### Ideas and Growth: **Romer Model**

Masao Fukui

2024 Spring

**EC502 Macroeconomics** Topic 3





## What Sustains Long-run Growth?

- How do countries sustain long-run growth? Why is the US constantly growing at 2%? Solow model: capital accumulation cannot sustain growth in the long run
- Two reasons:
  - 1. Decreasing returns to scale in capital ⇒ countries accumulate less and less capital as they grow
  - 2. Constant returns to scale in overall production ⇒ more population do not lead to higher per capita income
- We will attack 2





### Romer Model



## **Corn Farmer Example Again**

- Farmers can use their labor (and capital) to produce corn
- Or to invent new technologies for growing corn more productively

## Y = F(A, L,

- New tractors, fertilizer, irrigation systems, drought-resistant seed (ideas) What is the difference between objects and ideas?
  - Objects are rival
  - Ideas are non-rival
- Non-rivalry provides a natural foundation for increasing returns to scale
- Romer's favorite example: oral rehydration therapy

$$K) = A^{\beta} L^{1-\alpha} K^{\alpha}$$



# **Nonrivalry** $\Rightarrow$ **Increasing Returns** $Y = F(A, L, K) = A^{\beta} L^{1-\alpha} K^{\alpha}$

**Replication argument: doubling** (L, K) doubles Y:

F(A, 2L, 2K) = 2F(A, L, K)

But doubling (A, L, K) more than doubles Y!

F(A, L, K) is increasing returns to scale in (A, L, K)

F(2A, 2L, 2K) > 2F(A, L, K)



### **Romer Model**

For simplicity, suppose there is no capital ( $\alpha = 0$ )

Total population grows at rate n:

 $N_{t+1} = (1 + 1)$ 

Fraction  $1 - s^R$  of population engages in the production of goods:

Fraction s<sup>R</sup> of population engages in the production of ideas (R&D):

$$Y_t = A_t^{\beta} L_t$$

$$(+n)N_t, n > 0$$

- $L_t = (1 s^R)N_t$

$$A_{t+1} = A_t + s^R N_t$$



### **Increasing Returns to Scale of Ideas**

- The key assumption is, again, increasing returns to scale Per-capita output:

  - Per-capita output is increasing in the total stock of knowledge
  - Not on knowledge per capita.
  - Reflects the fact that knowledge is non-rival

$$\frac{V_t}{V_t} = (1 - s^R)A_t^{\beta}$$



### **Knowledge Accumulation Process**

- Define knowledge per capita:  $a_t = A_t/N_t$
- **Divide the knowledge accumulation equation by**  $N_t$  to rewrite it as



Given  $a_0$ , the above equation determines  $a_1, a_2, \ldots$ ,



## **Evolution of Knowledge Stock**







 $\frac{1}{1+n}(a_t+s^R)$ 

9

## Long-run Growth in Knowledge

In the long-run (steady state), the knowledge per capita converges to  $\bar{a}$  that satisfies

Solving for  $\bar{a}$  gives  $\bar{a} = s^R/n$ .

• More importantly,  $\bar{a}$  constant  $\Rightarrow A_t = \bar{a}N_t \Rightarrow A_t$  keeps growing at the speed  $N_t$  grows  $\frac{N_{t+1}}{N_t} = \frac{N_{t+1}}{N_t} = 1 + n$ 

$$1 + g_A = \frac{A_{t+1}}{A_t}$$

Growth rate of knowledge = growth rate of researchers = population growth

$$\bar{a} = \frac{1}{1+n}(\bar{a}+s^R)$$





## Long-run Growth in GDP per capita!

- Recall per-capita output is  $Y_t/N_t = (1 1)$
- The growth rate of per-capita output is

$$1 + g_{Y/N} \equiv \log(Y_{t+1}/N_{t+1}) - \log(Y_{t+1}/N_{t+1}) = \log(Y_{t+1}/N_{t$$

When n is small,

- A country sustains long-run growth in GDP per capita!

$$(-s^R)A_t^\beta$$

### $Y_t/N_t = \log A_{t+1}^{\beta} - \log A_t^{\beta} = \beta \log(1+n)$

### $g_{Y/N} \approx \beta n$

Per-capita GDP growth = importance of knowledge ( $\beta$ ) × population growth (n)



## **Combining Romer and Solow Model**



12



### Now we put back capital



- $N_{t+1} = (1 + n)N_t$ 
  - $L_t = (1 s^R)N_t$
- $A_{t+1} = A_t + s^R N_t$

### Solow + Romer

 $Y_t = A_t^{\beta} L_t^{1-\alpha} K_t^{\alpha}$ 

 $K_{t+1} = K_t(1 - \delta) + sY_t$ 





### Now we put back capital

- $N_{t+1} = (1 + n)N_t$ 
  - $L_t = (1 s^R)N_t$
- $A_{t+1} = A_t + s^R N_t$

### Solow + Romer

 $Y_t = A_t^{\beta} L_t^{1-\alpha} K_t^{\alpha}$ 

 $K_{t+1} = K_t(1 - \delta) + sY_t$ 



### **Convenient Normalization**

- Educated trick: we normalize all varial
  - This makes all variables stationary, as we will see

• Define  $y_t = Y_t / (A_t^{\frac{\beta}{1-\alpha}} N_t)$  and  $k_t = K_t / (A_t^{\frac{\beta}{1-\alpha}} N_t)$ 

 $y_t = (1$ 

$$E_{t+1} = \frac{1}{(1 + g_{At})^{\frac{\beta}{1 - \alpha}}}$$

$$A_{t+1}/N_{t+1} =$$

where  $1 + g_{At} = A_{t+1} / A_t$ 

bles with 
$$A_t^{\frac{\beta}{1-\alpha}}N_t$$

$$\frac{\beta}{t} N_t$$
). Then

$$(-s_R)^{1-\alpha}k_t^{\alpha}$$

$$\frac{1}{(1+n)} \left[ k_t (1-\delta) + s(1-s_R)^{1-\alpha} k_t^{\alpha} \right]$$

$$\frac{1}{1+n} \left[ A_t / N_t + s^R \right]$$

(3)

(2)

(1)



## Derivations of (1)



 $Y_t = A_t^{\beta} L_t^{1-\alpha} K_t^{\alpha}$ 

 $= (1 - s^R)^{1 - \alpha} \left[ \frac{K_t}{\frac{\beta}{A_t^{1 - \alpha}} N_t} \right]$ 





**Derivation of (2)**  $K_{t+1} = K_t(1 - \delta) + sY_t$ 

 $\frac{k_{t+1}}{Nt} = k_t(1 - \delta) + sy_t$  $N_t$  $(1+g_{At})^{\frac{\beta}{1-\alpha}} \mathbf{1} + \mathbf{n}$ 





### Solow + Romer in the Long-run

- The previous equations dictate the dynamics of  $a_t = A_t/N_t$  and  $k_t$
- Let us focus on the long-run
- $k_{t+1} = \frac{1}{(1+n)^{1+\beta}}$
- In the long-run with  $k_t = k_t$

$$k = \left(\frac{s}{(1+n)^{1+\beta(1-\alpha)} - (1-\delta)}\right)^{\frac{1}{1-\alpha}}, \quad y = (1-s^R)^{1-\alpha}k^{\alpha}$$

In the long-run, as we have seen already, (3) implies  $a_t = A_t/N_t$  is a constant, and  $g_{At} = g_A = n$ 

• Putting  $g_A = n$  into (2), we now obtain a nearly identical equation as in Solow model:

$$\frac{1}{\beta(1-\alpha)} \left[ k_t (1-\delta) + s k_t^{\alpha} \right]$$





## **Evolution of Knowledge Stock**







 $\frac{1}{1+n}(a_t+s^R)$ 



![](_page_19_Picture_2.jpeg)

## Long-run Growth

- What is the long-run growth in this economy?
- Does the fact that y is a constant mean per-capita income is also a constant?
  - No, recall per capita income is  $Y_t/N_t = A_t^{\frac{\beta}{1-\alpha}}y_t$ ... which grows at a rate  $g_{Y/N} \approx \frac{\beta}{1-\alpha}n$  (when n small)
- The economy grows faster than the previous model (which was  $\beta n$ ). Why?

$$Y_t/N_t = (1 -$$

- $A_t$  grow at rate  $g_A = n$  and contribute to GDP growth by  $\beta g_A$
- $K_t/N_t$  grow at rate  $\frac{\beta}{1-\alpha}g_A$  and contribute to GDP growth by  $\frac{\alpha\beta}{1-\alpha}g_A$
- Technology growth leads to capital accumulation and even faster growth

 $-s_R)^{1-\alpha}A_t^{\beta}(K_t/N_t)^{\alpha}$ 

![](_page_20_Picture_10.jpeg)

### **Growth Accounting Revisided**

### In this model,

### $\beta g_A$ $g_{Y/N} =$

### If $\alpha = 1/3$ , A should be twice as important as capital in growth accounting

### Let us go back to the data and test it

# + $\frac{\alpha}{1-\alpha}\beta g_A$ growth due to A growth due to K

![](_page_21_Picture_6.jpeg)

## Validating Solow + Romer Model

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

- Per-capita GDP in the US has been growing at 2% every year,  $g_{Y/N} = 0.02$
- The US population has been growing roughly at 1%, n = 0.01
- Labor share implies  $\alpha = 1/3$
- Jointly, this implies  $\beta \approx 1.33$

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_9.jpeg)

### 1. Are Ideas Getting Harder to Find? – Bloom, Jones, Van Reenen, Webb (2020)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

### **Are Ideas Getting Harder to Find?**

### Economic growth = (research productivity) × (No. of researchers)

- Romer model strongly ties GDP growth to the growth of researchers
- In order to sustain GDP growth, we need more and more researchers
- This means ideas get harder and harder to find as a country grows

![](_page_25_Picture_8.jpeg)

![](_page_25_Picture_9.jpeg)

### **Researchers and TFP Growth: Aggregate Data**

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_11.jpeg)

![](_page_27_Picture_0.jpeg)

### Moore's Law: The number of transistors on microchips doubles every two years Our World in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

### Transistor count 50,000,000,000 10,000,000,000 5,000,000,000 1,000,000,000 500,000,000 100,000.000 50.000.000 10,000,000 5.000,000 Intel 80486 1,000,000 500,000 TI Explorer's 32-bit

![](_page_27_Figure_4.jpeg)

![](_page_27_Picture_6.jpeg)

### **Researchers and TFP Growth: Moore's Law**

![](_page_28_Figure_1.jpeg)

Source: Bloom, Jones, Van Reenen, & Webb (2020)

![](_page_28_Picture_3.jpeg)

### 2. Does a Larger Population Size Raise Per-capita Income? – Peters (2022)

![](_page_29_Picture_1.jpeg)

## **Population and Productivity**

- Romer model strongly ties GDP to population
  - GDP grows faster if the population grows faster,  $g_{Y/N} = \beta n/(1 \alpha)$
  - GDP level is higher if the population is larger,  $Y_t/N_t = A_t^{\frac{\beta}{1-\alpha}}y$  and  $A_t = s^R N_t/n$
- An increase in population raises productivity and income per capita ... holding everything else constant
- Do we have any evidence?

![](_page_30_Picture_6.jpeg)

### What if we see the relationship between Y/N and N using cross-country data?

![](_page_31_Figure_2.jpeg)

### Naive Idea

![](_page_31_Picture_4.jpeg)

### How Do We Isolate Population Size?

- The ideal thought experiment is that we only change the population size
- Countries differ not only in population size but a lot of other things...
- Peters (2022):
  - Population expulsions in Germany after WW2 provide an ideal experiment

![](_page_32_Picture_5.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Figure_1.jpeg)

### Germany in 1939

![](_page_33_Picture_3.jpeg)

![](_page_33_Picture_4.jpeg)

![](_page_33_Picture_5.jpeg)

### **Distribution of German Ethnicity**

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_2.jpeg)

Eastern Territories of the German Reich (9.5m)

Sudetenland (3m)

Other countries in Eastern Europe: 3.5m

![](_page_34_Picture_6.jpeg)

## The Expulsions: 1945 - 1949

![](_page_35_Figure_1.jpeg)

Source: Peters (2022, slide)

Eastern Territories of the German Reich (9.5m)

Sudetenland (3m)

Other countries in Eastern Europe: 3.5m

![](_page_35_Picture_6.jpeg)

### Phase 1 (Nov 44 - Oct 45): 2m

- Expulsions / flight during the war
- "Wild expulsions" after armistice

### Phase 2 (Jan 46 - July 1949): 6m

- Organized population transfers (Potsdam conference)
- West German population increased by 20% between 1939 and 1950

![](_page_36_Picture_7.jpeg)

![](_page_36_Picture_9.jpeg)

### **Heterogeneity and Persistence of Settlement**

![](_page_37_Figure_1.jpeg)

- 1. varied dramatically across counties
- 2. had a persistent effect

![](_page_37_Picture_6.jpeg)

![](_page_38_Picture_0.jpeg)

- Allocation of refugees is mostly based on housing and food availability
- Ask:
  - Did a county receiving a lot of refugees grow more ... compared to a country receiving no (or few) refugees?

![](_page_38_Picture_6.jpeg)

### **GDP Per Capita Increases with More Refugees**

![](_page_39_Figure_1.jpeg)

Source: Peters (2022, slide)

### **3. End of Economic Growth?** – Jones (2022)

![](_page_40_Picture_1.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_2.jpeg)

### Future of Economic Growth

- Romer model predicts population growth is the engine of long-run growth
- Many countries already have negative population growth ... and many others are predicted to be so in the next decades
- What do they mean for economic growth?

![](_page_42_Picture_4.jpeg)

### **Negative Population Growth in Romer Model**

Let us go back to Romer model in the very beginning

Population has a negative growth rate:

Iterating (b),

 $\blacksquare Plugging (b) into (c),$ 

 $A_{t+1} = A_t + s^R (1 - \eta)^t N_0$ 

$$A_{t+1} = A_t + s^R N_t$$

 $N_{t+1} = (1 - \eta)N_t, \quad \eta > 0$ 

 $N_t = (1 - \eta)^t N_0$ 

![](_page_43_Picture_11.jpeg)

(a)

(b)

(C)

(d)

### What Happens in the Long-run?

### Iterating (d),

### In the long-run (as $t \to \infty$ ),

$$A_t \to A = A_0 + \frac{s^R}{\eta} N_0$$

Since 
$$Y_t = A_t^{\beta} L_t$$
 and  $L_t = (1 - s^R) N_t$ , G  
 $Y_t / N_t = A_t^{\beta} (1 - s^R)$  -

 $A_{t+1} = A_0 + \sum s^R (1 - \eta)^S N_0$ s=0

DP per capita is

 $\rightarrow A^{\beta}(1-s^R)$  as  $t \rightarrow \infty$ 

![](_page_44_Picture_9.jpeg)

With negative population growth...

- 1. Knowledge stock converges to a constant
- 2. GDP per capita converges to a constant as well  $\Rightarrow$  no economic growth
- 3. Population keeps declining, so total GDP keeps declining and converges to zero

![](_page_45_Picture_5.jpeg)

![](_page_45_Picture_6.jpeg)