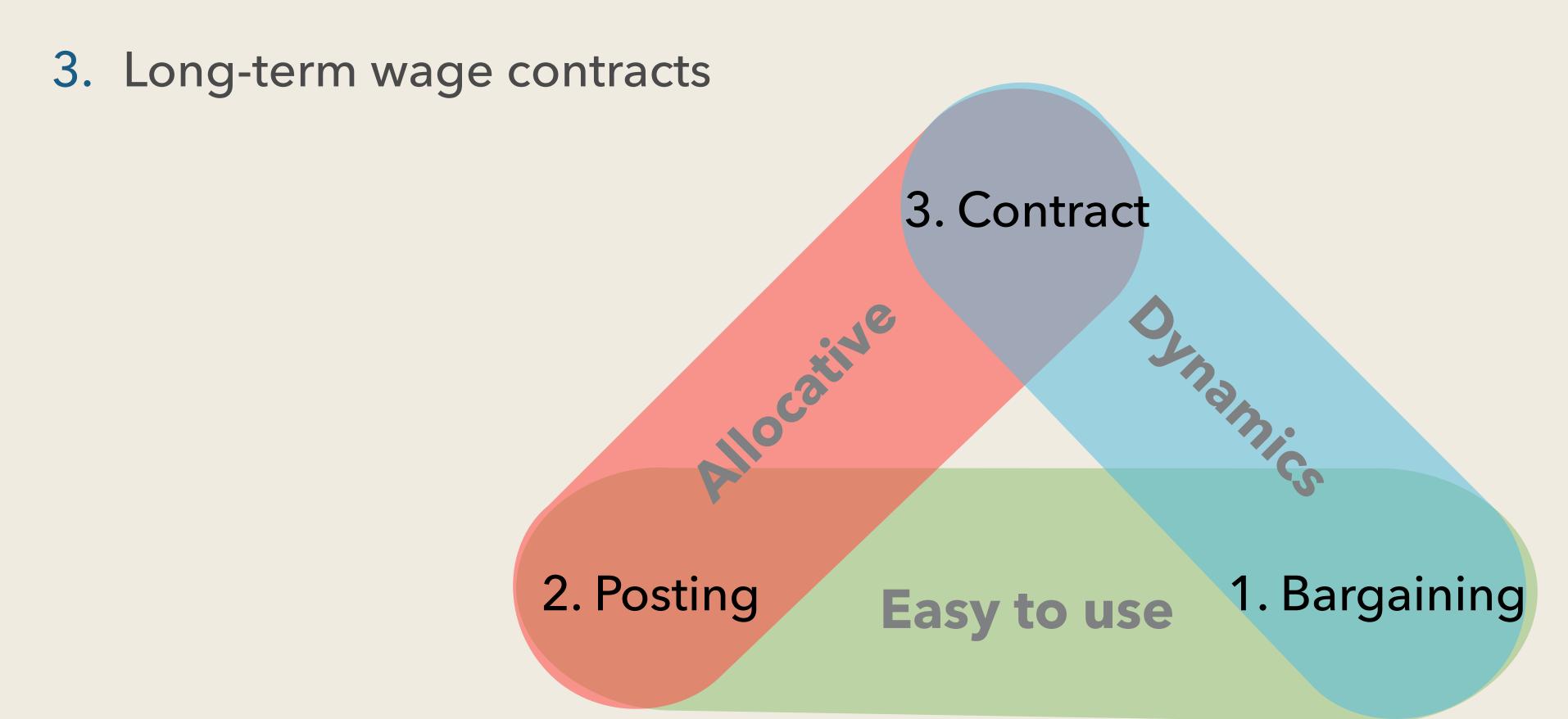
2. Posting Easy to use 1. Bargaining

Which Wage Setting Protocol?

- 1. Wage posting (Burdett-Mortensen, 1998)
- 2. Nash bargaining (including sequential auction)

Which Wage Setting Protocol?

- 1. Wage posting (Burdett-Mortensen, 1998)
- 2. Nash bargaining (including sequential auction)



Open Questions

- Can we identify the wage-setting protocol from the data?
 - Long-term contracts imply endogenous persistence and dynamics
 - Beaudry & Portier (1991) deserve a modern treatment
- What are we still missing?
 - Typical contracts involve bonuses, benefits, overtime, severance, etc. Why?
 - Do firms really have commitment?
 - Are firms really risk-neutral? Are workers really hand-to-mouth?
 - Aren't firms facing various constraints on wage setting? (e.g., fairness)

Appendix: Useful Reformulation for Numerical Implementation

Redifining State Space

■ Define $\tilde{V} \equiv V - U$, $\tilde{\lambda}^E(\tilde{V}) \equiv \lambda^E(\tilde{V} + U) = \lambda^E(V)$

$$\tilde{\Pi}(\tilde{V}_t, z_t) = \max_{w_t, \{V_{t+1}(z_{t+1})\}} z_t - w_t + \beta(1 - \lambda^E(v))(1 - \delta)(1 - q)\mathbb{E}[\Pi(\tilde{V}_{t+1}(z_{t+1}), z_{t+1})]$$

s.t.
$$u(w) - (1 - \beta)U + \beta \left[\lambda^{E}(v)\tilde{v} + (1 - \lambda^{E}(v))\tilde{W}_{t+1}\right] \ge \tilde{V}_{t}$$

$$\tilde{v} \in \arg\max_{\hat{v}} \tilde{\lambda}^E(\hat{v})\hat{v} + (1 - \lambda^E(\tilde{v}))\tilde{W}_{t+1}$$

$$q = \mathbb{I}\big[\mathbb{E}[\tilde{V}_{t+1}(z_{t+1})] \ge 0\big]$$

$$\tilde{W}_{t+1} \equiv (1 - \delta)(1 - q)\mathbb{E}[\tilde{V}_{t+1}(z_{t+1})]$$

and

$$U = u(b) + \beta \left[\max_{\hat{v}} \tilde{\lambda}^{U}(\hat{v})\hat{v} + U \right]$$

Recursive Lagrangian

- The previous problem is computationally expensive: It involves optimizing over $\{V_{t+1}(z_{t+1})\}$, a high dimensional object
- Marcet-Marimon (2019) and Balke-Lamadon (2022) propose an elegant trick
- Define

$$\mathcal{P}(\rho, z) \equiv \max_{\tilde{V}} \tilde{\Pi}(\tilde{V}, z) + \rho \tilde{V}$$

- ullet Think of this as a Pareto problem with ho being Pareto weight attached to workers
- We can recover the original value functions as

$$\partial_{\rho} \mathcal{P}(\rho, z) = \tilde{V}(\rho, z)$$

$$\tilde{\Pi}(\tilde{V}(\rho,z),z) = \mathcal{P}(\rho,z) - \rho \tilde{V}(\rho,z)$$

Recursive Lagrangian

 \blacksquare $\mathcal{P}(\rho,z)$ solve a (version of) Bellman equation:

$$\begin{split} \mathcal{P}(\rho, z) &= \min_{\omega} \max_{w, \mathcal{V} \geq 0} z_t - w + \rho \left\{ u(w) - (1 - \beta)U + r(\mathcal{V}) \right\} \\ &- \beta p(\mathcal{V}) \omega \mathcal{V} + \beta p(\mathcal{V}) \mathbb{E}_t \left[\mathcal{P}(\omega, z_{t+1}) \,|\, z_t \right] \end{split}$$

where

$$r(\mathcal{V}) \equiv \beta \left[W(\mathcal{V}) + \lambda^{E}(v(\mathcal{V}))(v(\mathcal{V}) - W(\mathcal{V})) \right]$$

$$W(\mathcal{V}) \equiv \left[\delta + (1 - \delta)q(\mathcal{V}) \right] U + (1 - \delta)(1 - q(\mathcal{V}))\mathcal{V}$$

$$p(\mathcal{V}) \equiv (1 - \lambda^{E}(v(\mathcal{V})))(1 - \delta)(1 - q(\mathcal{V}))$$

$$v(\mathcal{V}) \in \arg\max_{v} \lambda^{E}(v)(v - W(\mathcal{V}))$$

$$q(\mathcal{V}) \equiv \begin{cases} 1 & \text{if } \mathcal{V} \leq 0 \\ 0 & \text{if } \mathcal{V} > 0 \end{cases}$$