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Abstract

We study the optimal allocation of population and consumption in a dynamic spatial gen-

eral equilibrium model with frictional migration, where households’ idiosyncratic location

preference shocks are private information. We derive a recursive formula for the constrained-

efficient allocation, capturing the trade-off between consumption smoothing and efficient mi-

gration. In a calibrated U.S. economywith cross-state migration and risk-free savings, we find

that constrained-efficient allocation features lower population but higher average consump-

tion in less productive states than status quo, achieving efficiency and spatial redistribution si-

multaneously through dynamic incentives. In response to local negative productivity shocks,

the constrained-efficient allocation features more front-loaded consumption profiles than the

status quo, with systematic heterogeneity linked to the location’s pre-shock fundamentals.
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1 Introduction

What is the optimal spatial distribution of population? How does it differ from the observed equi-

librium? And what policies can improve aggregate welfare? These questions lie at the center of

ongoing academic and policy debates surrounding the design of place-based interventions (Fa-

jgelbaum and Gaubert 2025). However, much of the existing literature addresses them in static

frameworks, overlooking the reality that migration is gradual and forward-looking (Caliendo,

Dvorkin, and Parro 2019). The focus on static settings also limits the ability to speak about the

optimal response to regional shocks. In this paper, we examine these questions through a dy-

namic perspective. We show, both theoretically and quantitatively, that accounting for migration

dynamics fundamentally alters the design and consequences of optimal place-based policies.

We consider a general environment with many heterogeneous locations that differ in pro-

ductivity, amenities, trade costs, and agglomeration externalities, which potentially evolve over

time. In each period, households draw idiosyncratic location preference shocks and choose their

residential location for the following period. The primary objective of our paper is to character-

ize the socially optimal allocation of consumption and location assignment of households in this

environment.

The key constraint for the planner is that the idiosyncratic preference shocks are private infor-

mation. If the shocks were observable, the planner could fully smooth consumption by equalizing

the marginal utility of income across locations and time, and assign each household’s location

contingent on the preference shocks to maximize social surplus. However, when shocks are un-

observable, such allocations are not incentive compatible, as households would benefit by choos-

ing locations that maximize private surplus. Therefore, the planner must design allocations that

respect incentive compatibility for migration decisions. We refer to the resulting allocation as

the “constrained-efficient allocation,” as this allocation maximizes welfare subject to the incen-

tive compatibility constraints, independent of the market structure or specific policy instruments

available to the planner.

The main challenge in solving the constrained-efficient allocation arises from the high dimen-

sionality of the state space and the choice variables. The planner must track the full distribution

of agents by migration history and assign consumption and migration accordingly. We show that

this complex problem can be decomposed into tractable component problems: for each agent, the

planner determines consumption and location assignments conditional on their current location

and promised utility, which summarizes the household’s entire migration history. Because each

component problem depends only on each agent’s current location and promised utility, this

structure significantly reduces the dimensionality of the problem, yielding both analytical and

computational tractability.
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Our first main theoretical result is a recursive formula that characterizes the constrained-

efficient allocation. This formula summarizes the planner’s central trade-off: incentivizing mi-

gration toward more productive (i.e., higher net social surplus) regions while preserving con-

sumption smoothing. To encourage relocation to productive areas, the planner can offer either

higher current consumption or promise higher future consumption conditional on staying in

those areas. At the same time, the planner values smoothing consumption for individuals who,

due to idiosyncratic shocks, remain in less productive regions where marginal utility is higher.

The resulting optimal allocation is inherently dynamic: individuals who stay in unproductive

regions receive higher initial consumption that gradually declines for those who keep staying

there, while those who move out to more productive regions receive higher consumption.

Our results indicate that the provision of dynamic incentives plays a crucial role in achiev-

ing the constrained-efficient allocation. These incentives are delivered by tailoring consumption

to households’ migration histories, making the optimal policy inherently “history-dependent.”

In practice, such policies may involve providing temporary subsidies to residents in declining

regions or offering incentives for long-term residence in more productive areas. Our analysis

characterizes the best possible outcomes attainable under such history-dependent policy space.

At the same time, policymakers may face informational or administrative constraints that

limit their ability to condition policies on households’ migration histories. For this reason, we also

consider a “history-independent constrained-efficient allocation,” in which consumption depends

only on an agent’s current location. We derive an analogous recursive formula that summarizes

the trade-off between consumption smoothing and efficient migration. However, by removing

the ability to condition consumption on past migration decisions, the planner has limited ability

to use dynamic incentives. As a result, the trade-off between encouragingmigration to productive

regions and smoothing consumption in less productive ones becomes more pronounced.

Building on the theoretical results, we quantitatively assess how the constrained-efficient al-

locations differ from those under the observed equilibrium. To this end, we calibrate our model

to the U.S. state level, where households make forward-looking migration decisions (Caliendo

et al. 2019) and choose consumption and savings using risk-free assets subject to occasionally

binding borrowing constraints (Bewley 1986, Huggett 1993, Aiyagari 1994, Imrohoroğlu 1989).

Bilateral migration and trade costs across states are disciplined using 2017 data on migration

and trade flows, under the assumption that the economy is in steady state in that year. We fur-

ther calibrate households’ ability to smooth consumption by targeting empirical estimates of the

marginal propensity to consume.

A key challenge in the computation of the constrained-efficient allocation and status quo

economy is the high dimensionality of the state space and control variables. The computation of

the steady state requires finding fixed points in all locations’ prices or Lagrangian multipliers, as
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well as population size distribution, where we need to repeatedly solve Bellman equations in the

inner loop. Since the Bellman equations involve high-dimensional optimization, naive algorithms

such as grid search or Newton’s method are practically infeasible. To address this challenge, we

extend the endogenous grid point method by Carroll (2006), which speeds up the value function

iteration by orders of magnitude, making the steady-state computation feasible.

Equippedwith the calibratedmodel and the computational methodology, we first compare the

steady state of the status quo economy and that of the constrained-efficient allocation. We find

substantial and systematic differences between the constrained-efficient allocation and the status

quo in the steady state. The constrained-efficient allocation features more population in states

with higher output per capita (e.g., Washington) and less population in states with lower output

per capita (e.g., Mississippi). Interestingly, despite this population reallocation, average consump-

tion per capita is lower in the former states and higher in the latter states, resulting in more equal

consumption across states than in the status quo. This pattern reflects the role of dynamic incen-

tives. In unproductive states, consumption is frontloaded to encourage out-migration. Because

these incentives shorten the duration of households’ stay, they tend to leave before consump-

tion begins to decline. In this way, dynamic incentives serve to promote both spatial equity and

efficiency. This is a stark contrast to static settings, where the two objectives typically conflict

(Gaubert, Kline, and Yagan 2021, Ales and Sleet 2022, Donald, Fukui, and Miyauchi 2025).

We next examine the history-independent constrained-efficient allocation, in which con-

sumption depends only on current location. While this allocation similarly shifts population

toward more productive states, it yields higher per capita consumption in those states and lower
consumption in less productive ones, producing greater inequality across locations than in the

status quo. These patterns reflect the limited ability to use dynamic incentives when consumption

can only depend on the current location but not past migration decisions. Therefore, the planner

faces a sharper trade-off between efficient migration and spatial redistribution, analogous to the

efficiency-equity trade-off emphasized in the static settings.

In the final part of the paper, we study transition dynamics in response to aggregate regional

productivity shocks. A key challenge in studying the aggregate shocks in our environment is

again the high dimensionality of the state space: with aggregate shocks, the full distribution of

population over location and asset (in the status quo) or location and promised utility (in the

constrained-efficient allocation) becomes state variables. To address this challenge, we focus on
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a one-time shock that occurs with vanishingly small probability.
1
This setup allows us to com-

pute a first-order approximation of the transition path solely using the sequence-space Jacobian

(Auclert, Bardóczy, Rognlie, and Straub 2021) with respect to aggregate variables such as local

wages and population size – significantly lower-dimensional objects.

We find that dynamic incentives play a central role in shaping the transition dynamics of

constrained-efficient allocations in response to localized negative productivity shocks. The plan-

ner aims to achieve two objectives simultaneously: incentivizing households to leave the ad-

versely affected location and insuring them against the shock. These goals are accomplished

by front-loading consumption: the planner first keeps the consumption drop minimal, and then

gradually increases it over time. As a result, households in negatively affected areas are insured

in terms of utility but are strongly motivated to migrate before consumption declines. We show

that the degree of front-loading systematically differs depending on the initial productivity of the

shocked location, with more productive states featuring more front-loading. Such heterogeneity

also leads to heterogeneity in the speed of the transition. When a more productive location is hit

by the shock, the transitions are slower relative to the status quo.

Overall, our results highlight the crucial role of dynamics in shaping optimal place-based

policies, both in the steady state and during transitions in response to aggregate shocks.

Related Literature. First, we contribute to the literature of dynamic spatial general equilib-

rium models. These frameworks have been used for various applications, such as regional in-

cidence of import competition, the rise of automation, immigration shocks, or climate change

(see Desmet and Parro (2025) for a recent survey). Early contributions focused on environments

where households make dynamic migration decisions but are hand-to-mouth (e.g., Caliendo et al.

2019). More recent work incorporates forward-looking agents who make both migration and

consumption-saving decisions (e.g., Giannone, Li, Paixão, and Pang 2023, Dvorkin 2023, Greaney

2023, Greaney, Parkhomenko, and Van Nieuwerburgh 2025).
2
Despite the increasing use of these

models, little is known about what the optimal allocation of population and consumption looks

like or how they differ from market outcomes. Our contribution is to fill this gap both theoreti-

cally and quantitatively.

1
This assumption is distinct from the commonly used “MIT shock” (one-time unanticipated shock). “MIT shocks”

are ill-suited to study optimal policy due to time inconsistency problems. In response to an unanticipated shock, the

planner needs to re-optimize. However, once migration decisions are realized, the planner no longer has an incentive

to maintain any ex-ante plan of consumption front-loading or back-loading. This re-optimization creates artificial

dynamics unrelated to the aggregate shock itself. Similar approaches appear in the context of optimal risk-sharing

contracts (Fukui 2020) and endogenous portfolio choice (Auclert, Rognlie, Straub, and Tapak 2024).

2
Other extensions consider hand-to-mouth migrants alongside forward-looking capitalists who make dynamic

investment decisions (e.g., Kleinman, Liu, and Redding 2023, Bilal and Rossi-Hansberg 2023), or settings with dy-

namic agglomeration externalities (e.g., Allen and Donaldson 2020, Peters 2022). We show in Section 5 that our

framework accommodates these environments as well.
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Several recent papers share the broad goal of analyzing optimal allocations and policies in dy-

namic spatial general equilibriummodels, though they differ in focus andmethodology. O’Connor

(2024) examines optimal spatial transfers in response to regional productivity shocks to address

dynamic inefficiencies arising from wage rigidity. He derives an analytical formula in a two-

period model to correct for these externalities and quantitatively implements it with an infinite-

horizon environment with a linearized model, in which there is no role for policy in the steady

state. Lhuillier (2023) explores a dynamic spatial model with learning externalities, comparing

equilibrium and optimal allocations in a stylized setting. Our paper is different, both in focus

and methods. Rather than focusing solely on (specific sources of) externality, we study the trade-

off between such efficiency considerations and the consumption smoothing motive in a general

class of fully-dynamic infinite-horizon model, both analytically and quantitatively. Analytically,

we derive a recursive formula that characterizes such a trade-off in the constrained-efficient allo-

cations. Quantitatively, we solve the constrained efficient allocation in both the steady state and

the transitions.

Our work is also related to Kurnaz, Michelini, Özdenören, and Sleet (2023), who study optimal

taxation in a stationary dynamic discrete choice model, focusing on maximizing long-run welfare

where location-specific consumption is constant over time. In contrast, we solve the full dynamic

planning problem and derive a recursive formula for constrained-efficient allocations, explicitly

considering the dynamic paths of each household’s migration and aggregate fundamentals.

As noted earlier, our paper contributes more broadly to the literature on the optimal design of

place-based policies in static settings (see Fajgelbaum andGaubert 2025 for a review) by highlight-

ing the role of dynamics. In this static literature, our paper extends the analysis of Gaubert et al.

(2021), Ales and Sleet (2022), Guerreiro, Rebelo, and Teles (2023), Mongey and Waugh (2024), and

Donald et al. (2025), who highlights the efficiency-equity trade-off. We extend these frameworks

to a dynamic environment, incorporating forward-looking behavior and intertemporal trade-offs.

We also contribute to the macroeconomics and public finance literature that characterizes

constrained-efficient allocations in dynamic general equilibrium models under information con-

straints, where planners must address moral hazard or adverse selection problems. Our recursive

formulation builds on and extends the work of Atkeson and Lucas (1992) and Farhi and Werning

(2007), who examine optimal social insurance when idiosyncratic shocks are privately observed,

as well as Hopenhayn and Nicolini (1997) and Veracierto (2022), who study optimal unemploy-

ment insurance under private search effort. We generalize these frameworks to a dynamic dis-

crete choice environment with many heterogeneous discrete options. To address the associated

high-dimensional state space, we develop a computational approach and apply it to study the

optimal allocation of population and consumption across U.S. states.
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2 Model Environment

We consider an economy consisting of J locations. Time is discrete and the horizon is infinite,

t = 0, 1, . . . ,∞. There is a unit measure of household dynasty indexed by h ∈ [0, 1], each of

which is endowed with a unit of labor. In each period, consumption and production take place;

households stochastically die and are replaced by newborns; and households decide where to

live in the next period, given the expected value, migration costs, and idiosyncratic preference

shocks. Locations differ in productivity, amenities, trade costs, and agglomeration externalities,

which potentially evolve over time. This section defines the model environment. We introduce

specific market structures later when we discuss implementations and quantification. There is

no aggregate uncertainty until Section 7.

Preferences. At the beginning of the period t, householdh living in location j consume location-

specific final good aggregator, denoted by Cjt(h). The household h’s flow utility from the con-

sumption in location j at time t is given by ujt(Cjt(h)). We describe the associated production

technology for the final good aggregators later.

After the consumption and production take place, households die with probability 1 − ω.

Whenever households die, they are replaced by newborns in the same location. The newborn

inherits the household index h, continuing the household dynasty. For brevity, we henceforth

refer to these household dynasties simply as households.
3

Finally, at the end of the period t, all households (including newborns) in location j draw a

vector of idiosyncratic preference shocks and decide where to migrate. The location preference

shocks for each destination k, ϵjt ≡ [ϵjkt]k, are additively separable from ujt(Cjt(h)). These pref-

erence shocks [ϵjkt]k capture factors determining migration decisions specific to households that

are difficult to observe (e.g., finding a new job or relatives living in town). We do not impose

particular assumptions on its distribution function Gjt(ϵjt), such as the independence across al-

ternative options k or extreme-value distribution, as commonly assumed in the literature (e.g.,

Artuç, Chaudhuri, and McLaren (2010), Kennan and Walker (2011), and Caliendo et al. (2019)).

The only restriction is that shocks are independent over time.
4
Notice also that the mean of ϵjkt

can arbitrarily depend on origin j, destination k, and time t, which captures the migration util-

ity costs that depend on location pairs and time. Throughout, we denote Ejt as the expectation

3
A special case with infinitely lived households (without overlapping generations) corresponds to ω = 1. For

our quantitative analysis, we focus on the case with ω < 1. Similarly to other environments, constrained-efficient

allocation under private information features immiseration in the long run with ω = 1, implying that its steady state

distribution does not exist (Atkeson and Lucas 1992, Farhi and Werning 2007, Bloedel, Krishna, and Leukhina 2025).

4
Since Gjt(ϵjt) can flexibly depend on origin location j, our model accommodates a time dependence of id-

iosyncratic shocks through past location decisions. We rule out an explicit correlation of these shocks over time

(e.g., Howard and Shao (2022)) to avoid introducing a state variable unobserved to the planner. See also Section 5.2

for an extension with multiple ex-ante heterogeneous household types observable to the planner.

6



operator over ϵjt, i.e., Ejt[x] ≡
∫
x([ϵjkt]k)dGjt([ϵjkt]k).

After observing the preference shocks, all households (including newborns) choose their mi-

gration destinations, with staying in their current location as one of the options. All households

discount the future with a discount factor β ∈ (0, 1). Let ℓt(h) ∈ {1, . . . , J} be the location that

household h lives in time t. The value function of household h living in location j at time t is

recursively given by

vjt(h) = ujt(Cjt(h)) + βωEjt

[∑
k

I(ℓt(h) = k){vkt+1(h) + ϵjkt}

]
. (1)

The value function of newborns h born in location j at the end of period t is

vnjt(h) = βEjt

[∑
k

I(ℓt(h) = k){vkt+1(h) + ϵjkt}

]
, (2)

where the superscript n denotes variables associated with newborns. This expression closely

parallels the value function for surviving households in (1), with two differences: (i) newborns

do not consume in period t, as they are born after consumption has occurred, and (ii) the effective

discount factor is β rather than βω, as the newborns do not die in the same period as they are

born.

Technology. The location-specific final good aggregator is a composite of various goods, some

of which can be tradable (e.g. food or manufacturing goods) or nontradable (e.g. housing or

nontradable services). Instead of modeling each of these goods, we follow Adao, Costinot, and

Donaldson (2017) and specify the reduced-form production technology for location-specific final

good aggregators using labor services from various locations.
5
Specifically, non-tradable goods

in each location j are produced according to the following production technology:

Yjt = fjt ({lkjt}k, {Lkt}k) . (3)

where lkjt is the labor service in location k used to produce the final products in j at time t, and

Lkt is the total population size of location k. The labor inputs {lkjt}k are direct production factors,
while population sizes {Lkt}k capture agglomeration and congestion externalities that influence

5
As demonstrated by Adao et al. (2017), the above specification accommodates any single-factor neoclassical

trade environments, such as Ricardian trade models as in Eaton and Kortum (2002) or an arbitrary form of input-

output linkages as in Caliendo and Parro (2015). Specification (3) also accommodates endogenous amenity by rein-

terpreting a part of final consumption goods as amenity that can be either produced or influenced by the population

size distribution.
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productivity in j as a function of local or nearby population levels.
6
We assume fjt is constant

returns to scale in {lkjt}k.

Resource Constraints. The goods market clearing conditions are∫ 1

0

Cjt(h)dh = fjt ({lkjt}k, {Lkt}k) , (4)

and the labor market clearing conditions imply that population size in location j equals the de-

mand for labor services such that

Ljt =

∫ 1

0

I [ℓt(h) = j] dh =
∑
k

ljkt. (5)

3 First-Best Allocation

We begin by analyzing the first-best allocation, where the planner can perfectly observe the entire

history of realization of households’ idiosyncratic location preference shocks, ϵt ≡ (ϵ0, . . . , ϵt),

and tailor consumption and migration allocation accordingly. While this assumption is clearly

unrealistic, and our main focus is on the constrained-efficient allocation that relaxes it (Section 4),

the first-best serves as a useful benchmark for two reasons. First, it highlights the key trade-offs

the planner faces under information constraints. Second, it allows us to introduce our methodol-

ogy for reducing the dimensionality of the planning problem, which will carry over naturally to

the constrained-efficient case analyzed later.

We assume the planner maximizes a weighted average of expected lifetime utility across gen-

erations:

W0 =
∞∑
t=0

1

Rt

J∑
i=1

Λiv
n
it(1− ω)Lit, (6)

where vnit denotes the lifetime value of the newborns born in location i at time t, (1 − ω)Lit

corresponds to the mass of households born in location i at time t, Λi is the welfare weight

attached to households born in i, and R > 1 is the social discount rate.

Following the extensive literature on dynamic public finance, we employ a recursive for-

mulation of the planning problem using promised utility and continuation value, instead of the

sequence of allocations contingent on the history of preference shocks (e.g., Atkeson and Lucas

1992, Farhi and Werning 2007). At any given point in time t, each household is identified by the

6
Section 5.3 shows that our analysis extends straightforwardly to the environment with dynamic agglomeration

and congestion externalities from lagged population distribution.
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promised utility v and the location of living i. The planner assigns three sets of objects to each

existing household. First, she determines the consumption level, Cit(v). Second, she specifies

the migration destination plan, ℓit(v, ϵ), which depends on the current promised utility v, the

current location i, and the realization of preference shocks ϵ. Third, she chooses the continuation

utility for the next period, vijt+1(v, ϵ), again contingent on v, i, and ϵ. For newborns, the planner

assigns analogous objects, except that she does not choose current consumption (as newborns do

not consume in the birth period) but instead assigns their lifetime utility.

Let ϕit(v) denote the measure of households in location i with promised utility v. The state

variable of the planner is ϕt ≡ [ϕit(·)]i. The planning problem in a recursive form is

Wt(ϕt) = max
{Cit(v),ℓnit(ϵ),ℓit(v,ϵ),v

n
it,v

n
ijt+1(ϵ),vijt+1(v,ϵ),lit,ϕt,Lit}

∑
i

Λiv
n
it (1− ω)Lit +

1

R
Wt+1(ϕt+1) (7)

subject to

vnit = βEit

[∑
j

I[ℓnit(ϵit) = j]
{
vnijt+1(ϵit) + ϵijt

}]
(8)

v = uit(Cit(v)) + βωEit

[∑
j

I[ℓit(v, ϵit) = j] {vijt+1(v, ϵit) + ϵijt}
]

(9)∫
Cit(v)dϕit(v) = fit({lkit}k, {Lkt}k) (10)∑

j

lijt =

∫
dϕit(v) (11)

Lit =

∫
dϕit(v) (12)

and the law of motion of the distribution:

ϕjt+1(v) =
∑
i

ωEit

[
ϕit(v

−1
ijt+1(v, ϵit))I[ℓit(v

−1
ijt+1(v, ϵit), ϵit) = j]

]
+ (1− ω)LitEit

[
I[vnijt+1(ϵit) = v]I[ℓnit(ϵit) = j]

]
,

(13)

for all v. Constraints (8) and (9) correspond to the value functions of surviving households (1)

and newborns (2), constituting the “promise-keeping constraints” for the planner. Note that the

value of existing generations does not enter into the objective function because their values are

predetermined when they are born. Constraints (10) and (11) are the resource constraint of the

final goods and the labor services, respectively. Constraint (12) defines the population size.

While the original problem is quite complex due to the infinite dimensionality of the state

and control variables, the problem dramatically simplifies when considering the Lagrangian of
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the above problem. We detail the derivations in Appendix A.1 and focus on the key results in

the main text. Let Pit, wit, and witαit denote the Lagrangian multipliers of (10), (11), and (12),

respectively. Let St(ϕt) denote the associated Lagrangian. We then guess and verify that the

Lagrangian St(ϕt) is additively separable in (v, i):7

St(ϕt) =
∑
i

∫
Sit(v)dϕit(v) +Dt, (14)

where Dt is the term that is independent of ϕ. The constant term Dt solves the following com-

ponent problem:

Dt = max
{lijt,Lit}

∑
i

Pitfit({lkit}k, {Lkt}k)−
∑
i

wit

∑
j

lijt −
∑
i

αitwitLit +
1

R
Dt+1. (15)

SinceDt+1 does not depend on {lijt, Lit}, this component problem is essentially a static problem.

The first-order optimality conditions are given by the following static conditions:

Pit
∂fit
∂lkit

= wkt (16)∑
i

Pit
∂fit
∂Lkt

= wktαkt. (17)

As one can imagine from the above expressions, and as we later discuss in Section 4.4 and Ap-

pendix B, the Lagrangian multiplier Pit would correspond to the price of final consumption goods

in i, wit corresponds to the wage in i, and αit corresponds to the agglomeration elasticity in lo-

cation i, in an equilibrium that decentralizes the planner’s solution.

The dynamics come from the following component planning problem, which applies to each

household in location i with promised utility v:

Sit(v) = max
Cit,{{vijt+1(ϵ)}j ,ℓit(ϵ)}ϵ

wit (1 + αit)− PitCit + (1− ω)Sn
it

+
1

R
ωEit

∑
j

I[ℓit(ϵit) = j]Sjt+1

(
vijt+1(ϵit)

) (18)

s.t. v = uit(Cit) + βωEit

[∑
j

I[ℓit(ϵit) = j] {vijt+1(ϵit) + ϵijt}
]
. (19)

7
Similar techniques appear in Atkeson and Lucas (1992), Farhi and Werning (2007, 2012), and Veracierto (2022,

2023) in the context of various different models.
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The term Sn
it is the value function associated with newborns in location i, which solves

Sn
it = max

vnit,{{vnijt+1(ϵ)}j ,ℓnit(ϵ)}ϵ
Λiv

n
it +

1

R
Eit

∑
j

I[ℓnit(ϵit) = j]Sjt+1(v
n
ijt+1(ϵit)) (20)

s.t. vnit = βEit

∑
j

I[ℓnit(ϵit) = j]
{
vnijt+1(ϵit) + ϵijt

}
. (21)

The objective function Sit(v) has a clear economic interpretation: it represents the “net social

surplus” generated by a household in location i with promised utility v, net of the household’s

own utility. Each such household contributes the marginal product of labor, wit, and the agglom-

eration benefit, witαit, while incurring a resource cost equal to their consumption, PitCit. These

terms can be interpreted as the fiscal and technological externalities the household generates in

the decentralized equilibrium that implements the planner’s allocation. Additionally, households

may die and be replaced by newborns, whose entry contributes to social surplus, as captured by

the term (1− ω)Sn
it. The continuation value reflects the possibility of migration across locations

in future periods. The net social surplus of newborns Sn
it is defined similarly (equation (20)), while

the differences arise from the fact that (i) they do not work or consume in period twhen they are

born, and (ii) their lifetime value directly enters into the net social surplus, as this is the first time

they enter the economy.

We let {Cit(v), {{vijt+1(v, ϵ)}j , ℓit(v, ϵ)}ϵ} denote the policy functions associated with (18).

Since the promised utility v summarizes the relevant state of household h at each location i and

time t, these policy functions, together with the realization of preference shocks ϵit(h), fully de-

termine household h’s consumption, continuation values (for each potential destination), and

location choice {Cit(h), {vijt+1(h)}j , ℓit(h)}. Taking the first-order conditions and combining

them with the envelope condition, we have the following characterization of the first-best allo-

cation with complete information.

Proposition 1. Under complete information, the following conditions must hold at the planner’s
solution. For any household h living in location i at time t, the consumption satisfies the following
condition

u′it(Cit(h))

Pit

= βR
u′jt+1(Cjt+1(h))

Pjt+1

(22)

for all j. The migration assignment solves

max
l

{
Plt+1

u′lt+1(Clt+1(h))
β[vilt+1(h) + ϵilt(h)] +

1

R
Slt+1(vilt+1(h))

}
. (23)

The proof of this proposition, as well as those in the rest of the paper, appears in Appendix A.
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Proposition 1 reveals an intuitive property that the first-best allocation must feature. Condition

(22) says that the marginal utility of resources must be equalized across space and over time after

adjusting for discounting. If the marginal utilities were not equalized, the planner could improve

welfare by reallocating resources from locations or time periods with lowmarginal utility to those

with highmarginal utility. Because of the additive separability of idiosyncratic preference shocks,

consumption does not depend on these shocks and is equalized within and across locations and

over time.

The second condition (23) says that the location choice must maximize the social surplus. The

first term captures the continuation value of households who move from i to l with idiosyncratic

preference ϵilt. It is multiplied by the inverse of themarginal utility of the resource to be evaluated

in the unit of resource costs. The second term captures the net social surplus of households in

location l in period t+1 for the planner (net of household utility). In the first best allocation, the

planner allocates each individual to the location that maximizes the sum of these two.

4 Constrained-Efficient Allocations

The previous section assumed the planner perfectly observes the location preference shock for

each household and assigns the location based on those preference shocks. While it serves as a

theoretical benchmark, such a situation is hardly realistic. We now turn to the optimal allocation

when preference shocks are private information.

To see why private information matters, suppose that households can choose the location of

their living at their own will. Then, households make their migration decisions to maximize their

private surplus instead of the social surplus. Formally, the location choice now solves:

max
l

{vilt+1 + ϵilt} , (24)

which deviates from equation (23).

This implies that households could strategically misreport their preference shocks. House-

holds would pretend to have preference shocks such that they will be assigned to locations that

solve (24) instead of (23). Consequently, the planner must respect the incentive compatibility

constraints in the presence of private information.

4.1 Incentive Compatibility Constraints

In this section, we first formalize the incentive-compatible constraints that the planner faces in

this private information environment. By the revelation principle, we can focus on a direct reve-

lation mechanism where households report their preference shock in each period. The incentive

12



compatibility constraint requires that truth-telling is optimal from the household’s perspective:

ϵ ∈ argmax
ϵ̂

∑
j

I[ℓit(v, ϵ̂) = j] {vijt+1(v, ϵ̂) + ϵijt} (25)

for each household in location i with promised utility v at time t. From this expression, it is

tempting to think that the planner might want to promise a low continuation value, vijt+1(v, ϵ̂),

in destination j to households reporting a high value of ϵ̂ijt, since such households are likely

to choose j regardless and thus require less incentive. However, equation (25) makes clear that

this allocation violates incentive compatibility. In fact, vijt+1(v, ϵ̂) cannot depend on the reported

preference shock, ϵ̂, conditional on migrating from i to j. If it did, households would misreport

the preference that gives the highest continuation value.

Therefore, any incentive-compatible allocation must feature

vijt+1(v, ϵ̂) = vijt+1(v). (26)

In other words, conditional on location choices and promised value, the planner cannot discrim-

inate across households. Since the promised value v at each point in time is a function of the

past living locations, the constrained-efficient allocation is achieved by policies that depend only

on the current and past living locations, but not directly on the history of preference shocks.

As we explain later in detail in Section 4.4, this result implies that the implementation of the

constrained efficient allocation does not involve preference reports. Instead, the implementation

requires policies to be contingent only on the history of living locations.

Based on the above observation, we can rewrite the incentive compatibility constraint (25) as

households directly choosing the location of living tomaximize their utility based on the promised

values, instead of reporting preferences and receiving location assignment:

ℓit(v, ϵit) ∈ argmax
l

{vilt+1(v) + ϵilt} (27)

for households living in location i with promised utility v and preference shock ϵit at time t.

4.2 Recursive Formula for Constrained Efficiency

Imposing the incentive compatibility constraint (27) as an additional constraint in the problem

(18), and by noting that the next-period promised utility vijt+1(v) cannot depend on preference

13



shocks ϵ directly as discussed above, component planning problem becomes as follows:

Sit(v) = max
Cit,{vijt+1}j ,{ℓit(ϵit)}ϵ

wit (1 + αit)− PitCit + (1− ω)Sn
it

+
1

R
ωEit

[∑
j

I[ℓit(ϵ) = j]Sjt+1

(
vijt+1

)] (28)

s.t. v = uit(Cit) + βωEit

[∑
j

I[ℓit(ϵit) = j] {vijt+1 + ϵijt}

]
(29)

ℓit(ϵit) ∈ argmax
l

βω [vilt+1 + ϵilt] . (30)

We can further simplify this problem using the representation result fromHofbauer and Sand-

holm (2002) and Donald et al. (2025). They show that any discrete choice problem can be equiv-

alently represented as a maximization problem with respect to choice probability, subject to an

appropriately defined cost function. Formally, we can rewrite the above problem as

Sit(v) = max
Cit,{vijt+1,µijt}j

wit (1 + αit)− PitCit + (1− ω)Sn
it +

1

R
ω
∑
j

µijtSjt+1

(
vijt+1

)
(31)

s.t. v = uit(Cit) + βω

[∑
j

µijtvijt+1 − ψit({µijt}j)

]
(32)

{µijt}j ∈ arg max
{µ̃ijt}j

βω

[∑
j

µ̃ijtvijt+1 − ψit({µ̃ijt}j)

]
, (33)

for some function ψit(·) that only depends on the distribution function of preference shocks

Git(·),8 and µijt ≡ EitI[ℓit(ϵ) = j] is the probability that households in location i at time t to

migrate to location j in the next period.
9

This representation makes it clear that the problem has a mathematically similar structure to

the optimal design of dynamic unemployment insurance, analyzed by Hopenhayn and Nicolini

(1997) and Veracierto (2022). There, the planner seeks to equalize the marginal utility of em-

ployed and unemployed over time, taking into account that doing so discourages the job search

effort. Here, the planner seeks to equalize marginal utility across space and over time, taking into

account that doing so leads to inefficient spatial population distribution. Despite different mi-

8
See Hofbauer and Sandholm (2002) or Donald et al. (2025) for an explicit expression for ψit(·). For example, if

Git(·) is given by independent type-I extreme value distribution (logit), thenψit({µijt}j) = 1
θ

∑
j µijt ln(µijt/χijt),

where θ > 0 is the scale parameter, and {χijt}j are location parameters capturing migration costs, as originally

shown by Anderson, De Palma, and Thisse (1988).

9
In general, Sit(v)may not be concave in v, in which case, the lottery is needed to ensure concavity in the value

function (see e.g., Prescott and Townsend 1984, Balke and Lamadon 2022), For the sake of notational simplicity, we

abstract from the use of lottery. In the quantitative exercise, we verify that Sit(v) is concave, and therefore the

lottery is not used even if available.
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crofoundations for incentive compatibility constraints, the planner faces a similar trade-off. An

important difference is the dimensionality of the problem: households face many different op-

tions for migration, unlike a single-dimensional job search effort. We revisit the computational

challenges associated with this high-dimensionality in Section 6.

The net social surplus of newborns is represented similarly as

Sn
it = max

vnit,{vnijt+1,µ
n
ijt}j

Λiv
n
it +

1

R

∑
j

µn
ijtSjt+1(v

n
ijt+1) (34)

s.t. vnit = β
∑
j

[
µn
ijtv

n
ijt+1 − ψit({µn

ijt}j)
]

(35)

{µn
ijt}j ∈ arg max

{µ̃n
ijt}

β
∑
j

[
µ̃n
ijtv

n
ijt+1 − ψit({µ̃n

ijt}j)
]
, (36)

where µn
ijt ≡ EitI[ℓnit(ϵ) = j]. Again, the difference from the existing generation (31) arises from

the fact that they do not work or consume in period t, and their lifetime value directly enters into

the net social surplus.

We let {Cit(v), {vijt+1(v), µijt(v)}j} denote the policy functions associated with the Bellman

equation for the surviving generation (31). As in the first-best analysis in Section 3, these policy

functions, together with the realization of preference shocks ϵit(h), fully determine household

h’s consumption Cit(h) and continuation values (for each potential destination) {vijt+1(h)}j .
The following proposition provides a recursive formula that the constrained-efficient allocation

must satisfy.

Proposition 2. In any constrained-efficient allocation, the following equation must hold for each
household h living in location i at time t:

µijt

[
βR

u′jt+1(Cjt+1(h))/Pjt+1

u′it(Cit(h))/Pit

− 1

]
+
∑
k

∂µikt

∂Cjt+1

Skt+1(vikt+1(h))

Pjt+1︸ ︷︷ ︸
≡ ξijt(h)

= 0 (37)

for all i, j, t, where ∂µikt

∂Cjt+1
is a partial derivative of migration probability µikt for a change in con-

sumption Cjt+1, holding everything else constant.

The above proposition characterizes the trade-off between equalization of the marginal utility

of income and distorting migration decisions. Without the term ξijt(h), the above condition is

identical to the one for the first-best complete information benchmark (22), and hence full con-

sumption smoothing is achieved. The term ξijt(h) captures an additional consideration the plan-

ner must address: how changes in consumption influence migration patterns and, consequently,

net social surplus in the subsequent period. Specifically, increasing consumption at location j in
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period t+1 triggers migration responses that affect net social surplus. Importantly, these migra-

tion responses occur not only at location j, but across all other locations k = 1, . . . , J through

substitution.

Consider first the case where ξijt(h) > 0. This implies that raising consumption at location j

in period t+1 induces migration responses that are beneficial in terms of net social surplus in the

next period onward. In this case, the planner has an incentive to increase the relative consumption

at (j, t+ 1) compared to (i, t), deviating from the full consumption smoothing benchmark. That

is, the planner backloads consumption to encourage migration toward high-surplus locations.

Conversely, when ξijt(h) < 0, migration responses induced by higher consumption at (j, t + 1)

reduce net social surplus. The planner then lowers relative consumption at (j, t + 1), that is,

front-loading consumption to discourage migration to low-surplus locations.

To gain further intuition, consider a common special case where the preference shocks are

drawn from an independent type-I extreme value (Gumbel) distribution with scale parameter

θ > 0, as in Artuç et al. (2010) and Caliendo et al. (2019). In this case, the expression for ξijt(h)

simplifies to

ξijt(h) = θµijt

u′jt+1(Cjt+1(h))

Pjt+1

[
Sjt+1(vijt+1(h))−

∑
k

µiktSkt+1(vikt+1(h))

]
. (38)

Therefore, the consumption profile of this household if it were to migrate to location j is back-

loaded when the net social surplus of location j is higher than the migration probability weighted

average of the net social surplus in all locations. Conversely, it is front-loaded when the net social

surplus of j is lower than the weighted average.

Notice that our formula closely resembles the optimal unemployment insurance formula by

Baily (1978) and Chetty (2006). In their setting, increasing unemployment insurance discourages

the incentive to transition out of unemployment status, creating a loss in net social surplus (fis-

cal externality). Optimal unemployment insurance thus balances the benefits of consumption

smoothing against the incentive to transition back into employment. Our formula extends this

logic to the context of dynamic discrete choice. Similarly, our expression relates to formulas de-

rived in the literature on optimal wage-tenure contracts between firms and workers (Burdett and

Coles 2003, Balke and Lamadon 2022, and Souchier 2022). In those settings, a similar trade-off

arises between providing insurance (via wage smoothing) and preserving incentives to retain or

separate workers. Finally, our formula serves as a dynamic counterpart to the static optimal spa-

tial transfer policies studied by Ales and Sleet (2022) and Donald et al. (2025), where the planner

aims to equalize marginal utility across space, but not over time.

Together with the formula in Proposition 2, the rest of the allocations and the Lagrangianmul-

tipliers are determined in the same way as the complete information first-best case. In particular,
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{lijt, Lit, ϕit, , Pit, wit, αit} solve (10), (11), (12), (13), (16), and (17).

To further understand the property of the constrained-efficient allocation, it is useful to ob-

serve that Proposition 2 also implies the following property of the consumption allocation.

Corollary 1. In any constrained-efficient allocation, the following equation must hold for each
household h living in location i at time t:

Pit

u′it(Cit(h))
= Eit

[
Pjt+1

βRu′jt+1(Cjt+1(h))

]
. (39)

This equation is commonly referred to as “inverse Euler equation,” as it equates the inverse

of the marginal utility of resources across time (Diamond and Mirrlees 1978, Rogerson 1985,

Golosov, Kocherlakota, and Tsyvinski 2003, Farhi and Werning 2012, Bloedel et al. 2025). It is a

common feature in the constrained-efficient allocation in an economy with private information

with additively separable preferences.

The inverse Euler equation is also useful for interpreting the distortions, or “wedges,” that

arise in decentralized market economies. In an economy with a risk-free asset (as studied in

Section 6), households’ consumption satisfies the standard Euler equation, not the inverse Euler
equation, which generally do not coincide. As emphasized by Golosov et al. (2003) and Farhi and

Werning (2012), the inverse Euler equations typically imply more front-loaded consumption than

the decentralized equilibrium on average.

4.3 History-Independent Constrained-Efficient Allocation

Proposition 2 shows that constrained-efficient allocations generally require consumption to de-

pend on a household’s migration history, summarized by its promised utility and current loca-

tions. We now consider an alternative allocation, which we refer to as “history-independent

constrained-efficient allocation,” in which consumption depends only on a household’s current

location, not its full migration history. Although this allocation is obviously suboptimal relative

to the fully history-dependent case, analyzing it is useful for at least three reasons. First, com-

paring it to the fully history-dependent case highlights the importance of the dynamic incentives

emphasized earlier. Second, this case illustrates how our approach can be extended to accom-

modate further restrictions in the policy space. Third, policymakers may face informational or

administrative constraints that limit their ability to condition policies on households’ migration

histories.

Specifically, we impose the restriction that all households residing in the same location must

receive the same level of consumption, regardless of their migration history; that is, Cit(v) = Cit.

This assumption implies that all households currently living in location i attain the same expected
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utility going forward. As a result, the component planning problems described in Section 4.2

become degenerate for v, and the net social surplus within each location is likewise uniform, i.e.,

Sit(v) = Sit. Aside from this restriction, the rest of the problem remains unchanged. We formally

define the planning problem and derive the optimality conditions in Appendix A.5. This results

in the following condition that any history-independent optimal policy must satisfy.

Proposition 3. In any constrained-efficient and history-independent allocation, the path of con-
sumption in each location satisfies

∑
i

Lit

[
µijt

[
βRω

u′jt+1(Cjt+1)/Pjt+1

u′it+1(Cit)/Pit

+ βR(1− ω)Λi

u′jt(Cjt+1)

Pjt+1

− 1

]
+
∑
k

∂µikt

∂Cj+1

Skt+1

Pjt+1

]
= 0,

(40)

where

Sjt = wjt (1 + αjt)− PjtCjt + (1− ω)Λjv
n
jt +

1

R

∑
k

µjktSkt+1. (41)

The formula in Proposition 3 resembles that in Proposition 2 in that it characterizes the devia-

tion from full consumption smoothing. The two important differences are (i) it is averaged across

migration origin i, since next-period consumption Cjt+1 cannot depend on where the household

migrated from, and (ii) it is implicitly averaged across households with all migration history,

since Cit, Cjt+1, and Skt+1 cannot depend on v. These restrictions imply that the planner pools

the insurance-incentive trade-offs across all households currently in the same location.

As a result, the planner’s ability to front-load or back-load consumption for individual house-

holds is limited. For example, if the planner wants to attract more households to a particular

location, they must increase consumption in that location uniformly, regardless of each house-

hold’s prior location. In Section 6, we quantify how these constraints shape the allocation of

consumption and population in our application to the U.S. state-level economy.

Our approach can naturally be extended to accommodate alternative restrictions on the policy

space. In Appendix C, we study an intermediate case in which the planner specifies consumption

by origin, destination, and time, Cijt. This lies between the fully history-dependent constrained-

efficient allocation in Section 4.2 and the history-independent allocation in Section 4.3. We derive

the analogous formula for this setting, which characterizes the trade-off between consumption

smoothing and efficient migration. Compared to the history-independent case, there is more

scope for dynamic incentives, as consumption can vary by origin. Nonetheless, when applied

to the U.S. economy, we find that the resulting population allocation is nearly identical to the

history-independent case, suggesting that escaping the insurance-incentive trade-off requires
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richer dynamic policies.

4.4 Implementation

Thus far, we have focused on characterizing the constrained-efficient allocations by taking in-

centive compatibility in migration decisions as a fundamental constraint, without specifying the

underlying market structure or available policy instruments. This approach highlights the core

policy trade-off and establishes a benchmark for the best outcome a planner can achieve, indepen-

dent of implementation details. In this section, we briefly discuss how such constrained-efficient

allocations might be implemented under different market equilibrium structures.

We divide the discussion into two types of environment, based on the existing literature on

dynamic spatial equilibrium analysis. First, researchers have extensively considered the environ-

ment where households making dynamic migration decisions are hand-to-mouth (e.g., Caliendo

et al. 2019). Second, and more recently, researchers have started to consider an environment

where agents make both dynamic migration and consumption-saving decisions simultaneously

(e.g., Giannone et al. 2023, Dvorkin 2023, Greaney 2023, Greaney et al. 2025).

In the first environment, the constrained-efficient allocation can be most naturally imple-

mented through direct transfers to households. As we formally show in Appendix B, these trans-

fers need to be conditioned on households’ location histories. Similarly, the history-independent

constrained-efficient allocation can be implemented with transfers that depend only on a house-

hold’s current location and time. Thus, simple place-based transfers are sufficient to implement

the history-independent constrained-efficient outcome. In these cases, the Lagrangian multipli-

ers Pit correspond to the price index for the final consumption goods at location i at time t, and

wit is the wage in location i at time t (up to scale), offering a clear mapping between the planner’s

problem and the decentralized equilibrium.

In the second environment, where agents make both migration and consumption-saving deci-

sions, transfers alone generally cannot implement either the constrained-efficient or the history-

independent allocation. This is because changes in transfers affect not only consumption and

saving behavior but also migration choices. Such joint deviations cannot be controlled with a

single policy instrument such as transfers, and additional tools are required (Stantcheva 2020).

For instance, a capital income tax that depends on the history of residential locations can im-

plement the constrained-efficient allocation, as shown by Kocherlakota (2005) in the context of a

dynamic Mirrleesian framework. In our quantitative analysis in Section 6, we sidestep this imple-

mentation question and focus on comparing the constrained-efficient allocation to the allocation

in the status quo economy.
10

10
As Golosov et al. (2003) note, “the robust predictions of any kind of theory of optimal taxation are not about

taxes, but, like our results, are wedges.”
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In both environments, an important aspect of implementation is the history dependence in

policy design. While policymakers may face informational and administrative constraints in im-

plementation in practice, simplified forms of history-dependent policies are commonly observed.

For example, advanced economies such as Japan and parts of Europe offer migration subsidies

tied to minimum residency periods in declining or depopulated regions.
11

Similarly, access to

urban public services is sometimes restricted only to long-term residents, as in China’s Hukou

system. Our analysis of constrained-efficient allocations characterizes the best outcomes achiev-

able within this class of policies.

5 Extensions

Our baseline model deliberately abstracts from several considerations in order to transparently

convey the main trade-off in the constrained-efficient allocation. We now discuss extensions and

generalizations of the baseline model.

5.1 Capital Accumulation

Some existing work (e.g., Kleinman et al. 2023, Bilal and Rossi-Hansberg 2023, D’Amico and Alek-

seev 2024) introduce capital accumulation into the dynamic spatial equilibrium model, which we

have abstracted from so far. In Appendix D.1, we show that our environment can be straight-

forwardly extended to incorporate location-specific capital accumulation (e.g., building structure

or housing stocks) subject to adjustment costs. Importantly, such consideration does not mean-

ingfully interact with the trade-off that we highlighted in Proposition 2. In fact, Proposition 2

and the underlying Bellman equations remain unchanged. Meanwhile, optimal investment and

capital accumulation follow the standard q-theory of investment.

5.2 Ex-ante Heterogeneous Households

In the baseline model, we have assumed that all households are ex-ante homogeneous. In Ap-

pendix D.2, we extend our baseline environment to an environment with many ex-ante hetero-

geneous household types θ ∈ {θ1, . . . , θM} with arbitrary heterogeneity in preferences, location

choice, and productivity. We also consider a general form of agglomeration/congestion forces

that allow for spillover across different household types. There, we show that Proposition 2 and

the underlying Bellman equations remain unchanged, except that now everything is indexed by θ.

11
For example, the Japanese government offers one million yen (approximately 10,000 USD) to households mi-

grating out of Tokyo and commit to staying in the designated depopulated regions for at least five years (https:

//www.chisou.go.jp/sousei/ijyu_shienkin.html (in Japanese)).
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5.3 Lagged Agglomeration/Congestion Forces

In the baseline model, we have assumed that the agglomeration and congestion forces arise from

contemporaneous population size. Some existing work, such as Allen and Donaldson (2020) and

Peters (2022), allows the agglomeration/congestion forces to depend on the lagged population

size. In Appendix D.3, we extend our environment to allow agglomeration/congestion forces

to depend on arbitrarily long lags of population size distribution. The only material difference

from our baselinemodel is that the net social surplus from agglomeration/congestion externalities

becomes the discounted sum of all future externalities, not only the contemporaneous oneswitαit.

6 Quantification

In this section, we calibrate our model to the U.S. state level and quantitatively assess how

constrained-efficient allocations differ from the status quo economy.

6.1 Status Quo Economy with Migration and Savings

We assume that the data are generated from a competitive equilibrium, in which households

make migration decisions and consumption-saving decisions, which we call “status quo econ-

omy.” First, households make forward-looking migration decisions to maximize utility, as in

Caliendo et al. (2019). Second, households choose consumption and savings with risk-free as-

sets and occasionally binding borrowing constraints, following the incomplete market literature

(Bewley 1986, Huggett 1993, Aiyagari 1994, Imrohoroğlu 1989).

The only available asset in the economy is the state non-contingent bonds in zero net supply.

Let 1+ rt be the gross rate of return from bond holdings from time t to t+1. All households face

a common exogenous borrowing limit, with the minimum asset level given by a. In addition, the

government provides spatial transfers: households living in location j at time t receive transfers

Tjt, independent of their asset holdings.

The Bellman equation of the household living in location j at time t with asset holding at is

vit(at) = max
Cit,{µijt}j ,at+1

uit(Cit) + βω

[∑
j

µijtvjt+1(at+1)− ψit({µijt})

]
(42)

s.t. PitCit + at+1 = (1 + rt−1)at + wit + Tit (43)

at+1 ≥ a, (44)

wherePit is the price index,wit is the wage, and a is the exogenousminimum asset level. Here, we

adopt the same representation of the dynamic discrete choice problem as in Section 4.2, where
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households directly choose migration probabilities {µijt}j subject to the cost function ψit. Let

Cit(a), ait+1(a), andµijt(a) denote the policy functions associatedwith the above value functions.

We assume that when households die, the asset is transferred as accidental bequests to their

offspring.

Since we assume the assets are in zero net supply, our model nests commonly used hand-to-

mouth households as a special case with a = 0, under which no household can borrow or save

in equilibrium. The traditional Bewley-Hugget-Aiyagari model is nested as a special case where

the migration is completely inelastic.

There is a representative firm in each location that imports factor services from other regions

and produces non-traded final goods. The representative firm in location j solves

max
{lkjt}k

Pjtfjt({lkjt}k, {Lkt}k)−
∑
k

wktlkjt, (45)

taking the population sizes {Lkt}k as given. Here, agglomeration/congestion forces are external-

ities that are not internalized by private agents.

We assume that the government runs a balanced budget. The government budget constraint

is ∑
i

TitLit = 0. (46)

Let φj(A) denote the measure of households with asset a ∈ A in location j. The goods market

clearing condition is ∫
Cjt(a)dφjt(a) = fjt({lkjt}k, {Lkt}k). (47)

The consistency of population size requires

Lkt =

∫
dφkt(a). (48)

The factor market clearing condition is ∑
j

lkjt = Lkt. (49)
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The distribution evolves according to the following law of motion:

φjt+1(A) =
∑
i

µijt(a
−1
jt+1(A))φit(a

−1
jt+1(A)) (50)

The decentralized equilibrium of the status quo economy consists of value and policy func-

tions {vit(a), Cit(a), ait+1(a), µijt(a)}, factor contents of trade, {lkjt}, population distribution,

{Lkt}k, spatial transfers, {Tit}, distribution over assets in each location, {φjt}, and prices {wit, Pit, rt}
such that: (i) given prices {wit, Pit, rt} and policy {Tit}, the value and the policy functions

{vit(a), Cit(a), ait+1(a), µijt(a)} solve the households problem (42); (ii) given prices {wit, Pit}
and population size {Lkt}, the factor contents of trade {lkjt} solve the firm’s problem (45); (iii)

the government sets the transfer that satisfies (46); (iv) markets clear (47), (49); (v) the population

size is consistent (48); and (vi) the distribution {φjt} evolves according to (50).

The status quo economy generally does not achieve either the first-best or the constrained-

efficient allocation, for two main reasons. First, private agents do not internalize agglomeration

or congestion externalities when making migration decisions. Second, markets are incomplete:

there is no mechanism to insure agents against idiosyncratic preference shocks and the resulting

uncertainty in location choice. In what follows, we quantify these deviations through the lens of

the calibrated model.

6.2 Calibration

We calibrate our status quo economy to match the data on the US 2017, assuming that the US is in

its steady state in 2017. One period is five years. We consider 48 states in the US as a geographical

unit, excluding the states of Alaska and Hawaii. We choose Alabama’s labor as numeraire and

set its wage to one. Since our calibration assumes steady state, we drop the subscript t in this

subsection. We reintroduce the time subscripts when we study transition dynamics in Section 7.

We first parameterize the utility function as a CRRA utility function,

uj(Cj) =
C1−γ

j − 1

1− γ
, (51)

and we set γ = 1, corresponding to log utility, a standard specification in the literature (e.g.,

Caliendo et al. 2019). We also set ω so that the average life expectancy is 70 years. The production

function is assumed to take the constant elasticity of substitution form:

fj({lkj}, {Lk}k) =

[∑
k

(Akj(Lk) lkj)
σ−1
σ

] σ
σ−1

, (52)
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where σ > 1 corresponds to the trade elasticity, and Akj(Lk) is the productivity shifter of goods

shipped from location k to j that depends on the population size of location k. The productivity

is an iso-elastic function of the population size of the origin location:

Akj(Lk) = AkjL
α
k . (53)

This specification, together with (16) and (17), implies

αj = α for all j. (54)

For the baseline model, we assume α = 0.02. This value corresponds to the lower end of the es-

timates in the literature summarized in Melo, Graham, and Noland (2009). We choose the lower

end of the existing estimates as a baseline because, given our analysis is at the state-level, ag-

glomeration forces are likely to be weaker than what is implied by the typical estimates at the

city-level. We set the trade elasticity to σ = 5, as in Costinot and Rodríguez-Clare (2014).

Following Artuç et al. (2010) and Caliendo et al. (2019), we assume {ϵj}j follows an indepen-

dent Type-I extreme value distribution, whichwould imply the followingmigration cost function:

ψi({µij}j) =
1

θ

∑
j

µij ln(µij/χij), (55)

as originally shown by Anderson et al. (1988). The parameter θ governs the migration elasticity,

and χij ≥ 0 represents the bilateral migration cost shifter. We set the value of migration elasticity

to θ = 2.5 for a five-year horizon, in line with the parameters estimated and used in the previous

literature (Caliendo et al. 2019, Kleinman et al. 2023).

We briefly describe the calibration of the other parameter values and relegate the details to

Appendix F.2. We choose {Aij}i ̸=j and {χij}i ̸=j to match bilateral trade and migration flows at

the state level. We choose {Aii} to match the real wage level in each state, and we normalize

χii = 1 for all i. We set the discount factor β so that the annual real interest rate is 3%. We

choose the value of a so that the average marginal propensity to consume (MPC) over a five-year

horizon is 0.7, which lies in the middle of estimates in the literature.
12

Finally, we parameterize

Tj = κjwj + T̄ and choose {κj} to match the net transfer from the government to income ratio

at the state level. We obtain net transfer from the government at the state level from the Bureau

of Economic Analysis (BEA). We adjust the term T̄ to ensure the government budget constraint

12
To the best of our knowledge, Fagereng, Holm, and Natvik (2021) is the only study that estimates MPC over a

five-year horizon. They document that households spend roughly 90% on lottery winnings over five years following

the winning. Other studies (e.g, Orchard, Ramey, and Wieland 2023, Colarieti, Mei, and Stantcheva 2024, Boehm,

Fize, and Jaravel 2025) findMPCs are 30-50% over a quarter or a year with no further statistically significant spending

responses over longer (but less than five years) horizons.
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Table 1: Parameter Values

Parameter Description Value Source/Target

A. Assigned Parameters

γ Risk aversion 1 Standard

σ Trade elasticity 5 Costinot and Rodríguez-Clare (2014)

θ Migration elasticity 2.5 Caliendo et al. (2019)

ω Surviving probability 0.93 Life expectancy 70 years

α Agglomeration elasticity 0.02 Baseline

B. Internally Calibrated Parameters

β Private discount factor 0.92 Annual real interest rate 3%

a Borrowing limit -0.08 5-year MPC 0.7

{Aij} Productivity shifter - Trade flows and real output

{χij} Migration cost shifter - Migration flows

{κi} Net transfer rate - Net transfer from the government

C. Parameters for Social Welfare Function

1/R Social discount factor 0.92 Private discount factor

{Λj} Location welfare weights - Equal weight

Note: The table shows the parameters used in our quantitative exercise. Parameter values for {Aij}, {χij}, and {κi}
are chosen to exactly match the data moments described in the main text. One period corresponds to five years.

holds.

Finally, we need to take a stance on the parameters that govern the social welfare function,

{R,Λj}. We choose the social discount factor 1/R to be the same as the private discount factor

β, so that βR = 1. As one can see from Proposition 1 and explored by Eden (2023) in depth,

the first-best allocation features equitable steady state distribution of consumption across age

groups if and only if βR = 1. By setting βR = 1, any non-constant consumption-age profile

in the constrained-efficient allocation can be solely attributed to the private information. The

planner puts equal weight on households born in different regions, which we normalize to one,

Λj = 1 for all j.

6.3 Steady State Computational Algorithms

Here, we briefly describe how we compute the steady states (for both the status quo and the

constrained efficient allocation), and relegate the details to Appendix F.3. We first guess wages

{wj}j and population size {Lj}j across locations. This allows us to obtain price indices {Pj}j .
We then iteratively solve the Bellman equations, (31) and (42), to obtain policy functions. With

policy functions in hand, we can compute the steady state distributions. We then check the
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market clearing conditions and consistency in the population size distribution. We then update

the guess of {wj}j and {Lj}j and repeat the whole procedure until both the market clearing and

the consistency of population are satisfied.

A key computational challenge lies in solving the Bellman equations. The Bellman equa-

tion for a constrained efficient allocation (31) involves maximizing over 2J + 1 control variables

(Cit, {vijt+1, µijt}j). The Bellman equation for the status quo economy (equation (42)) is lower

dimensional, involving J + 2 control variables (Cit, {µijt}j, at+1), but still poses a similar com-

putational burden. Since we need to repeatedly solve the Bellman equations to find the fixed

points in wages,{wj}j , and population distribution, {Lj}j , naive algorithms such as grid search

or Newton’s method are infeasible in our context.

To address this challenge, we extend the endogenous gridpoint method by Carroll (2006),

which exploits the analytical first-order conditions to avoid root-finding or explicit optimization.

For the status quo economy, our formulation of dynamic discrete choice as a direct optimization

overmigration probabilities {µij}j allows for a seamless extension.
13
For the constrained-efficient

allocation, the extension is nontrivial due to the added dimensionality from destination-specific

promised utilities {vijt+1}j . Nevertheless, we demonstrate that the method can be tractably ex-

tended to the planner’s problem under type-I extreme value preference shocks. This achieves

substantial speed gains over naive algorithms, making the computation of steady-state allocation

feasible.

6.4 Steady State: Status Quo vs. Planner

Armed with our calibrated parameters, we begin by comparing the steady states of the status

quo economy and the constrained-efficient allocation. The left panel of Figure 1 plots average

consumption per capita against real wages in the status quo economy, which serve as a proxy for

how “productive” each location is.
14
Square dots show average consumption in each state under

the status quo. If the economy were in financial autarky, these points would lie on the 45-degree

line. Instead, access to savings and government transfers smooths consumption, resulting in a

slope slightly below one. Circular dots depict consumption in the constrained-efficient alloca-

tion, which is significantly flatter. This pattern indicates that the constrained-efficient allocation

achieves substantially greater spatial consumption equality.

The right panel of Figure 1 compares population sizes, plotted against real wages in the status

quo economy. In the status quo, the relationship is roughly flat. By contrast, the constrained-

13
See Greaney (2023) and Greaney et al. (2025) for a related continuous-time implementation in similar market

environments.

14
Appendix Figure F.2 confirms a strong positive relationship between real wages and average net social surplus

Sj for the constrained-efficient allocation. Appendix Figure F.1 shows that the shadow value of labor wj in the

planner’s solution closely tracks those in the status quo.
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Figure 1: Steady State Consumption and Population: Status Quo vs. Planner

Note: The left panel plots the average consumption per capita in each state against the real wage in

the status quo economy. The square dots correspond to the status quo economy, and the circle dots

correspond to the planner’s solution. The dashed red line is the best linear fit for the status quo economy.

The solid blue line is the best linear fit for the planner’s solution. The right panel plots population size

against the real wage in the status quo economy and is analogous to the left panel.

efficient allocation exhibits an upward-sloping relationship: more productive states host larger

populations, and less productive states host smaller ones.

At first glance, this pattern may seem counterintuitive. As shown earlier, the constrained-

efficient allocation results in lower average consumption per capita in productive states and higher
in unproductive states. If households based their location decisions solely on average consump-

tion, we would expect lower population in productive states and higher in unproductive states,

the opposite pattern of what we find.

The resolution lies in the role of dynamic incentives. As emphasized in Proposition 2, the

planner frontloads consumption in unproductive states to encourage out-migration. These in-

centives support greater reallocation toward productive regions while simultaneously improving

consumption insurance in less productive areas. In doing so, dynamic incentives achieve both

spatial efficiency and equity. This pattern marks a sharp contrast with static settings, where

these goals are typically in conflict (Gaubert et al. 2021, Ales and Sleet 2022, Donald et al. 2025).

To further illustrate the role of dynamic incentives, Figure 2 plots life-cycle consumption and

income profile in Mississippi (a “unproductive” location) and inWashington (a “productive” loca-

tion). We consider households born in these locations and end up staying there for their lifetime.

In the status quo economy, households born in Mississippi borrow to consume more than their

27



Figure 2: Consumption and Real Wage over the Life-Cycle for Stayers

(a) Missisipi

(b) Washington

Note: The figure plots the consumption and real income profile of households born in Mississippi (panel

(a)) and in Washington (panel (b)). We focus on the households who keep staying in the same loca-

tion. The left panel shows the status quo economy, and the right panel shows the planner’s solution

(constrained-efficient allocation). In both cases, the initial condition is the average of the households

born in each location. The real wage in the planner’s solution corresponds to the ratio of the Lagrange

multipliers for labor and consumption goods (wi/Pi).

real wages. This immediately drives down the asset and eventually hits the borrowing constraint.

After hitting the borrowing constraint, consumption remains flat. In contrast, in the planner’s

solution, the consumption profile is front-loaded throughout the lifetime with an initially higher

level of consumption than the status quo economy. In this way, the planner can effectively in-

sure households born in Mississippi while strongly incentivizing them to leave Mississippi. The

Washington example illustrates the other case. In the status quo economy, as households accu-

mulate savings, consumption increases over the lifecycle. The planner solution features nearly a

flat consumption profile, or a far less front-loaded consumption profile than Mississippi, which

incentivizes households to stay in Washington.

We quantify the aggregate consequences of moving to the constrained-efficient allocation in

Table 2. The constrained efficient allocation features around 9% higher real GDP at the national
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Table 2: Steady State Aggregate Outcomes

Real GDP VarL(ln C̄j)

Level Change Level Change

0. Status quo 5.86 - 0.0094 -

1. Planner 6.38 +8.9% 0.0065 -31.3%

2. History independent 6.36 +8.6% 0.0140 +49.3%

Note: The table shows the aggregate real GDP and spatial inequality, measured by the variance of log

average state-level consumption (C̄j ). We show them for the status quo economy, (history-dependent)

constrained efficient allocation, which we label “planner”, and the history-independent constrained effi-

cient allocation. We compute real GDP as the nominal GDP divided by the weighted average of state-level

price index, where the weight is state-level nominal GDP. The variance of log state-level consumption

is weighted by the state-level population size. Formally, VarL(C̄j) ≡
∑J

j=1 Lj(ln C̄j − ELln C̄j)
2
with

ELln C̄j ≡
∑J

j=1 Lj ln C̄j . Column “Change” refers to the percentage change from the status quo econ-

omy.

level than the status quo economy. As emphasized earlier, this does not come at the cost of

increasing spatial inequality. In fact, the constrained efficient allocation cuts the variance of log

regional consumption by a third. In terms of welfare, we find that the utilitarian welfare of the

newborns increases by 9.5% in consumption equivalent units.
15
We further decompose thewelfare

gain into within- and between-location components in Appendix F.6. We find that both within-

and between-components equally contribute to the welfare gains.

6.5 History-Independent Constrained-Efficient Allocation

Wenext compare the history-contingent constrained-efficient allocationwith the history-independent

allocation, in which consumption depends solely on the household’s current location, as de-

scribed in Section 4.3. Without the ability to condition on migration history, the planner is con-

strained in front-loading or back-loading consumption. This comparison highlights the central

role of dynamic incentives in achieving efficient outcomes.

Figure 3 presents per capita consumption (left panel) and population size (right panel) un-

der the history-independent constrained-efficient allocation, in a format analogous to Figure 1.

For comparison, we also include the status quo and the history-dependent constrained-efficient

(planner) allocation.

The left panel shows that the history-independent allocation generates substantial spatial in-

equality in consumption, with a slope steeper than the 45-degree line. In this allocation, per

capita consumption is higher in more productive states and lower in less productive ones, rela-

tive to both the status quo and the history-dependent constrained-efficient allocation. Despite

15
This welfare number should be interpreted with caution, as it does not take into account the costs incurred

during the transition, which may have been borne by previous generations.
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Figure 3: Steady State Consumption and Population: Planner vs. History-Independent

Note: The left panel plots the average consumption per capita in each state against the real wage in the

status quo economy. The square dots correspond to the constrained-efficient economy, and the circle dot

corresponds to the history-independent solution. The solid line is the best linear fit. The right panel plots

the population and is analogous to the left panel.

this greater inequality, the right panel demonstrates that the history-independent allocation still

results in a larger population residing in more productive states and a smaller population in less

productive ones. In fact, the population distribution is remarkably similar between the history-

independent and history-dependent allocations, even though their consumption patterns differ

sharply.

These contrasts highlight the role of dynamic incentives. Without the ability to condition

on migration history, the planner faces a sharper trade-off between spatial equity and migration

efficiency. In our calibration, to reap efficiency gains, the planner sacrifices the consumption

smoothing in less productive regions. By contrast, the history-dependent allocation leverages

dynamic incentives to achieve both spatial efficiency and equity.
16

The last row of Table 2 quantifies the aggregate consequences from history-independent pol-

icy. The real GDP increases slightly less than the constrained efficient allocation. At the same

time, the spatial inequality is nearly 50% higher than the status quo economy. These two results

reiterate the presence of a strong trade-off we highlighted in Figure 3. The welfare of newborns in

the history independent allocation is 6.6% higher than the status quo economy. Although large,

16
Appendix Figure F.3 shows that allowing the planner to condition consumption not only on the current location

but also on the previous location (i.e., one-period history dependence; Appendix C) yields an allocation that is nearly

identical to the purely history-independent case. This suggests that to generate meaningful dynamic incentives, the

policy must depend on a longer span of migration history.
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Table 3: Sensitivity to Calibrated Parameters

bC bpop ∆GDP ∆VarL(C̄j)

DE SP DE SP

0. Baseline 0.81 0.39 0.39 6.06 +8.9% -31.3%

1. No agglomeration 0.81 0.30 0.39 5.06 +8.0% -59.8%

2. Congestion 0.81 0.23 0.39 3.87 +4.2% -70.8%

3. Hand-to-mouth 0.82 0.41 0.38 5.20 +7.5% -52.0%

4. Lower MPC 0.69 0.37 0.35 6.45 +9.3% -33.0%

5. Lower migration elas. 0.81 0.40 0.39 5.47 +7.9% -42.4%

6. Higher migration elas. 0.80 0.35 0.40 6.34 +10.2% -25.5%

7. Higher risk aversion 0.81 0.31 0.38 5.39 +7.8% -57.8%

Note: The table compares the constrained efficient allocation (SP) with the status quo economy (DE) for

various alternative calibrations. The coefficient bC is obtained from a linear regression of the form C̄j =
bC(w/P )DE

j +aC+ϵj , where C̄j is the state-level per capita consumption and (w/P )DE
j is the real wage

in the status quo economy. Likewise, the coefficient bpop is obtained from a linear regression of the form

popj = bC(w/P )DE
j +apop+ ϵj , where popj is the state-level population size. ∆GDPj and∆VarL(C̄j)

are changes in real GDP and population-weighted variance of state-level per capita consumption from the

status quo economy to the constrained efficient allocation (see notes under Table 2 for precise definitions).

Row 0 is our baseline economy. Row 1 considers an economywithout agglomeration forces (α = 0). Row
2 considers an economy with congestion externality (α = −0.02). Row 3 considers an economy with

hand-to-mouth households (a ↑ 0). Row 4 considers a larger negative value for a, which implies a low

MPC calibration with 5-year MPC of 0.5. Row 5 considers a lower migration elasticity (θ = 2.0). Row
6 considers a higher migration elasticity (θ = 3.0). Row 7 considers a higher risk aversion parameter

(γ = 1.2). In all cases, we re-calibrate the parameters in Panel B of Table 1 to target the same moments.

this is substantially less than the welfare gains from the constrained efficient allocation.

6.6 Sensitivity to Calibrated Parameters

Table 3 presents results under alternative calibrations to our baseline economy. Rows 1 and 2

consider economies with either no net agglomeration forces (α = 0) or negative agglomeration

externalities (i.e., positive congestion effects; α = −0.02). The qualitative patterns remain un-

changed, although we find that the constrained-efficient allocation exhibits smaller GDP gains

(∆GDP ) and a flatter profile of consumption (a larger negative value of ∆VarL(C̄j)). This is

consistent with the interpretation that a lower α weakens the planner’s incentive to concentrate

population in more productive regions.

Rows 3 and 4 explore alternative borrowing constraints in the status quo economy. Row

3 imposes a hand-to-mouth condition (a ↑ 0), while Row 4 allows for a larger negative asset

limit, targeting a marginal propensity to consume (MPC) of 0.5, lower than the baseline MPC of

0.7. Even under this more conservative assumption about the borrowing constraint, the planner

continues to smooth consumption in the status quo, reflecting the incomplete market in the status
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quo economy.

Rows 5 and 6 vary the migration elasticity, considering values lower (θ = 2.0) and higher

(θ = 3.0) than the baseline. A higher θ results in a smaller change in the spatial variation of

consumption variation (∆VarL(C̄j)). This is consistent with an interpretation that more elastic

migration leads to less consumption smoothing, as evident from Proposition 2. Row 7 considers

an economy with higher risk aversion. As expected, this leads to more equal consumption across

space.

Overall, across all alternative calibrations, the planner’s solution consistently features greater

spatial equality in consumption and increased population concentration in more productive re-

gions.

7 Transitions in Response to Aggregate Shocks

So far, we have focused on the steady state. Now we introduce aggregate shocks to our baseline

economy to study transition dynamics.

7.1 Introducing Aggregate Shock

We analyze the transition dynamics in response to one-time shocks to technologies. We assume

that the aggregate shock arrives with probability p > 0. Let x = 0, 1, . . . denote the time elapsed

since the arrival of the aggregate shock. If the shocks have not occurred yet, the technology

evolves according to

fjt({lkjt}k, {Lkt}k) =

f 0
j ({lkjt}k, {Lkt}k) with prob. p

fj({lkjt}k, {Lkt}k) with prob. 1− p
, (56)

where fj is the technology before the realization of the shock that is constant over time, and f 0
j

is the technology immediately after the realization of the shock. After the arrival of the aggre-

gate shock, the technology is given by the deterministic sequence {fx
j }∞x=0, and we assume the

sequence is convergent:

fx
j → f∞

j as x→ ∞. (57)

Consequently, all aggregate variables (e.g., wx
t ) follow a convergent and deterministic sequence

after the arrival of the aggregate shock. The arrival of the aggregate shock at t+ 1 is announced

at the end of time t before the migration takes place.
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The component planning problem for a household with promised utility v in location i in

period t, before the realization of the aggregate shock is

Sit(v) = max
Cit,{vijt+1,µx

ijt,v
0
ijt+1,µ

0
ijt}j

wit (1 + αit)− PitCit + (1− ω)Sit

+ (1− p)

[
1

R

∑
j

µijtSjt+1(vijt+1)

]
+ p

[
1

R

∑
j

µ0
ijtS

0
jt+1(v

0
ijt+1)

]
(58)

s.t. v = uit(Cit) + βω

{
(1− p)

[∑
j

µijtvijt+1 − ψit({µijt}j)

]
+ p

[∑
j

µ0
ijtv

0
ijt+1 − ψit({µ0

ijt}j)

]}
{µijt}j ∈ arg max

{µ̃ijt}j

∑
j

µ̃ijtvijt+1 − ψit({µ̃ijt}j)

{µ0
ijt}j ∈ arg max

{µ̃0
ijt}j

∑
j

µ̃0
ijtv

0
ijt+1 − ψit({µ̃0

ijt}j),

where the variables without superscript 0 denote those before the arrival of the shock. The com-

ponent planning problem for a newborn is likewise given by

Sn
it = max

vnit,{vnijt+1,µ
n
ijt,v

0
ijt+1,µ

0
ijt}j

(1− p)

[
Λiv

n
it +

1

R

∑
j

µn
ijtSjt+1(v

n
ijt)

]

+ p

[
Λiv

n,0
it +

1

R

∑
j

µn,0
ijt S

0
jt+1(v

n,0
ijt )

]
(59)

s.t. vnit = β

[∑
j

µn
ijtv

n
ijt+1 − ψit({µn

ijt}j)

]
, vn,0it = β

[∑
j

µn,0
ijt v

n,0
ijt+1 − ψit({µn,0

ijt }j)

]
µn
ijt ∈ arg max

{µ̃n
ijt}j

∑
j

µ̃n
ijtv

n
ijt+1 − ψit({µ̃n

ijt}j)

µn,0
ijt ∈ arg max

{µ̃n,0
ijt }j

∑
j

µ̃n,0
ijt v

n,0
ijt+1 − ψit({µ̃n,0

ijt }j).

After the realization of aggregate shock, the component planning problems are analogous to

(31) and (34) indexed with superscript x = 0, 1, 2, . . . The Bellman equations for the transition

dynamics of the status quo economy are modified in a similar way (see Appendix F.5).

A key challenge in studying the transition dynamics is the high dimensionality of the state

space: with aggregate shocks, the full distribution of population over location and asset (in the

status quo) or location and promised utility (in the constrained-efficient allocation) becomes state

variables. Evaluating the net social surplus functions for all possible states is practically infeasible.

To address this challenge, we assume the aggregate shock occurs with arbitrarily small prob-
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ability:

p→ 0. (60)

This assumption dramatically simplifies our analysis for two reasons. First, it implies that the

economy is in a deterministic steady state before the realization of the aggregate shock. Sec-

ond, it allows us to compute a first-order approximation of the transition path solely using the

sequence-space Jacobian (Auclert et al. 2021) with respect to aggregate variables such as local

wages and population size – significantly lower-dimensional objects. We describe the details of

the computational algorithm in Appendix F.4 and F.5.

Importantly, this assumption is distinct from an “MIT shock,” a one-time unanticipated shock

(Mukoyama 2021). Here, the shock is anticipated, and the planner writes contingent plans in

response to the shock. This distinction is important, as “MIT shock” is ill-suited to study the

dynamics of optimal policy responses as in our context. If shocks were unanticipated, the planner

needs to re-optimize in response to the shock. However, allowing re-optimization introduces a

time inconsistency problem: once migration decisions are realized, the planner has no incentive

to fulfill any ex-ante plan for consumption front-loading or back-loading. This re-optimization

creates artificial dynamics unrelated to the aggregate shock itself.

7.2 Long-Run Response to the Localized Productivity Shock

We consider a 1% negative permanent productivity shock to each of the 48 states, so there are

48 experiments in total. We first discuss how the steady state (long-run) allocation changes in

response to the shock. We discuss the transition dynamics from the old to the new steady state

in the next subsection.

The left panel of Figure 5 shows the long-run change in population in a shocked location

against that location’s real wage in the status quo economy. The red square dots are the responses

for the status quo economy, and the blue diamond dots are those for the planner’s solution. The

linear fits for each economy are shown in the same color. In the status quo, the elasticity of

population with respect to the shock is relatively flat across locations, averaging around 7.5%. In

contrast, under the planner’s solution (constrained-efficient allocation), the elasticity increases

sharply with real wage: it is below 5% in the least productive locations but rises to nearly 15% in

the most productive ones.

The right panel of Figure 5 shows the corresponding per capita consumption response. The

pattern closely mirrors the population response. Under the constrained-efficient allocation, the

elasticity of consumption with respect to the shock increases strongly with real wage, whereas it

remains relatively constant in the status quo.
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Figure 4: Long-run Impact of Localized Negative Productivity Shock

Note: The left panel plots the population response (in percentage terms) of the location hit by the 1% negative

productivity shock on the y-axis and the real wage in the same location in the status quo economy on the x-axis.

The red square dots are those of the planner, and the red dashed line is the best linear fit. The blue diamond

dots are those of the status quo economy, and the blue solid line is the best linear fit. The right panel plots

the long-run pass-through from real wage to average consumption in the location hit by the shock,
d lnCi

d ln(wi/Pi)
,

and is otherwise analogous to the left panel.

Why are the elasticities of local population and consumptionwith respect to local productivity

significantly larger in more productive locations under the planner’s solution? The key reason

is that productive locations typically run a fiscal surplus, i.e., wj − PjCj > 0. In such locations,

consumption has more room to adjust, in proportional terms, than the real wage. In contrast,

in locations with a fiscal deficit (wj − PjCj < 0), the consumption has less room to adjust,

in proportional terms, than the real wage. As a result, shocks to surplus-generating locations

generally lead to larger changes in consumption, and in turn, greater adjustments in population.
17

7.3 Transition Dynamics

Wenow turn to the transition dynamics from the old to the new steady state following the realiza-

tion of a localized negative productivity shock. As examples, Figure 5a and 5b illustrate the tran-

sition path whenMississippi andWashington experience a permanent 1% decline in productivity,

respectively. In each plot, the blue solid line represents the planner’s solution (the constrained-

efficient allocation), and the red dashed line represents the status quo economy. “Productivity”

panels show the productivity paths, which are the shock process we feed in.

17
See Appendix E for more formal analytical comparative statics in a stylized setting.
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Figure 5: Impulse Responses to a 1% Permanent Negative Productivity Shock

(a) Mississippi

(b) Washington

Note: The figure shows the impulse responses of Mississippi and Washington to a 1% permanent negative produc-

tivity shock in each location. In each panel, the blue solid line indicates the planner’s solution (constrained-efficient

allocation), and the red dashed line indicates the status quo. All responses are expressed as a percentage devia-

tion from the initial steady state. “Real wage” in the planner’s solution refers to the ratio of the two Lagrangian

multipliers: wit/Pit.
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The bottom left panel in Figure 5a shows the consumption response in Mississippi. As dis-

cussed earlier, in the long run, the constrained-efficient allocation leads to a smaller population

decline in response to a shock in an unproductive state like Mississippi. In the status quo, the

consumption response closely tracks the response of real wage, shown in the bottom right panel.

This is because most households in Mississippi are borrowing-constrained. Consumption drops

abruptly initially and gradually recovers as households continue to migrate out of Mississippi. In

stark contrast, constrained efficient allocation achieves substantially better consumption smooth-

ing, with an initial drop in consumption roughly equal in size to the long-term response. In other

words, the constrained efficient allocation features minimal transition dynamics in consumption

relative to the status quo. This simultaneously leads to faster transition dynamics in the popula-

tion in the constrained efficient allocation.

Figure 5b shows the response of Washington, a productive state, which contrasts with the re-

sponse of Mississippi. First, in the status quo, households inWashington achieve better consump-

tion smoothing than those in Mississippi, as they are less likely to be borrowing-constrained. Af-

ter the initial drop, the consumption immediately stabilizes at around the new steady state value.

Second, consumption in the constrained efficient allocation is substantially more front-loaded

than the status quo. The consumption drops by a small amount initially and continues to decline

over the next 100 years. This pattern reflects the planner’s dual objective: to insure households

against the negative productivity shock while encouraging long-run outmigration from the af-

fected location. To support insurance, the planner minimizes the drop in initial consumption to

smooth utility in the short run. But to incentivize outmigration over time, long-run consumption

in the shocked location must fall. Third, this front-loaded and persistent consumption path, in

turn, leads to a slower adjustment in population, as shown in the top right panel.

Figure 6 generalizes the patterns we highlight through Mississippi and Washington. The left

panel plots the on-impact consumption response against the real wage in the shocked state. We

see that the on-impact consumption response is substantially smaller in the planner’s solution

relative to the status quo, despite Figure 5 showing that the long-run consumption responses are

similar on average. Interestingly, comparing with Figure 5, the difference between the initial and

long-term consumption responses is greater in more productive locations. Therefore, the planner

front-loads consumption profile more in productive locations.

The right panel depicts the speed of convergence of the population distribution, measured by

the half-life of the Kullback–Leibler divergence. It shows that the convergence is faster under the

constrained-efficient allocation compared to the status quo when unproductive locations are hit

by the shock. In contrast, the convergence is slower in the constrained-efficient allocation when

the productive locations are hit by the shock. This is consistent with a front-loaded dynamic

consumption response in productive locations, which slows down the transitions, as well as little
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Figure 6: Response to 1% Permanent Negative Productivity Shock in Each State

Note: The left panel plots the impact response of consumption of the shocked state to 1% permanent negative

productivity shock to each state against the real wage of the shocked location in the status quo economy. The

right panel plots the half-life of the Kullback–Leibler (KL) divergence of the population distribution in response

to 1% permanent negative productivity shock to each state against the real wage of the shocked location in the

status quo economy. In both panels, the blue circle dots are the planner’s solution, the red square dots are the

status quo economy, and the best linear fits for each case are shown in the same color.

transition dynamics in consumption in unproductive locations, as discussed above.

Together, these patterns underscore the importance of dynamic incentives in optimal policy

responses to aggregate shocks. Importantly, the planner’s optimal response differs substantially

between the short and long run, with systematic variation across locations depending on their

pre-shock fundamentals.

8 Concluding Remarks

Many important real-life decisions are dynamic and discrete. This is why dynamic discrete

choice models have been an extremely popular framework in studying various questions on la-

bor, macroeconomics, industrial organization, international trade, and spatial economics. Despite

its popularity, little is known about optimal policies in such an environment. Methodologically,

we provide a general framework to study optimal policies in dynamic discrete models in general

equilibrium. Importantly, our framework does not impose any ad-hoc restrictions on the policy

instruments, yet implementations only require policies to be contingent on the history of choices.

Substantively, we apply our framework to study optimal dynamic spatial policy in the US states.

We find that dynamic incentives (i) alleviate the trade-off between spatial inequality and efficient
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population allocation in the long-run; and (ii) critically shape the consumption and population

response to localized technology shocks.

It goeswithout saying that our framework and results are not the final word on the optimal dy-

namic spatial policy. In particular, we have assumed that the government has a full commitment

to future policies, which critically shapes the back-loading and front-loading of consumption pro-

files both in the steady state and in the transitions. We also have assumed a closed economy, but

many important migration policies involve international migration flows. What if the govern-

ment lacks commitment? What if the government faces international immigration flows? We

plan to tackle these questions in future research.
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A Proofs and Mathematical Details

A.1 Lagrangian of the Recursive Planning Problem

Let Pit, wit, and witαit denote the Lagrangian multipliers of (10), (11), and (12), respectively. Let

St(ϕt) denote the associated Lagrangian of the problem (7). It is given by

St(ϕt) = max
{Cit(v),ℓnit(ϵ),ℓit(v,ϵ),v

n
it,v

n
ijt+1(ϵ),vijt+1(v,ϵ),lit,ϕt,Lit,Pit,wit,αit}

∑
i

Λiv
n
it (1− ω)

∫
dϕit(v)

+
∑
i

Pit

[
fit({lkit}k, {Lkt}k)−

∫
Cit(v)dϕit(v)

]

+
∑
i

wit

[∫
dϕit(v)−

∑
j

lijt

]

+
∑
i

αitwit

[∫
dϕit(v)− Lit

]
+

1

R
St+1(ϕt+1)

(A.1)

subject to

vnit = βEit

[∑
j

I[ℓnit(ϵit) = j]
{
vnijt+1(ϵit) + ϵijt

}]
] (A.2)

v = uit(Cit(v)) + βωEit

[∑
j

I[ℓit(v, ϵit) = j] {vijt(v, ϵit) + ϵijt}
]

(A.3)

and the law of motion of the distribution

ϕjt+1(v) =
∑
i

ωEit

[
ϕit(v

−1
ijt+1(v, ϵit))I[ℓit(v

−1
ijt+1(v, ϵit), ϵit) = j]

]
+ (1− ω)LitEit

[
I[vnijt+1(ϵit) = v]I[ℓnit(ϵit) = j]

]
.

(A.4)

We now guess and verify that the value function takes the following form:

St(ϕt) =
∑
i

∫
Sit(v)dϕit(v) +Dt. (A.5)

First, observe that the flow value in (A.1) is additively separable in ϕit and i. Second, under the
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guess, using (A.4), the continuation value can be rewritten as

1

R
St+1(ϕt+1) =

1

R
ω
∑
i

∫
Eit

[∑
j

I[ℓit(v, ϵ) = j]Sjt+1(vijt+1(v))

]
dϕit(v)

+
1

R
(1− ω)

∑
i

LitEit

[∑
j

I[ℓnit(ϵ) = j]Sjt+1(v
n
ijt+1)

]
+

1

R
Dt+1.

(A.6)

With these observations, it is immediate to see that the guess satisfies the Bellman equation (A.1)

with Sit(v) solving (18) and Dt solving (15).

A.2 Proof of Proposition 1

Let Ξit(v) be the Lagrangian multiplier on the promise-keeping constraint (19). The first-order

condition with respect to vijt+1(v, ϵit) is given by

1

R
∂vSjt+1(vijt+1(v, ϵit)) + βΞit(v) = 0. (A.7)

From this expression, it is clear that vijt+1(v, ϵit) does not depend on idiosyncratic preference

shocks ϵit, i.e., vijt+1(v, ϵit) = vijt+1(v). The first-order condition with respect to Cit(v) is

Pit = u′it(Cit(v))Ξit(v). (A.8)

The envelope condition is

∂vSit(v) = −Ξit(v). (A.9)

Combining the above three expressions, we have

− 1

R

Pjt+1

u′jt+1(Cjt+1(vijt+1(v)))
+ β

Pit

u′it(Cit(v))
= 0, (A.10)

which is (22).

The location choice maximizes the Lagrangian:

ℓit(v, ϵit) ∈ argmax
l
βωΞit[vilt+1(v) + ϵilt] +

1

R
Slt+1(vilt+1(v)). (A.11)

Substituting the expression for Ξit in (A.9) gives (23).

46



A.3 Proof of Proposition 2

Let Ξit be the Lagrangian multiplier on the promise-keeping constraint (32). The first order con-

ditions with respect to Cit and vimt+1 are

Ξitu
′
it(Cit) = Pit (A.12)

1

R
µimtS

′
mt+1(vimt+1) + Ξitβµimt +

1

R

∑
k

∂µikt

∂vimt+1

Skt+1(vikt+1) = 0 (A.13)

The envelope condition is

S ′
it(v) = −Ξit. (A.14)

Combining the three equations,

− 1

R
µimt

Pmt+1

u′mt+1(Cmt+1)
+

Pit

u′it(Cit)
βµimt +

1

R

∑
k

∂µikt

∂vimt+1

Skt+1(vkt+1) = 0 (A.15)

Rewriting the above equation,

µimt

[
βR

u′mt+1(Cmt+1)/Pmt+1

u′it(Cit)/Pit

− 1

]
+
∑
k

∂µikt

∂Cmt+1

Skt+1(vikt+1)

Pmt+1

= 0, (A.16)

as desired.

A.4 Proof of Corollary 1

We divide both sides of the expression in Proposition 2 by ujt+1(Cjt+1)/Pjt+1 to obtain

µijt

[
βR

1

u′it(Cit)/Pit

− 1

u′jt+1(Cjt+1)/Pjt+1

]
+
∑
k

∂µikt

∂Cjt+1

1

u′jt+1(Cjt+1)
Skt+1(vikt+1) = 0,

(A.17)

We further rewrite this as

µijt

[
βR

1

u′it(Cit)/Pit

− 1

u′jt+1(Cjt+1)/Pjt+1

]
+
∑
k

∂µikt

∂ujt+1

Skt+1(vikt+1) = 0, (A.18)
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where ujt+1 ≡ ujt+1(Cjt+1). With a slight change in notation, we can equivalently express a

household’s migration decisions as

Vit = max
{µikt}k

∑
µikt

µikt[ukt(Ckt+1) + βωVkt+1]− ψit({µikt}k) (A.19)

From this expression, uniformly increasing ujt+1 for all j would not affect the choice probability:

∑
j

∂µikt

∂ujt+1

= 0 (A.20)

for all i, k.

Using this property and summing (A.18) across j, we have

βR
1

u′it(Cit)/Pit

−
∑
j

µijt
1

u′jt+1(Cjt+1)/Pjt+1

+
∑
k

Skt+1(vikt+1)
∑
j

∂µikt

∂ujt+1︸ ︷︷ ︸
= 0

= 0, (A.21)

so that

1

u′it(Cit)/Pit

=
1

βR
Eit

[
1

u′jt+1(Cjt+1)/Pjt+1

]
, (A.22)

as desired.
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A.5 Proof of Proposition 3

The planning problem in a recursive form is

St({vit, Lit}) = max
{vjt+1,vnit,Cit,µijt}

∑
i

[wit (1 + αit)− PitCit]Lit

+ (1− ω)
∑
i

Λiv
n
itLit +

1

R
St+1({vjt+1, Ljt+1}) (A.23)

s.t. vit = uit(Cit) + βω

[∑
j

µijtvjt+1 − ψit({µijt}j)

]
(A.24)

vnit = β

[∑
j

µijtvjt+1 − ψit({µijt}j)

]
(A.25)

µijt ∈ arg max
{µijt}j

∑
j

µijtvjt+1 − ψit({µijt}j) (A.26)

Ljt+1 =
∑
k

Lktµkjt (A.27)

Let κitLit be the Lagrangian multiplier on constraint (C.2). The first-order condition w.r.t. vjt+1

is

1

R

[
∂St+1

∂vjt+1

+
∑
i

∑
k

∂µikt

∂vjt+1

Lit
∂St+1

∂Lkt+1

]
+ β

∑
i

(ωκit + (1− ω)Λi)Litµijt = 0 (A.28)

The first-order condition w.r.t. Cjt is

Pjt = κjtu
′
jt(Cjt) (A.29)

The envelope conditions are

∂St

∂vjt
= −κjtLjt (A.30)

∂St

∂Ljt

= wjt(1 + αjt)− PjtCjt + (1− ω)Λjv
n
jt +

1

R

∑
k

µjkt
∂St+1

∂Lkt+1

(A.31)

Define Sjt ≡ ∂St

∂Ljt
. Combining the above expressions,

1

R

[
− Pjt+1

u′jt+1(Cjt+1)
Ljt+1 +

∑
i

∑
k

∂µikt

∂vjt+1

LitSkt+1

]
+ β

∑
i

(
ω

Pit

u′it(Cit)
+ (1− ω)Λi

)
Litµijt = 0

(A.32)
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From the chain rule,
∂µikt

∂vjt+1
= ∂µikt

∂Cjt+1

1
u′
jt(Cjt)

. Therefore, bymultiplying both sides byRu′jt+1(Cjt+1)/Pjt+1,

the above equation is rewritten as

∑
i

Lit

[
µijt

[
βRω

u′jt+1(Cjt+1)/Pjt+1

u′it(Cit)/Pit

+ βR(1− ω)Λi

u′jt+1(Cjt+1)

Pjt+1

− 1

]
+
∑
k

∂µikt

∂Cjt+1

Skt+1

Pjt+1

]
= 0.

(A.33)

B Decentralization

We present one example of implementation of the constrained efficient allocation with no pri-

vate savings, either because households do not have access to the credit market or because the

government bans private savings. The underlying environment remains the same as described in

Section 2. Here we focus on explaining the market structure.

The households supply labor in each location i at wage wit. The price of final goods in each

location is Pit. Let ℓt ∈ {1, . . . , J} denote the location of living at time t, and let ℓt denote

the history of location of living of any household. The government sends transfers Tt(ℓ
t) as a

function of history of living locations.

The household problem in a recursive form is

vjt(ℓ
t) = max

Cjt,{µjkt}k
ujt(Cjt) + βω

[∑
k

µjktvkt+1({ℓt, k})− ψjt({µjkt})

]
(B.1)

s.t. PjtCjt = wjt + Tt(ℓ
t). (B.2)

Let Cjt(ℓ
t) and µjkt(ℓ

t) denote the policy functions associated with the above problem.

The firm takes prices and population size {Lkt}k as given. The profit maximization problem

of firm in location i is

max
{lkjt}k

Pjtfjt({lkjt}k, {Lkt}k)−
∑
k

wktlkj. (B.3)

Here, agglomeration/congestion forces are externalities that are not internalized by private agents.

The government budget constraint is∑
ℓt

Tt(ℓ
t)Φt(ℓ

t) = 0, (B.4)
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where Φt(ℓ
t) denote the measure of households with history ℓt. The goods market clearing con-

dition is ∫
Cjt(ℓ

t)dΦt(ℓ
t) = fjt({lkjt}k, {Lkt}k). (B.5)

The factor market clearing condition is

∑
j

lkjt =

∫
I[ℓt = k]dΦt(ℓ

t) = Lkt. (B.6)

The distribution evolves according to the following law of motion:

Φt+1({ℓt, k}) = µℓtkt(ℓ
t)Φt(ℓ

t). (B.7)

In the above decentralized equilibrium, an appropriate choice of the transfer system Tt(ℓ
t) im-

plements the constrained efficient allocation characterized in Proposition 2. To see this, first note

that the continuation value in the constrained efficient allocation only depends on the location

of living in the next period and the promised utility. Therefore, given the initial location where

each household is born, the promised value is only a function of the history of living locations.

Let v(ℓt) denote the promised value with a history of living location ℓt. Then, Cℓtt(v(ℓ
t)) is the

consumption of households currently in location ℓt with a history ℓt in the constrained efficient

allocation.

Consider the following transfer system:

Tt(ℓ
t) = PℓttCℓtt(v(ℓ

t))− wℓtt. (B.8)

From the budget constraint, it is immediate to see that such a transfer system implements the

constrained efficient allocation as long as {Pjt, wjt}j in the decentralized equilibrium coincide

with those in the constrained efficient allocation. To see why, the migration probabilities are

identical given {Pjt, wjt}j . The optimality conditions of (B.5) is identical to (16) in the constrained

efficient allocation. The market clearing conditions and the evolution of the distribution are

identical in both economies by construction. Finally, the government budget (B.4) is satisfied by

Warlas’ law. Given that all the conditions in two economies coincide, the transfer scheme (B.8)

implements the constrained efficient allocation as a decentralized equilibrium.
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C One-Period-History Constrained-Efficient Allocation

We consider the case where the planner specifies the consumption for each origin, destina-

tion, and time, Cijt. Note that this is an intermediate case between fully-history-dependent

constrained-efficient allocation in Section 4.2 and the history-independent constrained-efficient

allocation in Section 4.3.

The planning problem in a recursive form is

St({vkit, Lkit}) = max
{vijt+1,vnit,Ckit,µijt}

∑
i

[wit (1 + αit)Lit − Pit

∑
k

CkitLkit]

+ (1− ω)
∑
i

Λiv
n
itLit +

1

R
St+1({vijt+1, Lijt+1}) (C.1)

s.t. vkit = uit(Ckit) + βω

[∑
j

µijtvijt+1 − ψit({µijt}j)

]
(C.2)

vnit = β

[∑
j

µijtvijt+1 − ψit({µijt}j)

]
(C.3)

µijt ∈ arg max
{µijt}j

∑
j

µijtvijt+1 − ψit({µijt}j) (C.4)

Lijt+1 = Litµijt (C.5)

Lit =
∑
k

Lkit (C.6)

LetκkitLkit be the Lagrangianmultiplier on constraint (C.2). The first-order condition w.r.t. vijt+1

is

1

R

[
∂St+1

∂vijt+1

+
∑
k

∂µikt

∂vijt+1

Lit
∂St+1

∂Likt+1

]
+ β

∑
k

(ωκkit + (1− ω)Λi)Lkitµijt = 0 (C.7)

The first-order condition w.r.t. Cijt is

Pjt = κijtu
′
jt(Cijt) (C.8)

The envelope conditions are

∂St

∂vijt
= −κijtLijt (C.9)

∂St

∂Lijt

= wjt(1 + αjt)− PjtCijt + (1− ω)Λjv
n
jt +

1

R

∑
k

µjkt
∂St+1

∂Ljkt+1

(C.10)
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Define Sijt ≡ ∂St

∂Lijt
. Combining the above expressions,

1

R

[
− Pjt+1

u′jt+1(Cijt+1)
Lijt+1 +

∑
k

∂µikt

∂vijt+1

LitSikt+1

]
+ β

∑
k

(
ω

Pit

u′it(Ckit)
+ (1− ω)Λi

)
Lkitµijt = 0

(C.11)

From the chain rule,
∂µikt

∂vijt+1
= ∂µikt

∂Cijt+1

1
u′
jt+1(Cijt+1)

. Therefore, by multiplying both hand side by

Ru′jt+1(Cijt+1)
1

Pjt+1

1
Lit

, above equation is rewritten as

µijt

[
βRω

u′jt+1(Cijt+1)

Pjt+1

∑
k

Lkit

Lit

Pit

u′it(Ckit)
+ βR(1− ω)Λi

u′jt+1(Cijt+1)

Pjt+1

− 1

]
+
∑
k

∂µikt

∂Cijt+1

Sikt+1

Pjt+1

= 0.

(C.12)

D Extensions

D.1 Capital Accumulation

We now introduce capital accumulation in the baseline model. Assume that in each location j,

there is a capital stock denoted asKjt. The production function of the final goods at location j is

now given by

Yjt = fjt({lkjt}k, {kkjt}k, {Lkt}k), (D.1)

where kkjt denotes the use of capital stock from location k in location j. The capital stock in

location j at time t depreciates at rate δjt, but the final goods in location j can be invested into

the capital stock in the same location. The law of motion of capital stock in location j is

Kjt+1 = Kjt(1− δjt) + Ijt, (D.2)

where Ijt is the investment. The investment incurs the adjustment cost of the form Ψjt(Ijt, Kjt)

in the units of final goods in location j. The capital market clearing condition is∑
k

kjkt = Kjt. (D.3)

The goods market clearing condition in location j is modified as∫ 1

0

Cjt(h)dh+ Ijt +Ψjt(Ijt, Kjt) = fjt ({lkjt}k, {kkjt}k, {Lkt}k) . (D.4)
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The rest of the environment remains unchanged.

In this environment, there is no change in the component planning problem (31) and (34).

The only change comes from Dt in (14). Let rjt be the Lagrangian multiplier on (D.3). The term

Dt now includes the distribution of capital stock in each location as a state variable and is given

by

Dt({Kjt}) = max
{lijt,kijt,Lit,Kjt+1}

∑
i

Pitfit ({lkit}k, {kkit}k, {Lkt}k)−
∑
i

wit

∑
j

lijt (D.5)

−
∑
i

αitwitLit −
∑
i

ritKit −
∑
i

rit
∑
j

kijt −
∑
i

Pit [Iit +Ψit(Iit, Kit)] (D.6)

+
1

R
Dt+1({Kjt+1}). (D.7)

s.t. Kjt+1 = Kjt(1− δjt) + Ijt. (D.8)

The first-order conditions with respect to lijt and Lit remain essentially the same as in the main

text:

Pit
∂fit ({lkit}k, {kkit}k, {Lkt}k)

∂lkit
= wkt (D.9)∑

i

Pit
∂fit ({lkit}k, {kkit}k, {Lkt}k)

∂Lkt

= αktwkt. (D.10)

The optimality condition of spatial allocation of capital services kijt is given by

Pit
∂fit ({lkit}k, {kkit}k, {Lkt}k)

∂kkit
= rkt. (D.11)

The first-order condition with respect to investment Ijt is

Pjt (1 + ∂IΨjt(Ijt, Kjt)) =
∂Dt+1({Kjt+1})

∂Kjt+1

. (D.12)

The envelope condition is

∂Dt({Kjt})
∂Kjt

= rjt − Pjt∂KΨjt(Ijt, Kjt) + (1− δ)
1

R

∂Dt+1({Kjt+1})
∂Kjt+1

. (D.13)

Let

qjt ≡
∂Dt({Kjt})

∂Kjt

(D.14)

be the “marginal q” of capital stock in location j at time t. Using this expression, we can equiva-
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lently write (D.12) and (D.13) as

Pjt (1 + ∂IΨjt(Ijt, Kjt)) = qjt+1. (D.15)

and

qjt = rjt − Pjt∂KΨjt(Ijt, Kjt) + (1− δ)
1

R
qjt+1. (D.16)

Therefore, optimal investment follows similarly to what is prescribed by the q-theory of invest-

ment.

D.2 Ex-Ante Heterogeneous Household Types

In the baseline model, we have assumed that households are ex-ante homogeneous. We now

consider an extension of the baseline model to multiple ex-ante heterogeneous household types.

There are M heterogeneous household types (e.g., race, skills, or gender). Each household

dynasty h belongs to one of the types indexed by θ ∈ {θ1, . . . , θM}, each of which has a mass

ℓθ. We allow arbitrary heterogeneity across households with respect to θ, including preferences,

location preference shock distribution, and death probability. When a household of type θ dies,

they are replaced by a newborn of the same type, so the mass of type θ remains fixed at ℓθ.

Importantly, we assume the ex-ante types are observable to the planner.

The technology to produce the final goods consumed by the household θ in location j at time

t is

Y θ
jt = f θ

jt({l
θ̃,θ
kjt}j,θ̃, {L

θ̃
kt}k,θ̃), (D.17)

where lθ̃,θkjt denotes the labor services of type θ̃ shipped from location k to j used to produce final

goods for consumption goods of type θ, and Lθ
it is the population size of households of type θ in

location i at time t. Here, we allow for agglomeration/congestion forces to depend arbitrarily on

the population size of different household types.

The planner’s objective is to maximize the following social welfare function:

W0 =
∞∑
t=0

1

Rt

J∑
i=1

Λθ
i v

n,θ
it (1− ωθ)

∫ 1

0

I[ℓθt (h) = i]dh, (D.18)

where Λθ
i is the welfare weight attached to household of type θ born in location i.

Let φθ
j be the distribution over promised utility of households of type θ living in location j.
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The goods market clearing condition for consumption goods of type θ is∫
Cθ

jt(v)dϕ
θ
j(v) = f θ

jt({l
θ̃,θ
kjt}j,θ̃, {L

θ̃
kt}k,θ̃). (D.19)

The labor market clearing condition for type θ is

∑
k,θ̃

lθ,θ̃jkt =

∫
I[ℓθt (v, ϵ) = j]dϕθ

j(v)dGij(ϵ), (D.20)

and the following equation dictates the agglomeration forces:∫
I[ℓθt (v, ϵ) = j]dϕθ

j(v)dGij(ϵ) = Lθ
jt. (D.21)

The evolution of distribution is

ϕθ
jt+1(v) =

∑
i

ωEθ
it

[
ϕθ
it(v

θ, −1
ijt+1 (v, ϵit))I[ℓθit(ϕθ

it(v
θ, −1
ijt+1 (v, ϵit), ϵit) = j]

]
+ (1− ωθ)Lθ

itEθ
it

[
I[vn,θijt+1(ϵ

θ
it) = v]I[ℓn,θit (ϵθit) = j]

]
.

(D.22)

Given all these environments, the value function Dt in (15) in the main text is now replaced

by

Dt = max
{lθ̃,θijt ,L

θ
i }

∑
i,θ

P θ
itf

θ
it({l

θ̃,θ
kit}k,θ̃ ; {L

θ̃
kt}k,θ̃)−

∑
i,θ

wθ
it

∑
j,θ̃

lθ,θ̃ijt −
∑
i,θ

αθ
itw

θ
itL

θ
it +

1

R
Dt+1, (D.23)

where P θ
jt, w

θ
jt, and α

θ
jt are Lagrangian multipliers on (D.19), (D.20), and (D.21). The first-order

optimality conditions are

P θ
it

∂f θ
it({l

θ̃,θ
kit}k,θ̃ ; {Lθ̃

kt}k,θ̃)

∂lθ̃,θkit

= wθ
kt (D.24)

∑
θ̂

∑
i

P θ̂
it

∂f θ̂
it({l

θ̃,θ̂
kit}k,θ̃ ; {Lθ̃

kt}k,θ̃)
∂Lθ

kt

= αθ
ktw

θ
kt. (D.25)

The component planning problems are essentially the same as (31) except that now everything
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is indexed by θ:

Sθ
it(v) = max

{Cθ
it,v

θ
ijt+1,µ

θ
ijt}

wθ
it (1 + αθ

it)− P θ
itC

θ
it + (1− ωθ)Sn,θ

it +
1

R
ωθ
∑
j

µθ
ijtS

θ
jt+1

(
vθijt+1

)
(D.26)

s.t. v = uθit(C
θ
it) + βθωθ

[∑
j

µθ
ijtv

θ
ijt+1 − ψθ

it({µθ
ijt}j)

]
(D.27)

{µθ
ijt}j ∈ arg max

{µ̃θ
ijt}j

βθωθ

[∑
j

µ̃θ
ijtv

θ
ijt+1 − ψθ

it({µ̃ijt}j)

]
(D.28)

and the following replaces (34):

Sn,θ
it = max

vn,θ
it ,{vn,θ

ijt+1,µ
n,θ
ijt }

Λθ
i v

n,θ
i +

1

R

∑
j

µn,θ
ijt S

θ
jt+1(v

n,θ
ijt ) (D.29)

s.t. vn,θit = βθ
∑
j

[
µn,θ
ijt v

n,θ
ijt − ψθ

it({µ
n,θ
ijt }j)

]
(D.30)

{µn,θ
ijt }j ∈ arg max

{µ̃n,θ
ijt }

βθ
∑
j

[
µ̃n,θ
ijt v

n,θ
ijt − ψθ

it({µ̃
n,θ
ijt }j)

]
. (D.31)

The following formula is an analogue of Proposition 2:

µθ
ijt

[
βθR

uθ′jt+1(C
θ
jt+1)/P

θ
jt+1

uθ′it(C
θ
it)/P

θ
it

− 1

]
+
∑
k

∂µθ
ikt

∂Cθ
jt+1

Sθ
kt+1(v

θ
ikt+1)

P θ
jt+1︸ ︷︷ ︸

≡ ξθijt

= 0. (D.32)

D.3 Lagged Agglomeration/Congestion Forces

In the baseline model, we assumed that agglomeration/congestion forces only depend on the

contemporaneous population size distribution. We now allow for the agglomeration/congestion

forces to depend on the lagged population size distribution.

The only modification is that now the production function takes the following form:

Yjt = fjt
(
{lkjt}k, {Lt

kt}k, {Lt
kt−1}k, . . . , {Lt

kt−TL}k
)
, (D.33)

which replaces (3) in the main text. Here Lt
kt−s denotes the population size in location k at time

t − s that enters as agglomeration/congestion forces for production at time t. We allow for the

population size of t − 1, . . . , t − TL
with TL ≥ 1 enters the production function. The lagged
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population sizes are defined as

Lt
jt−s =

∫
dϕjt−s(v) for s = 1, . . . , TL. (D.34)

Let αt
jt−swjt be the Lagrangian multiplier on the above equation.

Given all these modification, the value functionDt in (15) in the main text is now replaced by

Dt = max
{lijt,Lit}

∑
i

Pitfjt

(
{lkjt}k, {Lt

kt}k, {Lt
kt−1}k, . . . , {Lt

kt−T}k
)
−
∑
i

wit

∑
j

lijt (D.35)

−
TL∑
s=0

∑
i

αt
it−switL

t
it−s +

1

R
Dt+1. (D.36)

The first-order optimality conditions are

Pit
∂fit
∂lkit

= wkt (D.37)∑
i

Pit
∂fit
∂Lkt−s

= wkt−sα
t
kt−s. (D.38)

The net social surplus function Sit(v) now takes into account that increasing the current

population size of a location changes the technology in the future:

Sit(v) = max
{Cit,vijt+1,µijt}

wit +
∑TL

s=0

1

Rs
wit+sα

t+s
it − PitCit + (1− ω)Sn

it +
1

R
ω
∑
j

µijtSjt+1

(
vijt+1

)
s.t. v = uit(Cit) + βω

[∑
j

µijtvijt+1 − ψit({µijt}j)

]

{µijt}j ∈ arg max
{µ̃ijt}j

βω

[∑
j

µ̃ijtvijt+1 − ψit({µ̃ijt}j)

]
.

The value function for newborns Sn
it(v) remains unchanged and is given by (34).

E Optimal Response to a Productivity Shock in a Stylized

Environment

Consider a special case of our baselinemodel with the following features: (i) the economy is static,

β → 0; (ii) there are two locations, i, j ∈ {1, 2}; (iii) there are no agglomeration externalities,

αjt = 0 for all j, t; (iv) the preference shocks are given by type-I extreme value function (55); (v)
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the social welfare function has equal weights across locations, Λj = 1 for all j. At the beginning

of the period, households make location choice decisions. As demonstrated by Donald, Fukui,

and Miyauchi (2025), the optimal spatial transfer policies in a static spatial economy must satisfy

u′j(Cj)− Pj =
2∑

i=1

∂µi

∂Cj

[PjCj − wj] (E.1)

for j = 1, 2. Under the logit discrete choice system,

∂µi

∂Cj

=

θµj(1− µj)u
′
j(Cj) for i = j

−θµjµiu
′
j(Cj) for i ̸= j

. (E.2)

Substituting this expression into the above expression, we have

1− P1

u′1(C1)
= θµ1µ2 ([P1C1 − w1]− [P2C2 − w2]) (E.3)

1− P2

u′2(C2)
= θµ1µ2 ([P2C2 − w2]− [P1C1 − w1]) . (E.4)

We consider baseline technology and changes in technology such that there is a change in w1

only, and price levels, {Pj}2j=1, as well as wage in location 2, w2, are left unchanged. In this case,

perturbation of (E.3) and (E.4) gives

− P1

u′1(C1)
γ1d lnC1 = θµ1µ2 (P1C1d lnC1 − w1d lnw1 − P2C2d lnC2)

+ θ(µ2 − µ1) ([P1C1 − w1]− [P2C2 − w2]) dµ1 (E.5)

− P2

u′2(C2)
γ2d lnC2 = θµ1µ2 (P2C2d lnC2 + w1d lnw1 − P1C1d lnC1)

+ θ(µ2 − µ1) ([P2C2 − w2]− [P1C1 − w1]) dµ1, (E.6)

where γi ≡ u′′i (Ci)Ci/u
′(Ci) is the relative risk aversion of location i at the perturbation point.

We further seek to simplify the above expressions by considering parameters such that µ2 = µ1.

In this case, we can solve for d lnC1 as

d lnC1 =

θµ1µ2w1

θµ1µ2P1C1+
P1

u′1(C1)
γ1

{
P2

u′2(C2)
γ2

θµ1µ2P2C2+
P2

u′2(C2)
γ2

}
1 + θµ1µ2P2C2

θµ1µ2P1C1+
P1

u′1(C1)
γ1

θµ1µ2P1C1

θµ1µ2P2C2+
P2

u′2(C2)
γ2

d lnw1. (E.7)

With log utility, uj(Cj) = lnCj for j = 1, 2, which we assume in the quantitative analysis, the
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above expression simplifies to

d lnC1 =
1

1 + θµ1µ2

w1

P1C1

d lnw1. (E.8)

Recall that we assume µ1 = µ2, so that the only variation in the above expression is
w1

P1C1
. There-

fore, the elasticity of consumption with respect to wages is systematically higher for a location

with a fiscal surplus (w1 −P1C1 > 0). Likewise, the elasticity is lower for a location with a fiscal

deficit (w1 − P1C1 < 0). Finally, note that the population response in location 1 is given by

d lnµ1 = θ(1− µ1)d lnC1 (E.9)

under log utility. Consequently,

d lnµ1 = θ(1− µ1)
1

1 + θµ1µ2

w1

P1C1

d lnw1. (E.10)

Therefore, under our assumptions, the elasticity of population with respect to local wage is

strictly increasing in
w1

P1C1
in the planner’s solution.

F Quantitative Appendix

F.1 Data

We obtain the state-level price indices from the Bureau of Economic Analysis (BEA). The state-

level per capita transfers and taxes are also from BEA. We obtain the annual state-level bilateral

migration flows in 2017 from the Census website,
18
where the underlying data are based on the

American Community Survey. We translate into 5-year migration rates by raising to the power of

five. We obtain the state-level bilateral trade flows at the state level from the replication packages

of Kleinman et al. (2023), which they construct using the Commodity Flow Survey. We further

adjust these bilateral trade flows so that the total exports (including self exports) equal state-level

GDP in the BEA data.

18
https://www.census.gov/data/tables/time-series/demo/geographic-mobility/state-to-state-migration.html
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F.2 Details on Calibration

The aggregate trade flow from location i to j, denoted as xij ≡ wilij , is given by

xij =
(wi/Aij(Li))

1−σ∑
k(wk/Akj(Lk))1−σ

∫
PjCj(a)dφj(a). (F.1)

Taking the ratio of xij to xjj , we have

xij
xjj

=
(wi/Aij(Li))

1−σ

(wj/Ajj(Lj))1−σ
, (F.2)

which we can rewrite as

1

Aij(Li)
=

(
xij
xjj

) 1
1−σ wj

wi

1

Ajj(Lj)
(F.3)

The price index of location j is

Pj =

[∑
i

(wi/Aij(Li))
1−σ

] 1
1−σ

(F.4)

=

∑
i

((
xij
xjj

) 1
1−σ wj

wi

1

Ajj(Lj)
wi

)1−σ
 1

1−σ

(F.5)

=
wj

Ajj(Lj)

1

(xjj)
1

1−σ

[∑
i

xij

] 1
1−σ

(F.6)

=
wj

AjjLα
j

1

(xjj)
1

1−σ

[∑
i

xij

] 1
1−σ

, (F.7)

where we used (F.3) in the second line. As a result, conditional on the choice of (σ, α), we can

infer Ajj given the data on trade flows {xij}, price index {Pj}, population size, Lj , and output

per capita, wj =
∑

j xij/Li:

Ajj =
wj

PjLα
j

1

(xjj)
1

1−σ

[∑
i

xij

] 1
1−σ

. (F.8)
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With {Ajj} in hand, we also infer all {Aij} using (F.3):

Aij =
1

Lα
i

(
xjj
xij

) 1
1−σ wi

wj

AjjL
α
j . (F.9)

We choose the remaining parameter values, {χij}, a, β, by repeatedly solving the model to

exactly match (i) migration flows in the data, (ii) the steady-state real interest rate of 2%, and (iii)

the marginal propensity to consume of 0.3. We normalize χii = 1 for all i, since what matters for

the migration decision is χij/χii. In calibrating the migration cost, we use the following updating

rule. Given the guess of {χo
ijld}, we can solve the model to obtain the aggregate migration flows

from region i to j:

µmodel
ij ≡

∫
µij(a)dφi. (F.10)

Given the data on migration probabilities in the data, µdata
ij , we update χij as follows

χnew
ij = ξ

µdata
ij

µmodel
ij

χold
ij + (1− ξ)χold

ij , (F.11)

where ξ ∈ (0, 1] is the degree of updating. For β and a, we update using the bisection method.

F.3 Steady State Computational Algorithms

We describe the computational algorithm to solve the status quo economy and the constrained

efficient allocation. For both cases, we describe the algorithm for the steady state. The algorithm

for the transitions are similar with everything indexed by time t.

F.3.1 Computational Algorithm for Status Quo Economy

In the steady state, households solve

vj(a) = max
Cj ,{µjk}k,ã≥a

uj(Cj) + βω

[∑
k

µjkvk(ã)− ψj({µjk})

]
(F.12)

s.t. PjCj + ã = (1 + r)a+ wj + Tj. (F.13)

The first-order condition with respect to ã is

u′j(Cj)/Pj ≥ βω

[∑
j

µjk∂avk(ã)

]
(F.14)
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with equality whenever ã > a.

For the inner problem, where we solve the Bellman equation given prices, we proceed as

follows. The algorithm extends the endogenous gridpointmethod by Carroll (2006) to incorporate

dynamic discrete choices. Let A ≡ [a1, . . . , aI ] denotes the gridpoints in assets.

1. For each grid point in ã ∈ A, guess {vk(ã)}.

2. Given {vk(ã)}, one can compute migration probabilities conditional on saving ã by solving

{µEGM
jk (ã)}k ∈ argmax

{µjk}

∑
k

µjkvk(ã)− ψjt({µjk}) (F.15)

for each j and ã ∈ A. Under type-I extreme value distribution (55), this is analytical and

immediate to obtain:

µEGM
jk (ã) =

χjk exp(θvk(ã))∑
l χjl exp(θvl(ã))

. (F.16)

3. Assuming the first-order condition holds with equality, invert the consumption using

CEGM
j (ã) = u′−1

j

(
Pjβω

[∑
j

µEGM
jk (ã)∂avk(ã)

])
(F.17)

for each j and ã ∈ A. Then, we are able to obtain the current asset level that is consistent

with next period saving ã and non-binding borrowing constraint.

aEGM
j (ã) =

1

1 + r

(
ã+ PjC

EGM
j (ã)− wj − Tj

)
. (F.18)

4. For a such that a ≤ aEGM
j (a), the borrowing constraint is binding. Therefore, we recover

the saving policy functions as follows.

ãj(a) =

a
EGM,−1
j (a) if a > aEGM

j (a)

a if a ≤ aEGM
j (a)

, (F.19)

where aEGM,−1
j denote the inverse function of aEGM

j (a).

5. The migration policies are given by

µjk(a) = µEGM
jk (ãj(a)). (F.20)
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and the consumption function is

Cj(a) =
1

Pj

((1 + r)a+ wj − ãj(a)) . (F.21)

Now we can update the value function as

vnewj (a) = uj(Cj(a)) + βω

[∑
k

µjk(a)vk(ãj(a))− ψjt({µjk(a)})

]
(F.22)

If |vnewj (a)− vj(a)| < tol, we are done. Otherwise, go back to 2 with vj(a) = vnewj (a).

The outer problem iterates over prices {r, {wj,, Pj}j}. We divide the outer problem in two

layers. In the inner layer, we iterate over r to clear the bond market. In the outer layer, we iterate

{wj} to clear the final goods market for each location.

1. Guess {wj, Lj}, where we take location 1’s wage as numeraire, w1 = 1, and Lj is the

population size of location j.

2. Given {wi, Li}, compute the price indices in each location:

Pj =

[∑
i

(
wi

Aij Lα
i

)1−σ
]1/(1−σ)

(F.23)

3. Given {wj}, iterate over r or β until the bond market clears,

∑
j

∫
adφj(a) ≈ 0. We use

bisection to update r or β. We iterate over r when we solve for the counterfactual. We

iterate over β when we calibrate β to match the target interest rate r.

4. We then update wages {wj} and population size {Lj} as follows. Given the implied distri-

bution φj and consumption policy functions Cj(a) from the guess {wj}, we compute

wnew
i = ξw

[
1

Li

∑
j

(1/(AijL
α
i ))

1−σ∑
(wl/(AljLα

l ))
1−σ

∫
PjCj(a)dφj(a)

] 1
σ

+ (1− ξw)wi (F.24)

Lnew
i = ξL

∫
dφi(a) + (1− ξL)Li (F.25)

where ξ ∈ (0, 1] is the degree of updating. If |wnew
i − wi| < tol and |Lnew

i − Li| < tol for

all i, we are done. Otherwise, set wi := wnew
i and Li := Lnew

i and go back to step 1.

Practically, the above algorithm finds the equilibrium prices orders of magnitude faster thanmore

conventional algorithms such as Newton’s method.

64



F.3.2 Computational Algorithm for Constrained Efficient Allocation

Throughout, we impose the parametric functional form (55) that we use in the quantitative ex-

ercise. We first derive the optimality conditions under the function form of (55), which will be

useful for our computation. We then explain howwe can efficiently solve the constrained efficient

allocation on the computer.

The problem in the steady state is

Si(v) = max
{ṽij ,Ci,µij}

wi (1 + αi)− PiCi + (1− ω)Sn
i +

1

R
ω
∑
j

µijSj(ṽij) (F.26)

s.t. v = ui(Ci) + βω

[∑
j

µij ṽij − ψi({µij}j)

]
(F.27)

{µij}j ∈ arg max
{µ̃ij}j

∑
j

µ̃ij ṽij − ψi{µ̃ij}j) (F.28)

and the value of the newborn in the steady state is

Sn
i = max

vnit,{ṽnij ,µn
ij}

Λiv
n
it +

1

R

∑
j

µn
ijSj(ṽ

n
ij) (F.29)

s.t. vnit = β
∑
j

[
µij ṽ

n
ij − ψi({µn

ij}j)
]

(F.30)

{µn
ij}j ∈ argmax

{µ̃n
ij}
β
∑
j

[
µ̃n
ij ṽ

n
ij − ψi({µ̃n

ij}j)
]
, (F.31)

A challenge in numerically solving the above problem is the dimensionality of the control

variables. We need to optimize over continuation value for each location. However, we show

below that with our functional form assumption (55), the problem essentially collapses to a one-

dimensional optimization problem.

We first describe the problem for the incumbent generation (F.26). We solve for Cj to rewrite

the problem as

Si(v) = max
{ṽij ,Cit,µij}

wi (1 + αi)− PiCi + (1− ω)ΛiS
n
i +

1

R
ω
∑
j

µijSj(ṽij) (F.32)

s.t. Ci = u−1
i

(
v − βω

[∑
j

µij ṽij − ψi({µij}j)

])
(F.33)

{µij}j ∈ arg max
{µ̃ij}j

∑
j

µ̃ij ṽij − ψi({µ̃ij}j) (F.34)
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The first-order conditions with respect to vim are

ω

R
µimtS

′
m(ṽim) +

Pj

u′i(Ci)
βωµimt +

ω

R

∑
k

∂µik

∂vim
Sk(ṽik) = 0, (F.35)

where we have omitted the dependence for brevity. Under the logit specification (55), we have

∂µjk

∂ṽm
=

θµjk (1− µjk) for k = m

−θµjkµjm for k ̸= m
(F.36)

Therefore, the FOC simplifies to

S ′
m(ṽim) + βR

Pi

u′i(Ci)
+ θSm(ṽim)− θ

∑
k

µikSk(ṽik) = 0. (F.37)

From this expression, the policy functions must satisfy:

S ′
m(ṽim(v)) + θSm(ṽim(v)) = S ′

n(ṽin(v)) + θSn(ṽin(n)) (F.38)

= θ
∑
k

µikSk(ṽik(v))− βR
Pi

u′i(Ci(v))
(F.39)

≡Mi(v) (F.40)

for allm and n. This observation leads to a substantial simplification. Instead of optimizing over

{vim(v)}m, we instead optimize over a one-dimensional objectMi(v). Given the guess ofMi(v),

we can immediately obtain vim(v) by solving

S ′
m(ṽim(v)) + θSm(ṽim(v)) =Mi(v) (F.41)

for eachm. Once we obtain {vim(v)}m, we can obtain {µimt(v)}m using (F.34). With {vim(v)}m
and {µimt(v)}m in hand, consumption is residually determined from the promise-keeping con-

straint (F.33):

Ci(v) = u−1
i

(
v − βω

[∑
j

µij(v)ṽij(v)− ψi({µij(v)}j)

])
. (F.42)

Given all the steps for a given guess of Mi(v), we can search for the optimal Mi(v) using the

standard one-dimensional optimization routine such as Brent method. In practice, we can obtain

further speed gain with the endogenous grid point method by Carroll (2006). Below, we describe

the algorithm for value function iteration that relies on the endogenous grid point method.

66



The newborn’s problem (F.29) can be solved similarly, or is even simpler. The first-order

condition with respect to vnim is

S ′
m(ṽ

n
im) + βRΛi + θSm(ṽ

n
im)− θ

∑
k

µn
ikSk(ṽ

n
ik) = 0, (F.43)

which is analogous to (F.37). Therefore, it must be that

S ′
m(ṽ

n
im) + θSm(ṽ

n
im) =Mn

i (F.44)

for someMn
i . For a given guess ofMn

i , we can find the continuation value ṽnim that is consistent

with Mn
i for all m by inverting (F.44). Given ṽnim, we can find the migration probabilities using

the incentive compatibility constraint (F.31).

Algorithm. We first describe the algorithm for solving the Bellman equation for given vec-

tor of {wi, Pi}i. Note that with our functional form assumption (53), αi is exogenously fixed

at α. The outer loop updates {wi, Pi}, which we describe later. We let V ≡ [v1, . . . , vNV
] de-

note the grid point of the promised utility. We let M denote the grid points for Mit(v) ∈ M ≡
[M1,M2, . . . ,MNM

].

1. Guess the value function Sit(v).

2. For each i = 1, . . . , J ,

(a) For eachM ∈ M

i. Compute ṽEGM
im (M) that is consistent with (F.41) withMit(v) =M :

S ′
m(ṽ

EGM
im (M)) + θSm(ṽ

EGM
im (M)) =M, (F.45)

for eachm = 1, . . . , J .

ii. Using {ṽEGM
im (M)}m obtained from the previous step, compute {µEGM

im (M)}m
using (F.34) associated with vim = ṽEGM

im (M).

iii. Find Ci(M) that is consistent with the optimality conditions (F.39) and (F.40):

CEGM
i (M) = u′−1

i

(
βRPi

[θ
∑

k µ
EGM
ik (M)Sk(ṽEGM

ik (M))−M ]

)
. (F.46)

iv. Now we can find the value of today’s promised utility v that is consistent with
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M using the promise keeping constraint (F.33):

vEGM
i (M) = ui(C

EGM
i (M)) + βω

[∑
j

µEGM
ij (M)ṽEGM

ij (M)− ψi({µEGM
ij (M)}j)

]
(F.47)

(b) Now we invert the mapping of vEGM
i (M) to obtain the optimal M for each v ∈ V:

Mi(v) ≡ vEGM,−1
it (M). WithMi(v) for each v ∈ V in hand, we can compute all the

associate policy functions from the previous step.

(c) For newborn’s problem (F.29), we simply optimize overMn
i and finds associated con-

tinuation values {vnim}m using (F.44) tomaximize the right hand side of (F.29) to obtain

Sn
it.

(d) Now we can update the value function:

Snew
i (v) = wi (1 + αi)− PiCi(v) + (1− ω)ΛiS

n
i +

1

R
ω
∑
j

µij(v)Sj(ṽij(v)) (F.48)

3. If |Sit(v)
new − Sit(v)| < tol for all i and v ∈ V, the value function has converged. If not,

update the value function, Sit(v) := Sit(v)
new

and go back to step 2.

The outer loop looks for the Lagrangian multipliers {wi, Pi} that are consistent with the

resource constraints. In practice, it is slightly easier to iterate over {wi, Li} instead of {wi, Pi},
although they are conceptually equivalent. We proceed as follows.

1. Guess {wi, Li}, where Li is the population size of location i.

2. Given {wi, Li}, compute the implied {Pj} with the CES price index:

Pj =

[∑
i

(
wi

Aij Lα
i

)1−σ
]1/(1−σ)

(F.49)

3. With {wi, Pi} in hand, solve the Bellman equation using the algorithm described above.

This gives us the consumption policy function {Cj(v)} and the steady-state distribution

associated with the policy function, {ϕj}j .

4. We then update wages {wj} and population size {Lj} as follows. Given the distribution ϕj
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and consumption policy functions Cj(a) from the guess {wj}, we compute

wnew
i = ξw

[
1

Li

∑
j

(1/(AijL
α
i ))

1−σ∑
(wl/(AljLα

l ))
1−σ

∫
PjCj(v)dϕj

] 1
σ

+ (1− ξw)wi (F.50)

Lnew
i = ξL

∫
dφi + (1− ξL)Li (F.51)

where ξ ∈ (0, 1] is the degree of updating. If |wnew
i − wi| < tol and |Lnew

i − Li| < tol for

all i, we are done. Otherwise, set wi := wnew
i and Li := Lnew

i and go back to step 2.

F.4 Constrained Efficient Allocation with Aggregate Shocks

For notational simplicity, we drop x superscript and let t denote the time elapsed since the arrival

of the aggregate shock instead. Note that with our assumption of p → 0, the economy is in

the deterministic steady state before the arrival of the shock. For this reason, we drop the time

subscript for variables before the arrival of the shock. We explain under the specific functional

form assumptions of our calibration. The general case is similar, albeit the notation is slightly

more complex.

The first-order condition with respect to vij0 is

p
1

R
µij0S

′
j0(vij0) + p

1

R

∑
k

∂µik0

∂vij0
Sk0(vik1) + pβ

Pi

u′i(Ci(v))
µij0 = 0. (F.52)

Notice that Pi/u
′
i(Ci(v)) is evaluated at the initial steady state. Condition (F.52) and associated

policy functions {vij0(v), µij0(v)}, along with the steady state distribution, determine the initial

distribution upon the arrival of the aggregate shock, {ϕi0(v)}. We denote it ϕ0 in a (discretized)

vector format.

After the arrival of the aggregate shock, given the induced changes in the sequence of the

aggregates, the component planning problem is solved (31) and (34). In general, the sequence

of the aggregates consists of {Pjt, wjt, αjt, fjt}∞t=0. Under our calibration, it suffices to track

{wjt, Ljt, Ajkt}∞t=0. This is because given {wjt, Ljt, Ajt}∞t=0, one can immediately compute Pit

using (F.49). For this reason, we treat {wjt, Ljt, Ajkt}∞t=0 as the sequence of the aggregates that

we need to keep track of. We denote them (w,L,A) in a vector format (stacking both j and t).

Let {Cit(v;w,L,A), µijt(v;w,L,A), vijt+1(v;w,L,A)} be the policy functions associated

with (31) and (34) and a sequence of (w,L,A). Given the policy functions and the initial distribu-

tionϕ0, we can compute the distribution at any point in time, whichwe denote asϕt(w,L,A,ϕ0).

The aggregate sequence in turn needs to be consistent with the market clearing condition and
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the consistency in the population distribution:

0 = witLit −
(wit/(AijtL

α
i ))

1−σ∑
l(wlt/(AljtLα

l ))
1−σ

∫
PjtCjt(v;w,L,A)dϕjt(v;w,L,A,ϕ0) (F.53)

≡ FC
t (w,L,A,ϕ0) (F.54)

0 = Lit −
∫
dϕit(v;w,L,A,ϕ0) (F.55)

≡ FL
t (w,L,A,ϕ0). (F.56)

Note that, from (F.52), the initial distribution ϕ0 is solely determined by the sequence of ag-

gregates (w,L,A), because Sj0 is determined by (31) and (34) given (w,L,A). We write this

relationship as follows:

ϕ0 = Φ0(w,L,A). (F.57)

Consequently, obtaining the transition dynamics in response to technology shocksA, amounts

to solving the following system of equations with respect to (w,L,ϕ0):

0 = FC
t (w,L,A,ϕ0) (F.58)

0 = FL
t (w,L,A,ϕ0) (F.59)

ϕ0 = Φ0(w,L,A). (F.60)

We look for the first-order solutions with respect to the size of the aggregate shocks A. For this

goal, the Jacobian of FC
t , FL

t , andΦ0 with respect to (w,L,A,ϕ0) are sufficient to compute the

first-order solutions. The Jacobians of FC
t and FL

t correspond to the Sequence Space Jacobian

(Auclert et al. 2021), and we can efficiently compute them using the single backward iteration and

the fake news algorithms, as explained by Auclert et al. (2021). The Jacobian of Φ0 can easily be

obtained during the process of the single backward iteration. The algorithm here resembles that

in Auclert et al. (2024) in the context of the endogenous portfolio choice in the heterogeneous

agent models. In implementing it, we truncate the transitions to a horizon of 500 years.

F.5 Status Quo with Aggregate Shocks

We describe the status quo economy with aggregate shocks. We maintain the assumptions de-

scribed in Section 7. Under the assumption of p→ 0, the economy is in the deterministic steady

state before the arrival of the aggregate shock. For notational simplicity, we drop x superscript

and let t denote the time elapsed since the arrival of the aggregate shock instead. We drop time
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subscript for variables before the arrival of the shock. As in Appendix F.4, we explain under the

specific functional form assumptions of our calibration.

Before the arrival of the aggregate shock, the Bellman equation of the household living in

location j with asset holding at is

vi(a) = max
Ci,{µij}j ,{µij0}j ,a′

ui(Ci) + (1− p)βω

[∑
j

µijvj(a
′)− ψi({µij})

]
(F.61)

+pβω

[∑
j

µij0vj0(a
′)− ψit({µij0})

]
(F.62)

s.t. PiCi + a′ = (1 + r)a+ wi + Ti (F.63)

a′ ≥ a. (F.64)

Here, our timing assumption implies that the saving policy function, a′i(a), is not contingent on

the arrival of the aggregate shock, but the migration probabilities {µij(a), µij0(a)} are. Because

of this, the initial distribution immediately after the arrival of the aggregate shock, which we

denote {φ0(a}, is generally different from the steady state distribution. We denote the initial

distribution φ0 in a (discretized) vector format.

After the arrival of the aggregate shocks, which induces a sequence of aggregates, the Bellman

equations are given by (42). As in Appendix F.4, the sequence that matters for the Bellman equa-

tion is summarized by (w,L,A). We let {Cit(a;w,L,A), µijt(a;w,L,A), aijt+1(a;w,L,A)}
denote the policy functions following the arrival of the aggregate shocks. Given the policy func-

tions and the initial distribution φ0, we can compute the distribution at any point in time. We let

{φt(a;w,L,A,φ0)} denote the distribution at time t as a function of w,L,A and φ0.

The sequence of aggregates need to satisfy the market clearing conditions as well as the con-

sistency in the population distribution:

0 = witLit −
(wit/(AijtL

α
i ))

1−σ∑
l(wlt/(AljtLα

l ))
1−σ

∫
PjtCjt(a;w,L,A)dφjt(a;w,L,A,φ0) (F.65)

≡ FC
t (w,L,A,φ0) (F.66)

0 = Lit −
∫
dφit(a;w,L,A,φ0) (F.67)

≡ FL
t (w,L,A,φ0). (F.68)

Note that from (F.62), the initial migration probabilities {µij0(a)} are determined by the initial

value functions {vj0(a)}, which, in turn, are determined by the aggregate sequence (w,L,A)

from (42). This implies that the initial distribution φ0 are pinned down by as a function of
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(w,L,A). We write this relationship as

φ0 = Φ0(w,L,A). (F.69)

Consequently, solving the transition dynamics following the aggregate shock amounts to

solving (w,L,A,φ0) that satisfies the following system of equations:

0 = FC
t (w,L,A,φ0) (F.70)

0 = FL
t (w,L,A,φ0) (F.71)

φ0 = Φ0(w,L,A). (F.72)

As in Appendix F.4, the Jacobian ofFC
t ,FL

t , andΦ0 with respect to (w,L,A,ϕ0) are sufficient to

compute the first-order solutions. The Jacobian of FC
t and FL

t correspond to the Sequence Space

Jacobian (Auclert et al. 2021). The Jacobian ofΦ0 can easily be obtained during the process of the

single backward iteration. Again, the algorithm here is similar to that in Auclert et al. (2024). In

implementing it, we truncate the transitions to a horizon of 500 years.

F.6 Decomposing Welfare Gain

The welfare of newborn in the steady state is given by

W newborn =
∑
i

Λi(1− ω)Litv
n
it, (F.73)

where Lit is the population size of location i, and v
n
it is the utilitarian welfare of newborns born in

location i. Suppose the welfare of the newborn in the old economy isW newborn
, but it isW newborn′

in the new economy. Likewise, let all the variables with and without prime denote those in the

new economy and the old economy, respectively. We can express the changes in welfare as

W newborn′ −W newborn =
∑
i

Λi(1− ω)vnit [L
′
it − Lit]︸ ︷︷ ︸

(i) between location

+
∑
i

Λi(1− ω)Lit [v
n′
it − vnit]︸ ︷︷ ︸

(ii) within location

. (F.74)

We apply this decomposition to the welfare change from the status-quo economy to the con-

strained efficient allocation. Expressed as a fraction of consumption equivalent welfare gains,

50.2% is attributed to (i) between location component, and 49.8% is attributed to (ii) between

location component.
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F.7 Additional Figures and Tables

Figure F.1: Real Wage: Status Quo vs. Planner

Note: The figure compares the real wage wj/Pj in the efficient allocation (y axis)

and in the status-quo economy (x axis). Each square dot corresponds to a US state.

The dashed grey line is a 45-degree line.

Figure F.2: Net Surplus S in the Planner’s Solution and Real Wage Status Quo

Note: The figure compares the population weighted average of the net surplus Sj

in the planner’s solution (y axis) and real wage in the status quo economy (x axis).

Each square dot corresponds to a US state. The solid blue line is the best linear fit.
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Figure F.3: One-Period History-Independent Constrained-Efficient Allocation

Note: The figure presents a version of Figure 3, where in addition we also plot the patterns of

“one-period history-independent constrained-efficient allocation” as described in Appendix

C.
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