Capital Accumulation and Growth: Solow Model

Masao Fukui

2024 Spring

EC502 Macroeconomics Topic 2

Capital Accumulation as a Source of Growth

- Why do countries grow? Why are some countries richer than others?
- In the previous lectures, we saw capital plays an important role in an accounting sense
- This opens two questions

 - How do countries accumulate capital? • Why do some countries have higher capital stock than others?
- Idea: countries invest some of their resources into capital over time

- Farm has a silo containing bushels of seed corn
- Farmers plant the seed, tend the crop, and harvest

Repeat

Analogy

They eat 75% of the harvest and save the remaining 25% for next year's planting

Each seed produces ten ears of corn, each with hundreds of kernels, so harvest grows

Production: Capital accuulation: Population growth: **Resource constraint: Investment:**

Solow Mode

- $Y_t = A(K_t)^{\alpha} (L_t)^{1-\alpha}$
- $K_{t+1} = (1 \delta)K_t + I_t$
 - $L_{t+1} = (1+n)L_t$
 - $C_t + I_t = Y_t$
 - $I_t = sY_t$

- Production $Y_t = A(K_t)^{\alpha}(L_t)^{1-\alpha}$ comes from the previous lecture
- Capital accumulation $K_{t+1} = (1 \delta)K_t + I_t$ assumes constant depreciation
- We assume constant labor (population) growth $L_{t+1} = (1 + n)L_t$
 - Plus, everyone in the economy supplies one unit of labor
- Resource constraint $C_t + I_t = Y_t$ is national accounting identity
 - We abstract away from G and NX
- Investment $I_t = sY_t$ assumes constant fraction of output is invested every period
- Are these assumptions reasonable?

What Did We Assume?

Depreciation Rate, δ

Population Growth Rate

7

Normalization

It will be convenient to divide everything by L to express in per-capita unit $y_t \equiv \frac{1}{T}$ The production equation now becomes:

 y_1

Combining capital accumulation and investment equations,

$$\frac{K_{t+1}}{L_{t+1}} \frac{L_{t+1}}{L_t}$$

1+*n* k_{t+1}

$$\frac{t}{t}, \quad k_t \equiv \frac{K_t}{L_t}$$

$$t_t = Ak_t^{\alpha}$$

$$= k_t(1 - \delta) + sy_t$$

9

- Putting the previous two equations together, $k_{t+1} = \frac{1}{1+n} \left[(1-\delta)k_t + sAk_t^{\alpha} \right]$ $\equiv g(k_t)$
- Given k_0 , the above equation determines the path of k_1, k_2, k_3, \dots
- What is the property of $g(k_t)$?
 - Increasing: $g'(k_t) = -\frac{1}{2}$
 - Concave: $g''(k_t) = \frac{1}{1}$
 - Also satisfies

$$\frac{1}{1+n} \left[1 - \delta + \alpha A k^{\alpha - 1} \right] > 0$$

$$\frac{1}{1+n} \alpha (\alpha - 1) k_t^{\alpha - 2} < 0$$

$$g(0) = 0, \quad g'(0) = \infty, \quad \lim_{k \to \infty} g'(k) = \frac{1 - \delta}{1+n} < 0$$

Key Equation

Steady State

- In the long-run (steady state), the capital stock converges to k that satisfies $\bar{k} = \frac{1}{1+n}$
- Dividing both sides by y and rearranging, we get $\frac{k}{\bar{v}} = \frac{s}{n+\delta}$
 - Long-run capital-to-GDP ratio (capital intensity) is high if
 - investment rate (s) is high
 - depreciation rate (δ) is low
 - population growth (*n*) is low

$$\frac{1}{p}\left[(1-\delta)\bar{k} + s\underline{A}\bar{k}^{\alpha}\right]$$

$$\bar{y}$$

or
$$\bar{k} = \left(\frac{As}{n+\delta}\right)^{\frac{1}{1-\alpha}}$$

Testing Solow Model

K/Y and s

Assuming all countries are in steady-states in 2019, we confront the model with data

K/Y and δ

K/Y and n

K/*Y* in the Model and in the Data

Data source: Penn World Table 10.01

Economic Growth in Solow Model

Long-Run Growth in Solow Model

- What is the long-run growth rate of the economy according to the Solow model?
 - Zero! There is no long-run growth in Solow!
- Capital stock per capita, k, is constant in the steady state, and so is output, $y = Ak^{\alpha}$
- This is because of decreasing returns to scale
 - As we accumulate more and more k, y rises by a smaller and smaller amount • But capital depreciate at a constant rate
- Diminishing returns to capital is at the heart of why growth eventually ceases
- A huge, disappointing failure.

Transition Dynamics

- Despite this negative result on long-run growth, the Solow framework is useful
- Solow model does predict growth along the transition dynamics
- Suppose a country begins in a steady state
- What happens if this country suddenly starts to invest more (a rise in s)?
- This has happened in many East Asian growth miracle countries

Saving Rate: South Korea

Evolution of Capital Stock

$= g(k_t)$ with high s

$g(k_t)$ with low s

Saving rate, s

 t_0

Growth Miracle?

GDP per capta, y Year, t t_0

Asian Growth Miracle

- Another interesting prediction of Solow model is capital destruction
- Suppose a country begins in a steady state
- What happens if some of its capital stock is suddenly destroyed?
 - due to wars or disasters

Capital Destruction Shock

Capital stock, k

Davis and Weinstein (2002)

Davis and Weinstein (2002): test this prediction using atomic bombing of Hiroshima and Nagasaki as a laboratory

Source: https://www.reddit.com/r/interestingasfuck/comments/da5ao7/hiroshima_before_and_after_the_little_boy_atomic/

Year

Nagasaki 1945 and Today

Source: https://www.theguardian.com/artanddesign/gallery/2015/aug/06/after-the-atomic-bomb-hiroshima-and-nagasaki-then-and-now-in-pictures

Can Investment be Too High?

Investment Too High or Too Low?

- High saving (investment) rates are the source of capital accumulation
- Should the investment rates be high? Can it be too high?
- Think of an extreme example with s = 1 \Rightarrow You consume nothing because c = (1 - s)y = 0
- Then, should the investment rate be low?

Think of an extreme example with s = 0 and recall $\bar{k} = (As/(n + \delta))^{\frac{1}{1-\alpha}}$ in the long-run \Rightarrow Again, you consume nothing in the long-run because $c = (1 - s)\overline{y} = (1 - s)Ak^{\alpha} = 0$

Golden Rule of Saving Rate

- So what is the investment rate that maximizes long-run per-capita consumption?
- Steady-state (long-run) consumption is given by

 $c(s) \equiv (1$

- The saving rate that maximizes the steady-state consumption, s^* , solves $\max_{S} C(S)$
- Taking the first-order condition,

$$\frac{dc(s)}{ds} = \frac{\alpha - s}{(1 - \alpha)s} A\left(\frac{sA}{n + \delta}\right)^{\frac{\alpha}{1 - \alpha}}$$

$$(-s)A\left(\frac{As}{n+\delta}\right)^{\frac{\alpha}{1-\alpha}}$$

Cross-Country Data

- The golden rule of saving rate only concerns the steady state consumption
- It is not necessarily optimal from a welfare perspective
- Households may not care about steady state
- Remember, "in the long run, we are all dead"

Implications of Solow Model

Implication of Solow Model

Countries with lower capital grow faster... holding everything else equal

 k_{t}

- Do initially poor countries grow faster subsequently in the data?
- Often called "unconditional convergence"
- Consider the following regression:

 - $\beta < 0$ implies that initially poor countries tend to grow faster

 $\log y_{i,t+T} - \log y_{i,t} = \gamma + \beta \log y_{i,t} + \epsilon_{i,t}$

Convergence Regression

Interpretation

- Overall, there is no tendency of convergence
- We do see convergence
 - 1. if we focus on subsamples that look similar to each other
 - 2. if we only focus on recent periods

Similar countries have similar $(A, s, \delta, \alpha, n)$, so the only difference is likely to be k_0 Due to globalization, countries now have more similar fundamentals than before

Strength and Weakness of Solow Model

What Have We Learned?

Strength

- Provide a theory that determines the long-run level of k and y
 - based on primitive parameters: $(A, s, \delta, \alpha, n)$
- Its transition dynamics help us understand differences/changes in growth rates • The farther a country is below its steady state, the faster it will grow

Weakness

- Only provides a theory of k, not A
- Nothing to say about why countries differ in $(A, s, \delta, \alpha, n)$
- The model predicts no long-run growth

47