Labor Supply **Across Countries and Over Time**

Masao Fukui

2024 Spring

EC502 Macroeconomics Topic 5

- We took hours worked per person as exogenous so far
- We assumed that everyone supplies a fixed amount of labor
- Is this true?

Cross-Section in 2005

The U.S. Time-Series

4

Post-WWII Advanced Economies

 France	 Sweden
 Italy	 Germany
 Poland	 Switzerland

- In the cross-section, richer countries tend to work less
- Over the time-series, as a country gets richer, people work less
- Why?

A Simple Model of Labor Supply

A Model of Labor Supply

- What is the benefit of working more? earn a higher income
- What is the cost of working more? pain to work longer hours
- We introduce a minimal model that captures these trade-offs

Preferences

- Households have the following utility functions: u(c) v(l)
- We *u* is concave and *v* is convex:
 - u'(c) > 0: households are happier if consumption is higher
 - u''(c) < 0: additional consumption is less pleasant if already consuming a lot
 - v'(l) > 0: households are less happy if they work more
 - v''(l) > 0: additional hours of work are more painful if already working a lot
- The households face the following budget constraint

$$= wl$$

9

The households decide (c, l) subject to the budget constraint:

c,l

- LHS: marginal benefit of work
- RHS: marginal cost of work

Optimality Condition

 $\max u(c) - v(l)$

s.t. c = wl

u'(c)w = v'(l)

Functional Form Assumptions

For simplicity, we assume

with $\sigma > 0$ and $\nu > 0$

One can check:

• $u'(c) = c^{-\sigma} > 0$, $u''(c) = -\sigma c^{-\sigma-1} < 0$

• $v'(l) = \bar{v}l^{\nu} > 0$, $v''(l) = \bar{v}\nu l^{\nu-1} > 0$

For $\sigma = 1$,

• Obtained as a limit of $\sigma \rightarrow 1$ (apply L'hopital's rule)

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}, \quad v(l) = \bar{v}\frac{l^{1+\nu}}{1+\nu}$$

 $u(c) = \log c$ when $\sigma = 1$

Optimal Labor Supply Solutions

Consumption and hours worked, {c, l}, jointly solve

(MRS) defines a decreasing relationship between c and l
 (BC) defines an increasing relationship between c and l

(MRS)

(BC)

Graphical Representation

BC l = (1/w)c

MRS

13

$c^{-\sigma}w = \overline{v}l^{\nu}$ C = Wl

- As a country gets richer, what happens to the labor supply?
- We will consider an increase in wage, w
- Note that wage, w, appears in two places (orange and green)

(BC)

First Effect: Shift Up in MRS Curve

BC l = (1/w)c

MRS $l = (c^{-\sigma}w/\bar{v})^{1/\nu}$

Substitution Effect

- MRS curve shifts up when w goes up
- If wages are higher, the marginal benefit of working is higher for any given c Holding the BC curve fixed, this means the labor supply, l, goes up!
- We call this a substitution effect

Second Effect: Shift Down in BC Curve $\bullet BC$ l = (1/w)c

MRS $l = (c^{-\sigma}w/\bar{v})^{1/\nu}$

17

Income Effect

- BC curve shifts down when w goes up
- If wages are higher, the budget constraint implies c is higher for any given l Holding the MRS curve fixed, this means the labor supply, l, goes down!
- If I am richer, I don't need to work hard
- We call this as income effect

Higher or Lower Labor Supply?

- So, does the labor supply go up or down when w goes up?
- Not clear
- In fact, it can go either way

 $c^{-\sigma}w = \bar{v}l^{\nu}$

σ Determines the $l = \frac{-1}{\nu + \sigma}$ -1 $= v + \sigma$

1. $\sigma < 1: l$ is increasing in w. Substitution effect dominates income effect

2. $\sigma > 1: l$ is decreasing in w. Income effect dominates substition effect

3. $\sigma = 1: l$ is invariant to w. Income effect and substition effect cancel

Relative Importance

$$\frac{1}{\sqrt{\sigma + \nu}} \frac{-\sigma}{\sigma + \nu}$$

$$\frac{1 - \sigma}{\sqrt{\sigma + \nu}}$$

- Now we endogenize wages, w
- Suppose the firm operates the following production function

- Firms solve
- In equilibrium,
- Plugging it back,

l =

Endogeneizing *w*

y = Al

$$x Al - wl$$

w = A

$$\overline{v}^{\frac{1}{\nu+\sigma}}A^{\frac{1-\sigma}{\sigma+\nu}}$$

Can We Qualitatively Explain Two Facts?

Taking log,

Suppose that $\sigma > 1$

- 1. Rich (high A) countries work less than poor countries
- 2. As countries grow (higher A), they work work less

 $\log l = \frac{1 - \sigma}{\sigma + \nu} \log A + const.$

If income effect dominates substitution effect, we can explain aggregate data

Can We Quantitatively Explain Two Facts?

Over time-series

• Calculations from the US data suggest $g_l \approx -0.4\%$ and $g_A \approx 2\%$

- This suggests $\frac{1-\sigma}{\sigma+\nu} \approx -0.2$
- In the cross-section,

 $\log l_i =$

• Regression estimates by Bick, Fuchs-Schündeln, Lgakos (2015), $\frac{1-\sigma}{\sigma+\nu} \approx -0.15$ Time-series and cross-sectional relationships line up well

$$g_l = \frac{1 - \sigma}{\sigma + \nu} g_A + \epsilon_l$$

$$= \frac{1 - \sigma}{\sigma + \nu} \log A_i + \epsilon_i$$

Income Effect from Labor Supply: Direct Evidence – Golosov, Graber, Mogstad & Novgorodsky (2023)

Direct Evidence?

- Households work less as the economy grows and gets richer
- The model suggests that a strong income effect, $\sigma > 1$, is the key reason
- Do we have direct evidence of income effect?
- What is the ideal experiment?
- What is the concern with using the aggregate data?

Isolating Income Effect

- Maybe wage is not the only thing that changes over time and across countries
- The ideal experiment that isolates the income effect:
 - Give money to people and see how they change the labor supply
- If income effect is big, we will see a big reduction in labor supply
- If income effect is small, we will not see a major change in labor supply

Conceptual Framework

Add non-labor income T to the previous model,

c,l

s.t.

Assuming $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$ and $v(l) = \overline{v} \frac{l^{1+\nu}}{1+\nu}$, $\{c, l\}$, jointly solve

$$c - \sigma_W$$

- $\max u(c) v(l)$

$$c = wl + T$$

$$= \bar{v}l^{\nu} \qquad \text{(MF)}$$
$$= wl + T \qquad \text{(BC)}$$

Impact of Lottery Winning $T \uparrow$ • BC l = (1/w)(c - T)

MRS $l = (c^{-\sigma}w/\bar{v})^{1/\nu}$

Marginal Pro

Empirically, it is convinient to look at l

• MPE = marginal propensity to earn One can show:

$$MPE = \frac{d(wl)}{dT} = \frac{-\sigma s_w}{\left[\sigma s_w + \nu\right]}$$

where $s_w = \frac{wl}{wl + T}$ is the share of wage income in total income

• MPE speaks to the importance of σ : If $\sigma = 0$, MPE = 0. If σ is very big, MPE is very negative.

Density to Earn
MPE out of
$$T \equiv \frac{d(wl)}{dT}$$

Labor Supply Response of Lottery Winners

- Golosov, Graber, Mogstad & Novgorodsky (2023): Study the labor supply responses of US lottery winners
- US tax data for 1999-2016
 - Lottery winnings are taxable income
- Median size of post-tax winning: \$43,600
- 90,731 lottery winners in the sample
- Compare the response to lottery winnings relative to later winners

Labor Supply Response to Lottery Winning

Emloyment

Source: Golosov, Graber, Mogstad & Novgorodsky (2023)

Wage Earnings

	Sample						
	Full Sample	Quartile 1 Quartile 2		Quartile 3	Quartile 4		
Outcome		Pre-Win Income	Pre-Win Income	Pre-Win Income	Pre-Win Income		
	(1)	(2)	(3)	(4)	(5)		
Dan Adult Total Labor Famings	-0.5227	-0.3080	-0.5204	-0.5893	-0.6735		
rei-Auun iotai Laboi Earnings	(0.0146)	(0.0240)	(0.0197)	(0.0221)	(0.0389)		

Source: Golosov, Graber, Mogstad & Novgorodsky (2023)

Therefore

$$\frac{d(wl)}{dT} =$$

- Assuming $s_w \approx 2/3$ (labor share) and $\nu \in [0.1, 0.5]$ (micro estimates) implies
- Can be large but not as large as $\sigma > 1$

MPE Estimates

Table 4.1: IV estimates of the effect of exogenous change in unearned income

 $\frac{d(wt)}{dT} = -\frac{\sigma s_w}{\left[\sigma s_w + \nu\right]} \approx -0.52$ $\sigma \in [0.2, 0.8]$

Who is Reducing the Labor Supply? (Recently)

Average Hours Worked in the US

Hours Worked Conditional on Being Employed

What Drives Increase in Female Employment?

- 1. Changes in social norm (less discrimination)
- 2. Improvement in home production technology
- 3. The rise of the service sector
- 4. Medical technology (the birth control pill, maternal health after birth, infant formula)

Male Employment Rate by Education

Female Employment Rate by Education

Who's Wages are Getting Higher?

What Do Non-Employed Young Men Do?

	Employed			Non-Employed		
Activity	2004 - 2007	2012- 2015	Change	2004- 2007	2012- 2015	Change
Total Leisure	57.6	59.6	2.0	86.9	82.1	-4.8
Recreational Computer Video Game	3.0 1.8	$4.3 \\ 2.9$	$\begin{array}{c} 1.3 \\ 1.0 \end{array}$	$5.4\\3.4$	$\begin{array}{c} 9.6 \\ 5.9 \end{array}$	$\begin{array}{c} 4.3\\ 2.5\end{array}$
ESP TV/Movies/Netflix	$23.6 \\ 15.9$	$23.9 \\ 15.5$	0.3	$\begin{array}{c} 30.1\\ 27.8\end{array}$	$29.9 \\ 25.0$	-0.2 -2.7
Socializing Other Leisure	7.4 7.7	7.8 8.1	$\begin{array}{c} 0.3\\ 0.5\end{array}$	$10.6 \\ 13.0$	8.9 8.6	-1.7 -4.4
Job Search and Education	2.0	1.9	-0.1	9.4	14.1	4.7

Table 4: Leisure Activities for Men 21-30 (Hours per Week): By Employment Status

My Take $I = \frac{-1}{\nu \nu + \sigma} \frac{1}{\sigma + \nu} \frac{-\sigma}{\sigma + \nu}$

- Micro evidence points toward $\sigma < 1$
- Income effect, on its own, is not strong enough to explain declining hours with income
- Then why do hours work decline with income?
- As a country develops, it develops leisure enhancing activity that raises \bar{v}
 - TV, smart phones, tablets, video games, SNS, Youtube, netflix, etc...

Leisure Technology

- Real TV price has fallen by a factor of 1000 since 1950
- **Netflix, Spotify:** \approx \$10 for unlimited use
- Apple iOS Store: 900,000 games, 2/3 are free

47

Real Price of Recreation Goods and Services

48