Large Firms, Monopsony, and Concentration in the Labor Market

741 Macroeconomics
Topic 8

Masao Fukui

2025 Fall

- We have been talking about firm size...
 - ... but no firm is really "large" in Hopenhayn-Rogerson each firm is measure zero

- We have been talking about firm size...
 - ... but no firm is really "large" in Hopenhayn-Rogerson each firm is measure zero
- In the data, many labor markets are dominated by a handful of "large" firms
 - The wage HHI of a local labor market is 0.11-0.35 on average.
 - "Effective" number of firms: 3-9
 - Local labor market: 3-digit NAICS × commuting zone

- We have been talking about firm size...
 - ... but no firm is really "large" in Hopenhayn-Rogerson each firm is measure zero
- In the data, many labor markets are dominated by a handful of "large" firms
 - The wage HHI of a local labor market is 0.11-0.35 on average.
 - "Effective" number of firms: 3-9
 - Local labor market: 3-digit NAICS × commuting zone
- Natural to expect that these firms exploit labor market power

- We have been talking about firm size...
 - ... but no firm is really "large" in Hopenhayn-Rogerson each firm is measure zero
- In the data, many labor markets are dominated by a handful of "large" firms
 - The wage HHI of a local labor market is 0.11-0.35 on average.
 - "Effective" number of firms: 3-9
 - Local labor market: 3-digit NAICS × commuting zone
- Natural to expect that these firms exploit labor market power
- Today: a model of oligopsony in the labor market

General Equilibrium Oligopsony Model

- Based on Berger-Mongey-Herkenhoff (2022)

Environment

- Static model
- Representative family
 - Continuum of labor markets $j \in [0,1]$
 - Labor market j has a fixed number of firms $i \in \{1, 2, ..., M_j\}$
 - Continuum of workers within a family, choosing where to work (i,j)
- Firms
 - Each firm produces final goods using $y_{ij} = z_{ij}^{1-\alpha} n_{ij}^{\alpha}$
- Markets
 - Local labor market: Cournot competition for labor

Representative Family

- lacksquare Mass L of workers within the family
- Each worker $l \in [0,L]$ has efficiency unit of labor $\epsilon_{ij}(l)$ when working at (i,j)
- The family solves

$$\max_{C,\{\mathbb{I}_{ii}(l)\}} C$$

s.t.
$$C = \int_0^1 \sum_{i=1}^{M_j} \int_0^L w_{ij} \epsilon_{ij}(l) \mathbb{I}_{ij}(l) dldj + \Pi$$

Assume the distribution of $\epsilon_{ij}(l)$ follow nested Fréchet (GEV)

$$\Pr\left(\{e_{ij}(l) \le a_{ij}\}_{ij}\right) = \exp\left[-G\left(\{a_{ij}\}_{ij}\right)\right], \quad G(\{a_{ij}\}) = \int_{0}^{1} \left(\sum_{i=1}^{M_{j}} a_{ij}^{-(\eta+1)}\right)^{\frac{\eta+1}{\theta+1}} dj$$
 with $\eta > \theta$

Representation Result

■ The family's problem can be equivalently represented as

$$\max_{C,\{\ell_{ij}\}:\sum_{ij}\ell_{ij}=1}C$$
s.t.
$$C = \int_0^1 \sum_{i=1}^{M_j} w_{ij} \ell_{ij} S_{ij} \left(\{\ell_{ij}\}\right) dj \times L + \Pi$$

$$\int_0^1 \sum_{j}\ell_{ij} di = 1$$

where

$$S_{ij}(\{\mathcal{E}_{ij}\}) = \left(\frac{\mathcal{E}_{ij}}{\sum_{i} \mathcal{E}_{ij}}\right)^{-1/(\eta+1)} \left(\sum_{i} \mathcal{E}_{ij}\right)^{-1/(\theta+1)}$$

- ℓ_{ij} : share of workers working for firm i in market j
- S_{ij} : average efficiency of workers in (i,j), and it captures selection: more workers work in $(i,j) \Rightarrow$ average efficiency of workers worsens
- See Donald-Fukui-Miyauchi (2024) Appendix C for a proof

Representation Result

The family's problem can be equivalently represented as

s.t.
$$C = \int_0^1 \sum_{i=1}^{M_j} w_{ij} \mathcal{E}_{ij} S_{ij} \left(\{ \mathcal{E}_{ij} \} \right) dj \times L + \Pi$$

$$\int_0^1 \sum_j \mathcal{E}_{ij} di = 1$$

where

$$S_{ij}(\{\ell_{ij}\}) = \left(\frac{\ell_{ij}}{\sum_{i}\ell_{ij}}\right)^{-1/(\eta+1)} \left(\sum_{i}\ell_{ij}\right)^{-1/(\theta+1)}$$
orkers working for firm i in market j

$$FOC: w_{ij}\left[S_{ij} + \ell_{ij}\partial_{\ell_{ij}}S_{ij}\right] = \lambda$$
ficiency of workers in (i,i) and it captures selection:

- ℓ_{ij} : share of workers working for firm i in market j
- S_{ii} : average efficiency of workers in (i,j), and it captures selection: more workers work in $(i,j) \Rightarrow$ average efficiency of workers worsens
- See Donald-Fukui-Miyauchi (2024) Appendix C for a proof

Nested CES Labor Supply System

Solutions: Given a vector of wages, $\{w_{ij}\}_{ij'}$

The share of workers who choose to work in (i, j) is

$$\mathcal{E}_{ij}(\{w_{ij}\}_{ij}) = \left(\frac{w_{ij}}{\mathbf{w}_j}\right)^{\eta+1} \left(\frac{\mathbf{w}_j}{\mathbf{W}}\right)^{\theta+1}$$

where
$$\mathbf{w}_{j} \equiv \left[\sum_{i} w_{ij}^{\eta+1}\right]^{1/(\eta+1)}$$
, $\mathbf{W} \equiv \left[\int_{0}^{1} \mathbf{w}_{j}^{\theta+1} dj\right]^{1/(\theta+1)}$

Nested CES Labor Supply System

Solutions: Given a vector of wages, $\{w_{ij}\}_{ij'}$

■ The share of workers who choose to work in (i, j) is

$$\mathcal{E}_{ij}(\{w_{ij}\}_{ij}) = \left(\frac{w_{ij}}{\mathbf{w}_j}\right)^{\eta+1} \left(\frac{\mathbf{w}_j}{\mathbf{W}}\right)^{\theta+1}$$

where
$$\mathbf{w}_{j} \equiv \left[\sum_{i} w_{ij}^{\eta+1}\right]^{1/(\eta+1)}$$
, $\mathbf{W} \equiv \left[\int_{0}^{1} \mathbf{w}_{j}^{\theta+1} dj\right]^{1/(\theta+1)}$

■ The efficiency units of labor supply for (i, j) is

$$n_{ij}(\{w_{ij}\}_{ij}) \equiv \mathcal{E}_{ij}S_{ij}(\{\mathcal{E}_{ij}\})L = \left(\frac{w_{ij}}{\mathbf{w}_j}\right)^{\eta} \left(\frac{\mathbf{w}_j}{\mathbf{W}}\right)^{\theta} L$$

The inverse labor supply function is

$$w_{ij}(\{n_{ij}\}) = \left(\frac{n_{ij}}{\mathbf{n}_j}\right)^{\frac{1}{\eta}} \left(\frac{\mathbf{n}_j}{\mathbf{N}}\right)^{\frac{1}{\theta}}$$

$$\mathbf{n}_{j} \equiv \left[\sum_{i} n_{ij}^{\frac{\eta+1}{\eta}}\right]^{\frac{\eta}{\eta+1}}, \quad \mathbf{N} \equiv \left[\int_{0}^{1} \mathbf{n}_{j}^{\frac{\theta+1}{\theta}} dj\right]^{\frac{\theta}{\theta+1}}$$

(2)

■ The inverse labor supply function is

$$w_{ij}(\{n_{ij}\}) = \left(\frac{n_{ij}}{\mathbf{n}_j}\right)^{\frac{1}{\eta}} \left(\frac{\mathbf{n}_j}{\mathbf{N}}\right)^{\frac{1}{\theta}} \tag{1}$$

$$\mathbf{n}_{j} \equiv \left[\sum_{i} n_{ij}^{\frac{\eta+1}{\eta}}\right]^{\frac{\eta}{\eta+1}}, \quad \mathbf{N} \equiv \left[\int_{0}^{1} \mathbf{n}_{j}^{\frac{\theta+1}{\theta}} dj\right]^{\frac{\theta}{\theta+1}}$$

Firms engage in Cournot competition, taking competitor's hiring as given, $n_{-ij} = n_{-ij}^*$

$$\max_{n_{i:}} z_{ij}^{1-\alpha} n_{ij}^{\alpha} - w_{ij}(n_{ij}, n_{-ij}^*) n_{ij}$$
(2)

■ The inverse labor supply function is

$$w_{ij}(\{n_{ij}\}) = \left(\frac{n_{ij}}{\mathbf{n}_j}\right)^{\frac{1}{\eta}} \left(\frac{\mathbf{n}_j}{\mathbf{N}}\right)^{\frac{1}{\theta}} \tag{1}$$

$$\mathbf{n}_{j} \equiv \left[\sum_{i} n_{ij}^{\frac{\eta+1}{\eta}}\right]^{\frac{\eta}{\eta+1}}, \quad \mathbf{N} \equiv \left[\int_{0}^{1} \mathbf{n}_{j}^{\frac{\theta+1}{\theta}} dj\right]^{\frac{\theta}{\theta+1}}$$

Firms engage in Cournot competition, taking competitor's hiring as given, $n_{-ij} = n_{-ij}^*$

$$\max_{n} z_{ij}^{1-\alpha} n_{ij}^{\alpha} - w_{ij}(n_{ij}, n_{-ij}^*) n_{ij}$$
 (2)

General solution:

$$w_{ij} = \mu_{ij} \times \alpha z_{ij}^{1-\alpha} n_{ij}^{\alpha-1}, \quad \mu_{ij} \equiv \frac{\varepsilon_{ij}}{\varepsilon_{ij}+1}, \quad \varepsilon_{ij} \equiv \frac{d \ln n_{ij}}{d \ln w_{ij}}$$

The inverse labor supply function is

$$w_{ij}(\{n_{ij}\}) = \left(\frac{n_{ij}}{\mathbf{n}_j}\right)^{\frac{1}{\eta}} \left(\frac{\mathbf{n}_j}{\mathbf{N}}\right)^{\frac{1}{\theta}} \tag{1}$$

$$\mathbf{n}_{j} \equiv \left[\sum_{i} n_{ij}^{\frac{\eta+1}{\eta}} \right]^{\frac{\eta}{\eta+1}}, \quad \mathbf{N} \equiv \left[\int_{0}^{1} \mathbf{n}_{j}^{\frac{\theta+1}{\theta}} dj \right]^{\frac{\theta}{\theta+1}}$$

Firms engage in Cournot competition, taking competitor's hiring as given, $n_{-ij} = n_{-ij}^*$

$$\max_{n} z_{ij}^{1-\alpha} n_{ij}^{\alpha} - w_{ij}(n_{ij}, n_{-ij}^*) n_{ij}$$
 (2)

General solution:

$$w_{ij} = \mu_{ij} \times \alpha z_{ij}^{1-\alpha} n_{ij}^{\alpha-1}, \quad \mu_{ij} \equiv \frac{\varepsilon_{ij}}{\varepsilon_{ij}+1}, \quad \varepsilon_{ij} \equiv \frac{d \ln n_{ij}}{d \ln w_{ij}}$$

wage markdown

MPL

Equilibrium Definition

A (Cournot) equilibrium consists of $\{w_{ij}(\{n_{ij}\}), n_{ij}\}$ such that

- $w_{ij}(\{n_{ij}\})$ is consistent with household's optimality (1)
- Taking $\{n_{-ij}\}$ as given, firm i solves (2)

Wage Markdown

With our functional form assumption, the labor supply elasticity takes the form of

$$\varepsilon_{ij}(s_{ij}) = \left[\frac{1}{\eta}(1 - s_{ij}) + \frac{1}{\theta}s_{ij}\right]^{-1}, \quad \mu_{ij}(s_{ij}) = \frac{\varepsilon_{ij}(s_{ij})}{\varepsilon_{ij}(s_{ij}) + 1}$$

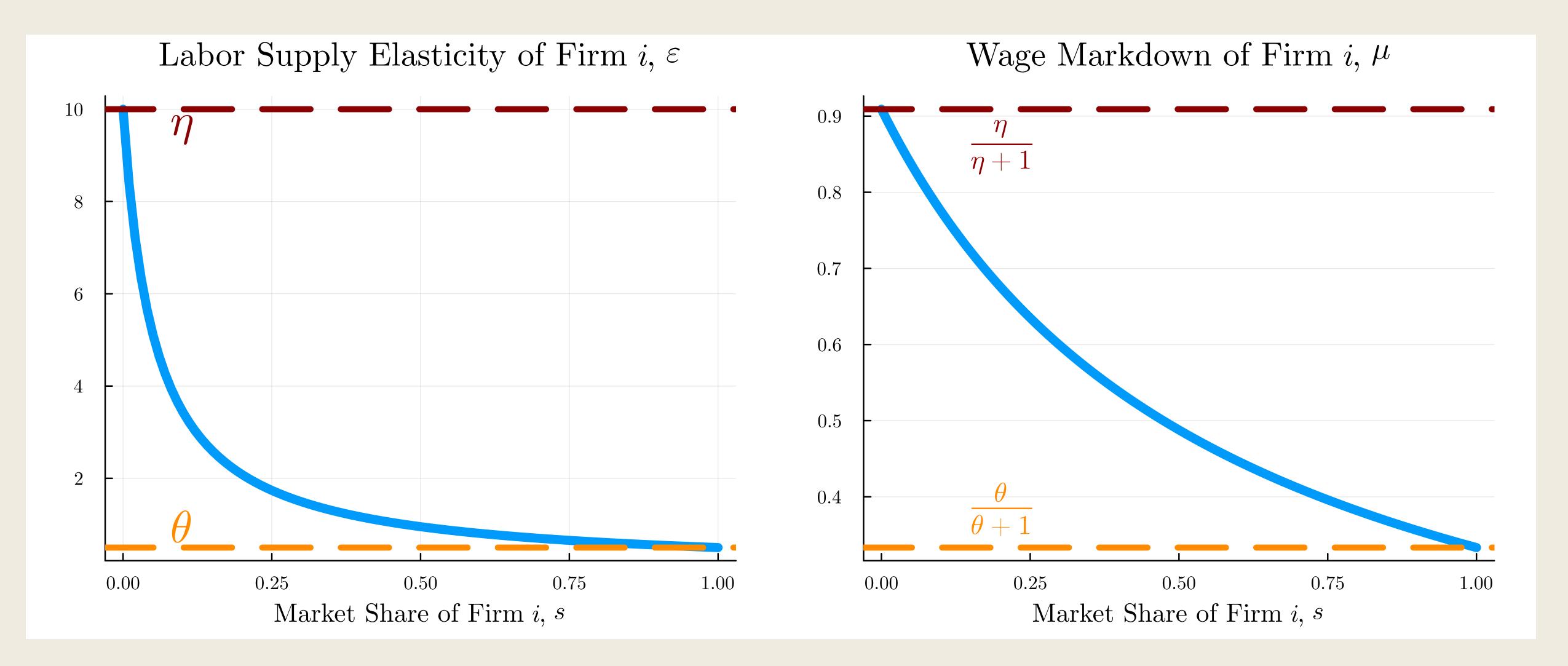
where

$$s_{ij} = \frac{w_{ij}n_{ij}}{\sum_{k} w_{kj}n_{kj}} \tag{3}$$

is the labor market share of firm i in market j

- 1. Competitive labor market: $\theta, \eta \to \infty \Rightarrow \varepsilon_{ii} \to \infty$
- 2. Monopsonistic competition within a market $j: M_j \to \infty \Rightarrow s_{ij} \to 0 \Rightarrow \varepsilon_{ij} \to \eta$
- 3. Monopsony within a market $j: s_{ij} \to 1 \Rightarrow \varepsilon_{ij} \to \theta$
- See also Atkeson-Burstein (2008)

Numerical Ilustration



Equilibrium System

The equilibrium $\{s_{ii}\}$ solve

$$S_{ij} = \frac{\left(\mu_{ij}(s_{ij})z_{ij}^{1-\alpha}\right)^{\frac{1+\eta}{1+\eta(1-\alpha)}}}{\sum_{k} \left(\mu_{kj}(s_{kj})z_{kj}^{1-\alpha}\right)^{\frac{1+\eta}{1+\eta(1-\alpha)}}}$$

Proof: Relative employment between i and k:

$$\frac{n_{ij}}{n_{kj}} = \left(\frac{w_{ij}}{w_{kj}}\right)^{\eta} = \left(\frac{\mu_{ij}(s_{ij})z_{ij}^{1-\alpha}n_{ij}^{\alpha-1}}{\mu_{kj}(s_{ij})z_{kj}^{1-\alpha}n_{kj}^{\alpha-1}}\right)^{\eta} \iff \frac{n_{ij}}{n_{kj}} = \left(\frac{\mu_{ij}(s_{ij})z_{ij}^{1-\alpha}}{\mu_{kj}(s_{kj})z_{ij}^{1-\alpha}}\right)^{\frac{\eta}{1+\eta(1-\alpha)}}$$

- Substituting into (3) gives the expression
- Given $\{s_{ij}\}$, we can immediately compute $\{\mu_{ij}, n_{ij}, w_{ij}\}$

Sufficient Statistics for Labor Share

Define the aggregate labor share as

$$LS = \frac{\int_0^1 \sum_{i \in j} w_{ij} n_{ij} dj}{\int_0^1 \sum_{i \in j} y_{ij} dj}$$

Define the payroll weighted HHI as

$$HHI = \int_{0}^{1} s_{j} HHI_{j} dj, \quad s_{j} = \frac{\sum_{i \in j} w_{ij} n_{ij}}{\int_{0}^{1} \sum_{i \in j} w_{ij} n_{ij} dj}, \quad HHI_{j} = \sum_{i \in j} s_{ij}^{2}$$

Result:

$$LS = \alpha \left[(1 - \text{HHI}) \left(\frac{\eta}{\eta + 1} \right)^{-1} + \text{HHI} \left(\frac{\theta}{\theta + 1} \right)^{-1} \right]^{-1}$$

 \Rightarrow Conditional on the knowledge of (α, θ, η) , payroll shares are sufficient to infer LS

Planning Problem

Planning Problem

■ The planner maximizes total consumption subject to the resource cosntraints:

$$\max_{\{n_{ij},\ell_{ij}\}} \int_{0}^{1} \sum_{i} z_{ij}^{1-\alpha} n_{ij}^{\alpha} dj$$

$$s.t. \quad n_{ij} = \mathcal{E}_{ij} S_{ij}(\{\mathcal{E}_{ij}\}) L$$

$$\int_{0}^{1} \sum_{j} \ell_{ij} di = 1$$

The FOC is

$$\alpha z_{ij}^{1-\alpha} n_{ij}^{\alpha-1} \left[S_{ij} + \mathcal{E}_{ij} \partial_{\mathcal{E}_{ij}} S_{ij} \right] = \lambda$$

Equilibrium vs. Planner

Planner:

$$\alpha z_{ij}^{1-\alpha} n_{ij}^{\alpha-1} \left[S_{ij} + \mathcal{E}_{ij} \partial_{\mathcal{E}_{ij}} S_{ij} \right] = \lambda$$

Equilibrium:

$$\mu_{ij} \alpha z_{ij}^{1-\alpha} n_{ij}^{\alpha-1} \left[S_{ij} + \mathcal{E}_{ij} \partial_{\mathcal{E}_{ij}} S_{ij} \right] = \lambda$$

- Is the equilibrium efficient? No, as long as $\{\mu_{ij}\}$ vary in equilibrium
 - If $\mu_{ii} = \mu$ for all i, j, then μ is indistinguishable from λ
- In what way?
 - Firms with low μ_{ii} (high labor market power) are too small in eqm!
 - Firms with high μ_{ii} (low labor market power) are too large in eqm!
- lacksquare Minimum wage reallocates workers from high μ_{ij} to low μ_{ij}
 - \Rightarrow can improve efficiency (but Berger-Herkenhoff-Mongey (2025) say it's small)

Bringing the Model to the Data

Identification

- Key parameters: (θ, η)
- lacksquare Labor supply equation with potential labor supply shifter ξ_{ij}

$$n_{ij}(\{w_{ij}\}_{ij}) = \xi_{ij} \left(\frac{w_{ij}}{\mathbf{w}_j}\right)^{\eta} \left(\frac{\mathbf{w}_j}{\mathbf{W}}\right)^{\theta} L$$

Taking log,

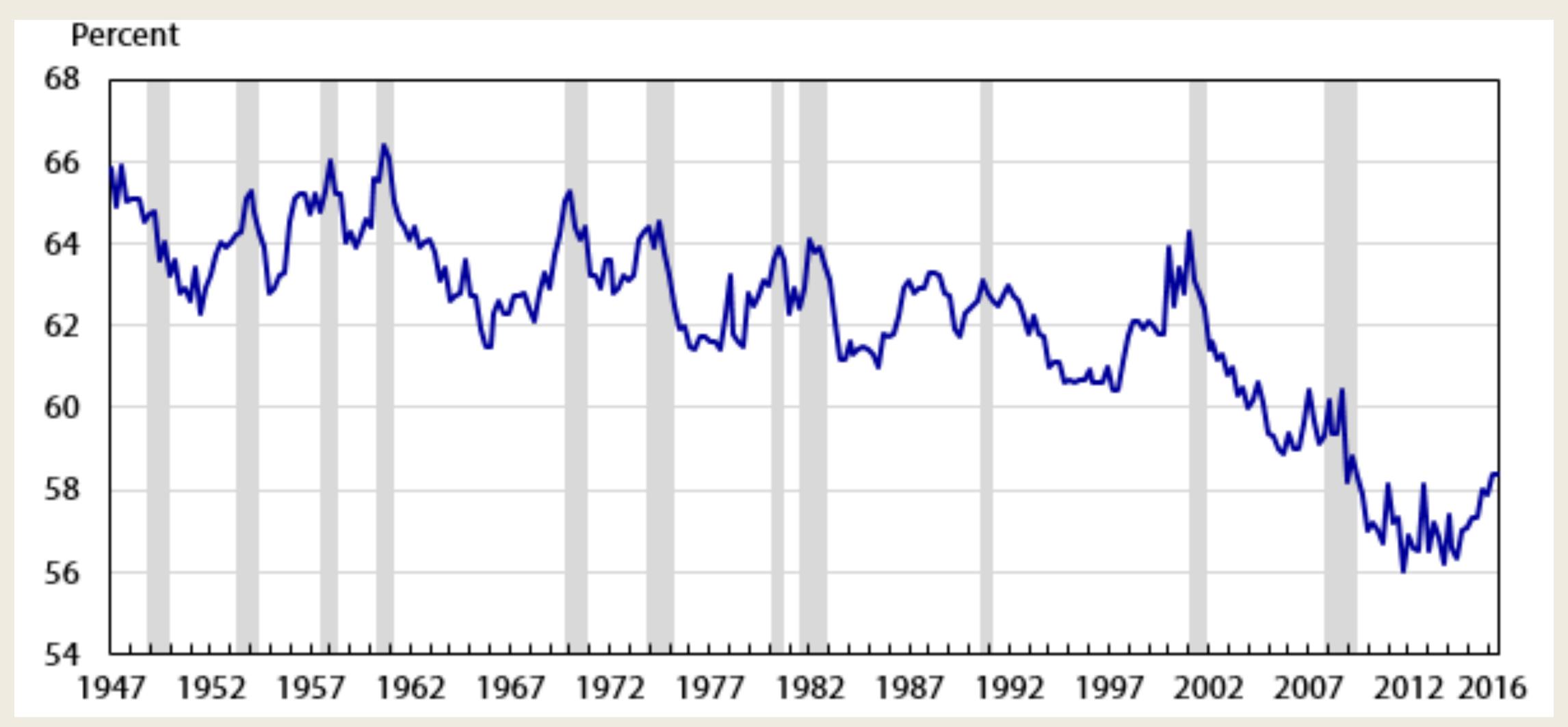
$$\log n_{ij} = \eta \log(w_{ij}) + (\theta - \eta) \log \mathbf{w}_j - \theta \log \mathbf{W} + \log L + \log \xi_{ij}$$

- With suitable instruments (labor demand shifter), one can identify (θ, η)
 - 1. Berger-Mongey-Herkenhoff (2021): changes in state corporate taxes
 - 2. Felix (2023): changes in tariffs

Estimation Results

- BHM's implementation: US Census LBD data
- Market: 3-digit NAICS × commuting zone
- Estimates: $\eta = 10.85$, $\theta = 0.42$
- With HHI = 0.11 in 2014, the model implies 30% aggregate wage markdown

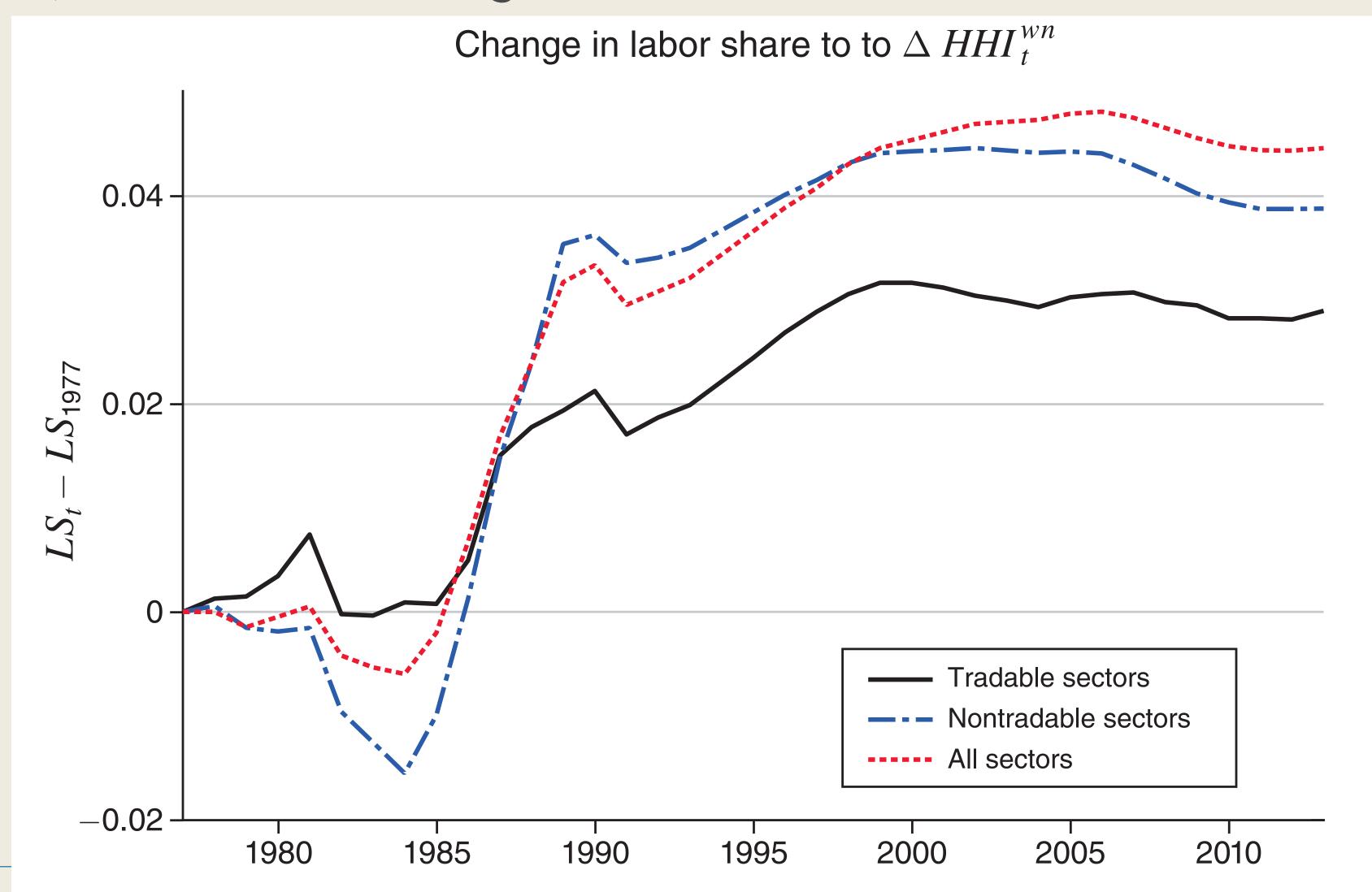
Labor Share



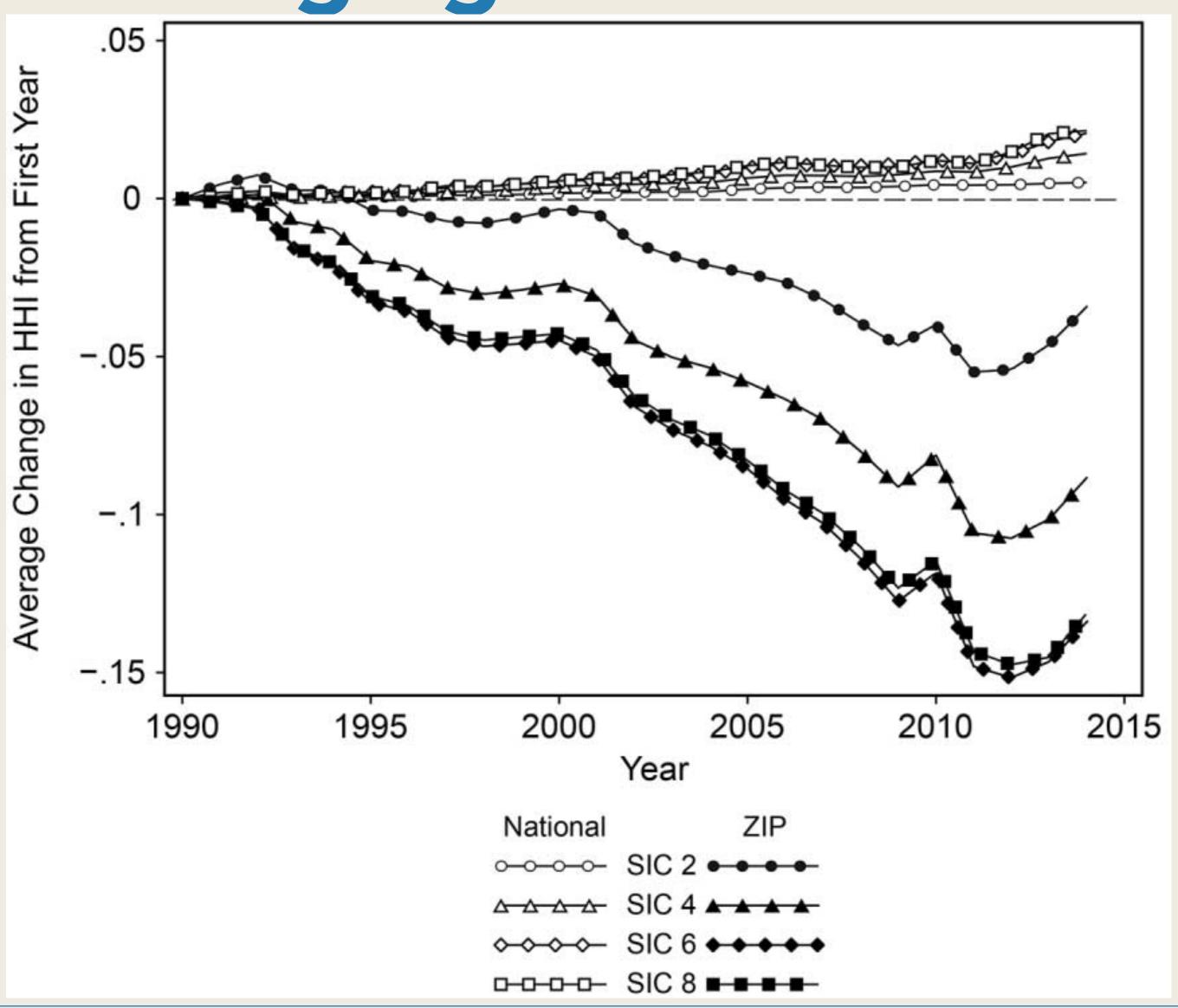
Can the changes in concentration explain the changes in labor share?

Labor Share Increases due to ΔHHI

Fix (η, θ, α) and feed the changes in HHI over time



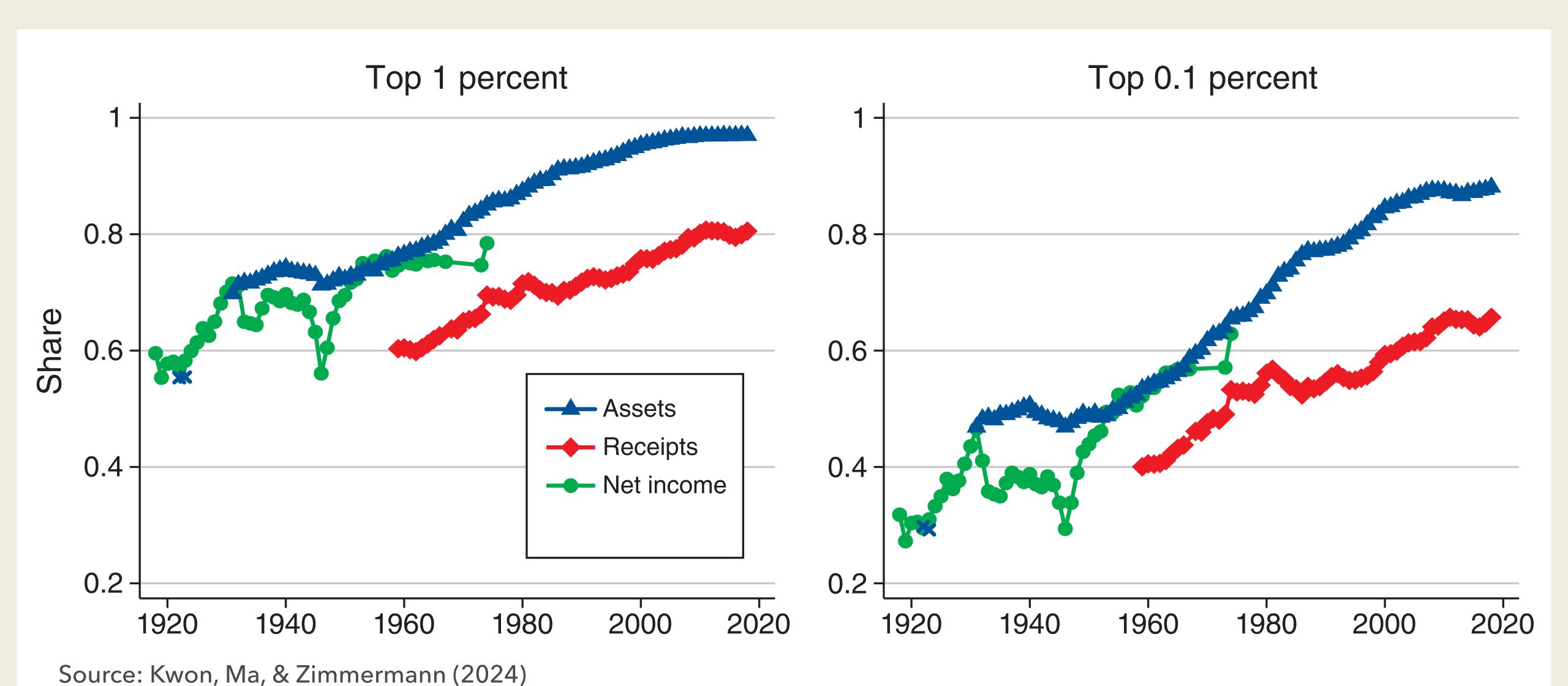
Diverging Trends in HHI



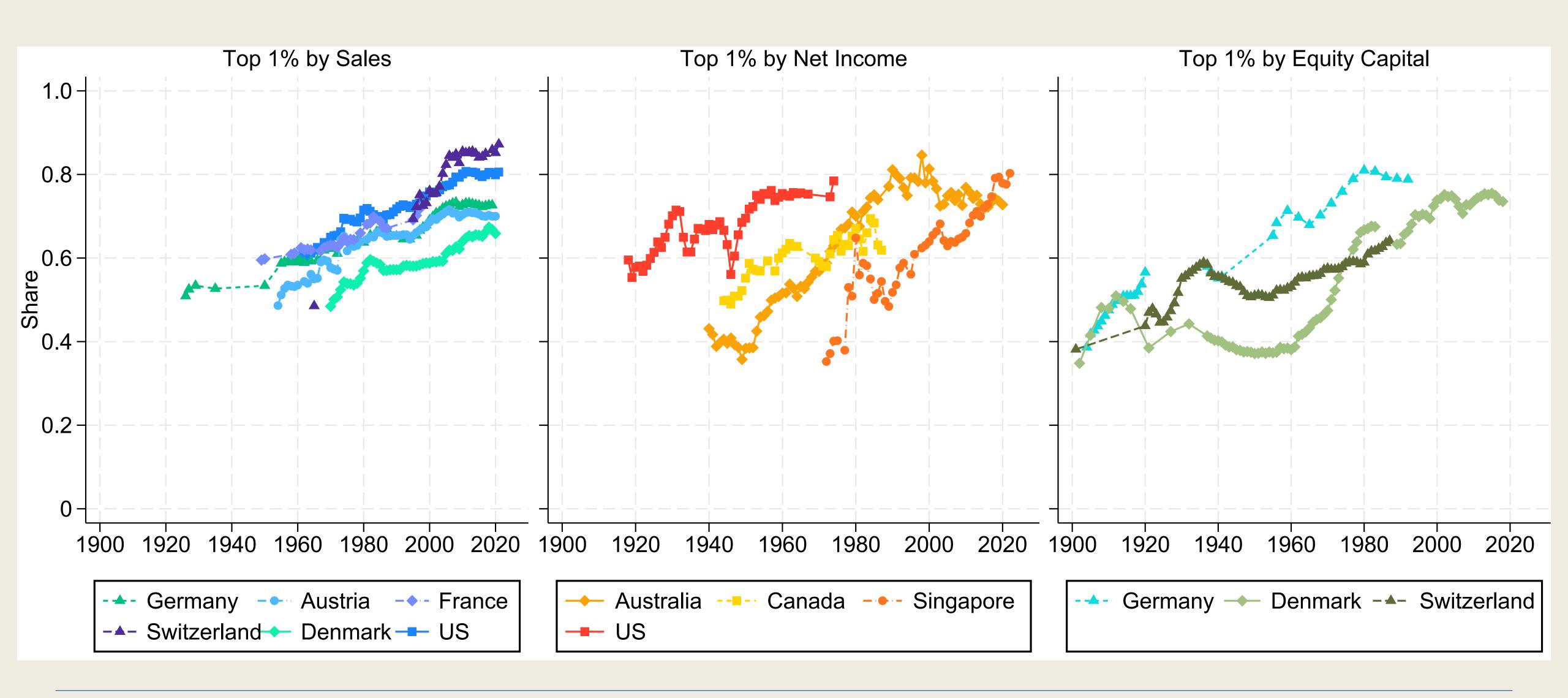
The Rise of Large Firms

- Ma, Zhang, and Zimmermann (2025)

100 Years of Rising Concentration in the US

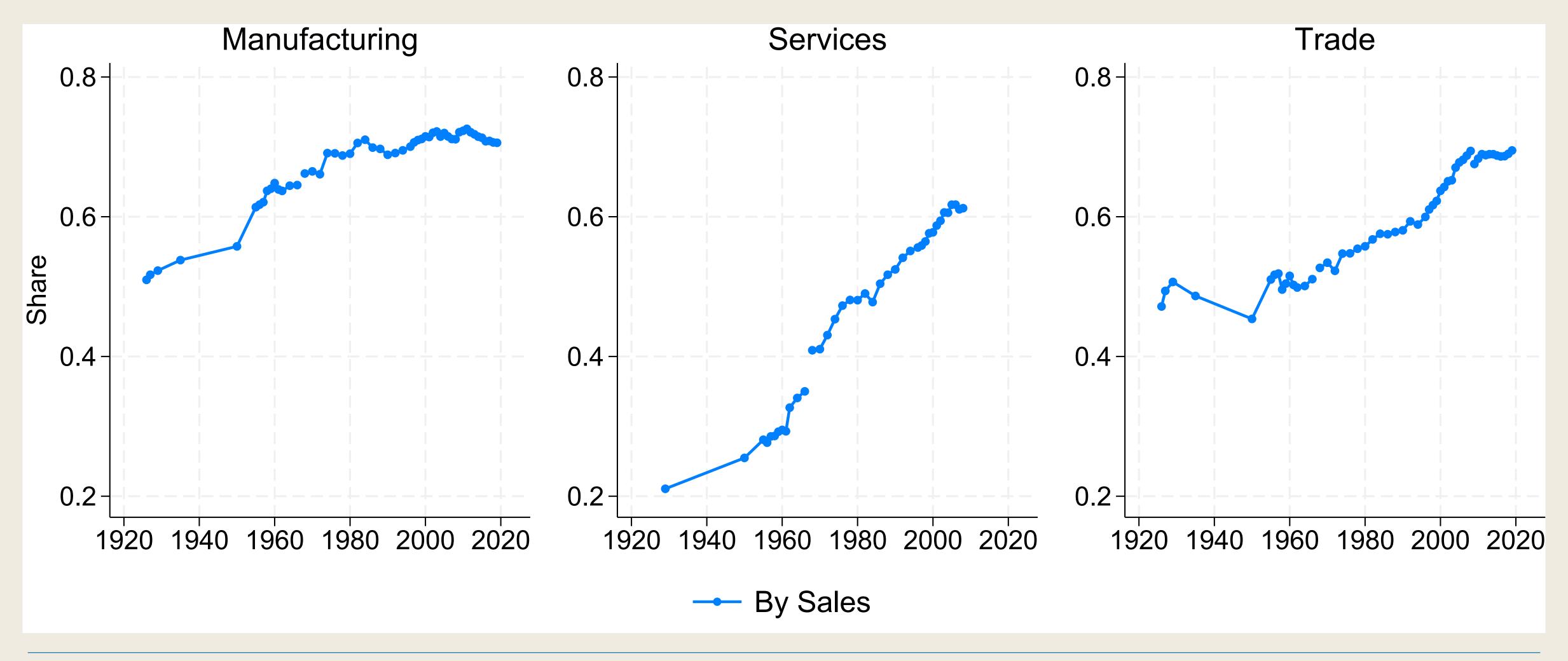


Top 1% Share in the World

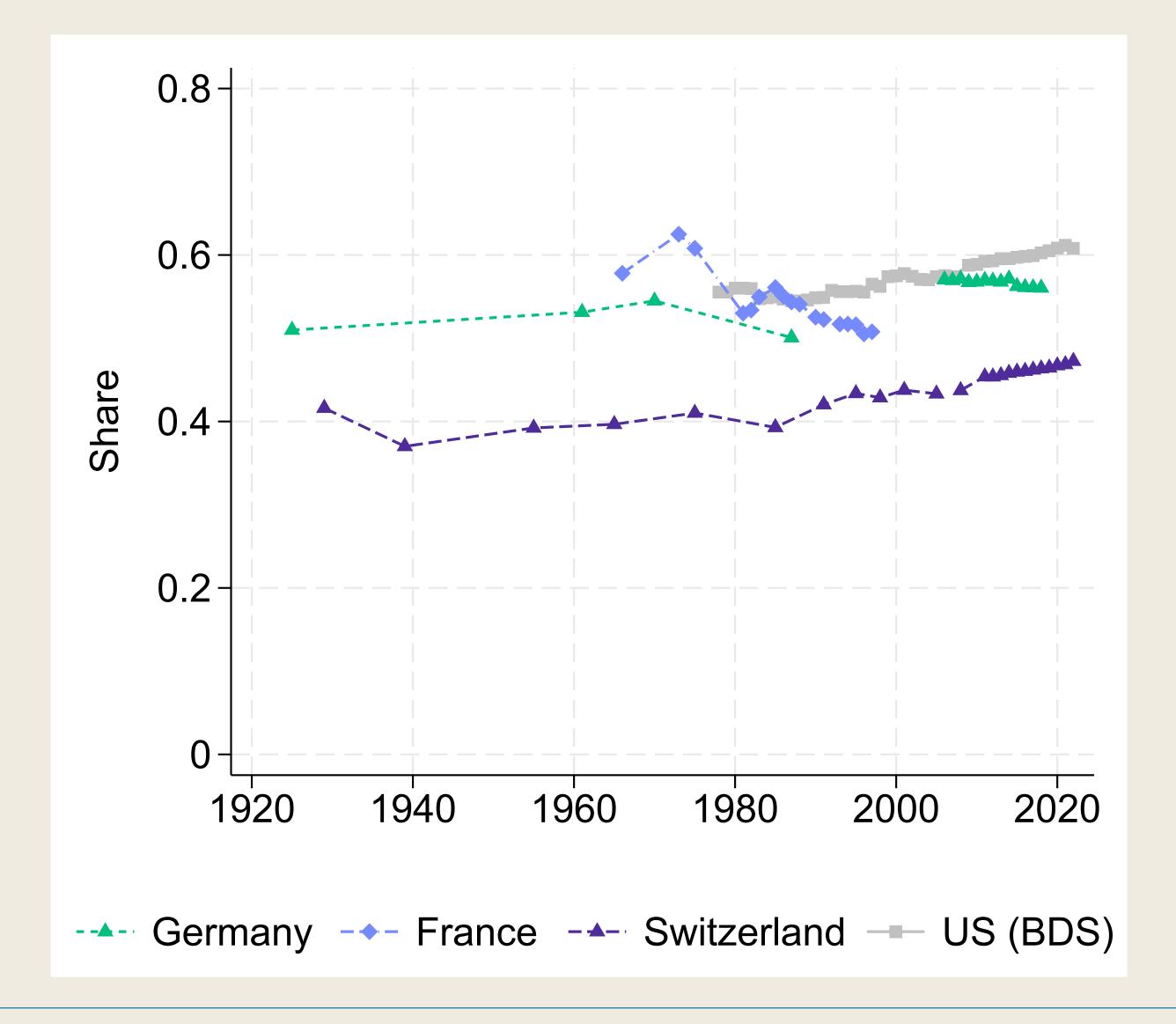


Top 1% Sales Share by Sectors

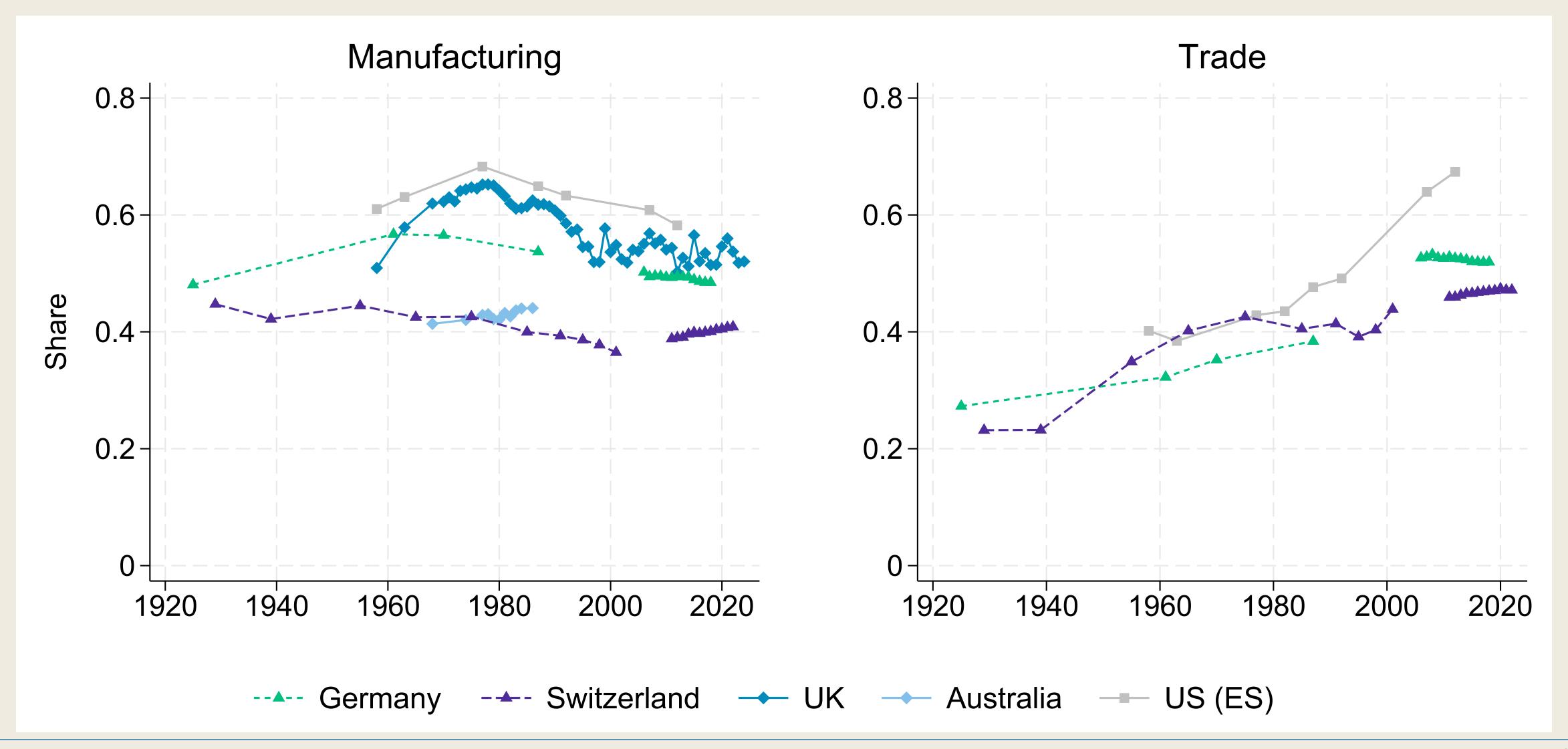
Panel A. Top 1% Share



Top 1% Employment Share Has Been Stable



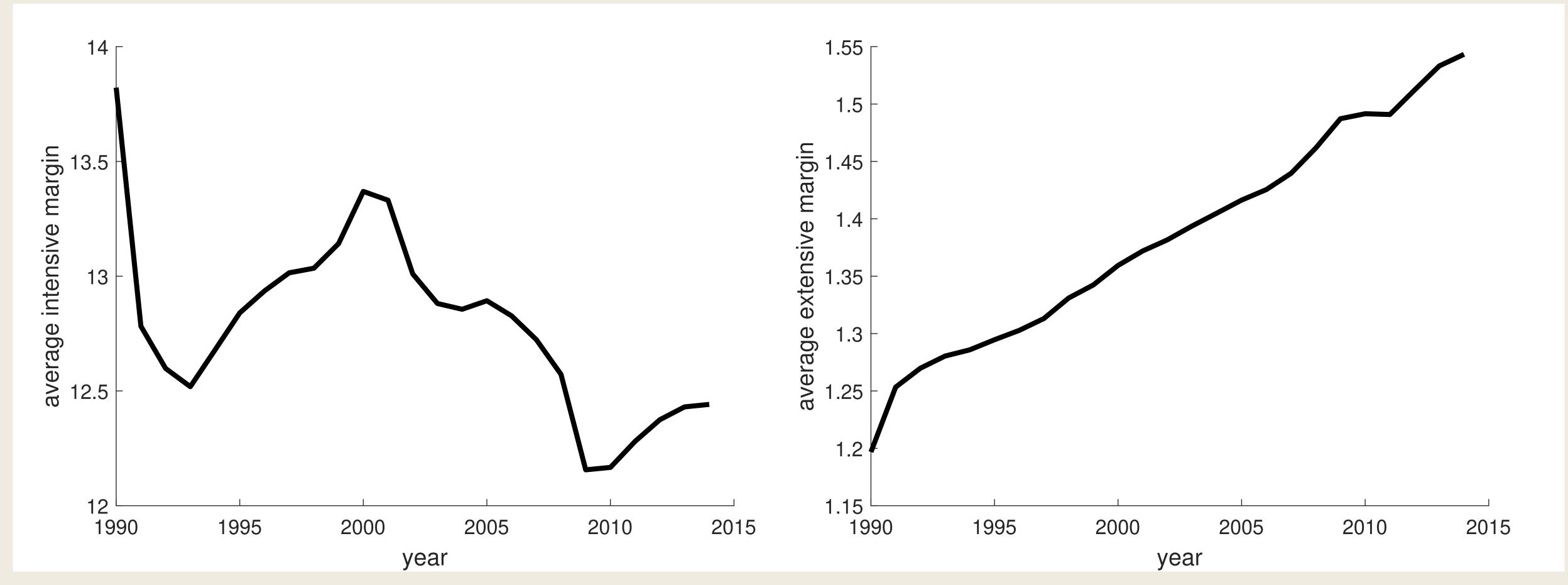
Top 1% Emp. Share in Manufacturing & Trade



Firm Growth Through Establishments

Average size of establishment

Number of establishments



Source: Cao, Hayyatt, Mukoyama, Sager (2022)

Wrapping Up

- 1. Problem set 2 is due Dec 21
- 2. I also look forward to reading your research proposal!