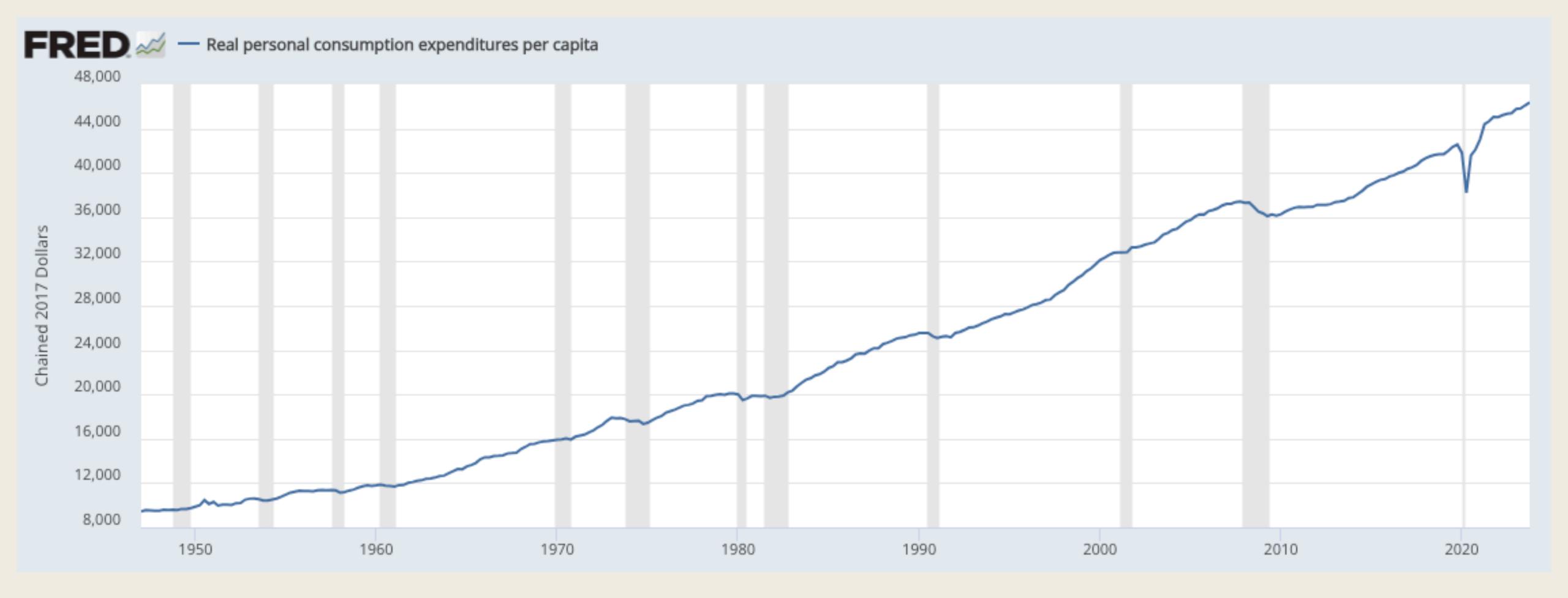
Consumption

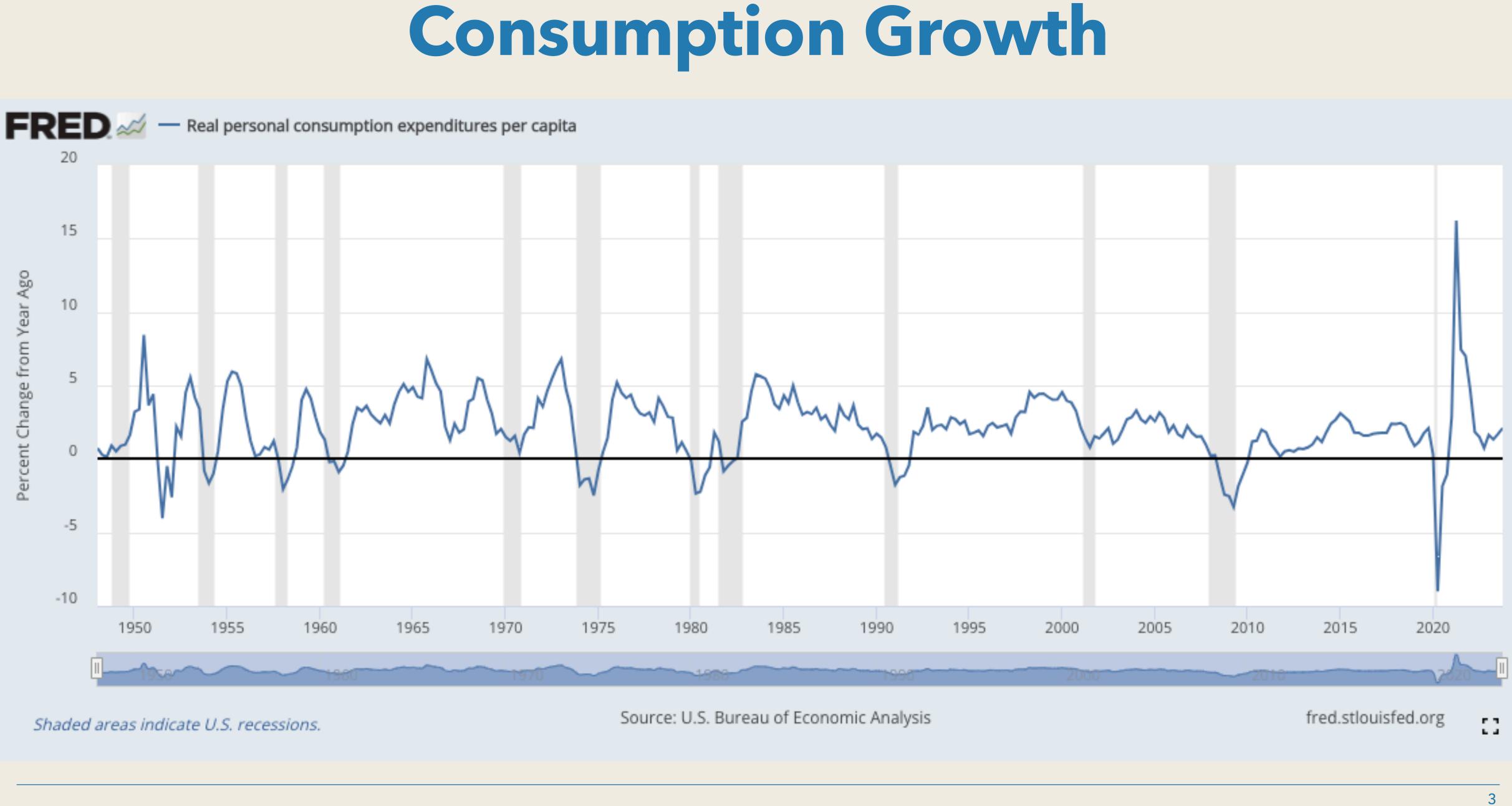
EC502 Macroeconomics Lecture 8

Masao Fukui

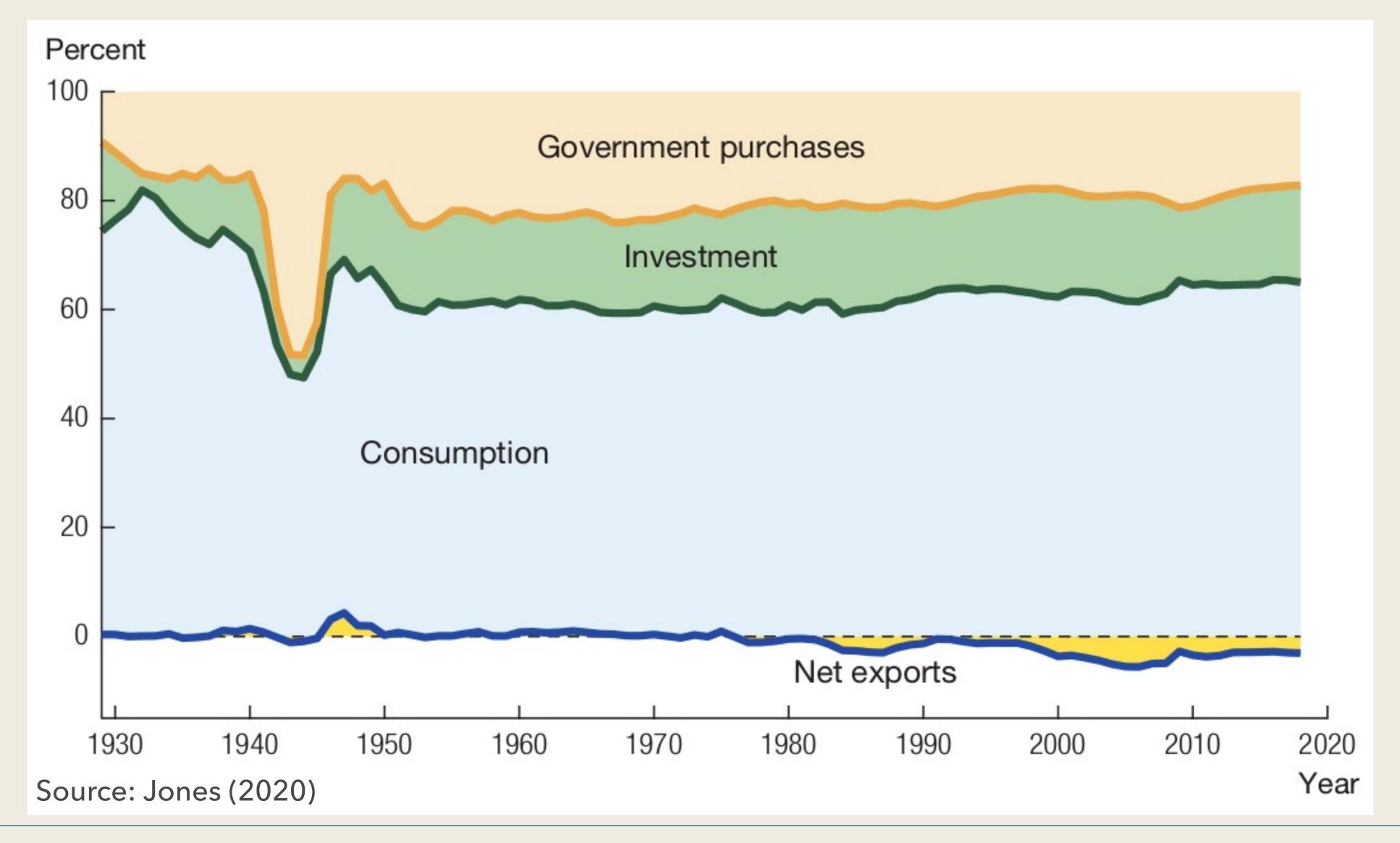
2024 Spring



Consumption



Consumption in GDP



4

- In Solow model, we took the saving rate, s, as exogenous
- This is perhaps a good approximation to study long-run
- But Solow model cannot answer questions like
 - How does consumption respond to COVID-19 relief stimulus checks?
 - How does consumption respond to future income changes?
 - How does consumption respond to the Fed's interest rate hikes?
 - How does consumption respond to changes in future uncertainty?

Questions

Consumption and Savings with Two Periods

6

Preferences

- Two-periods, t = 0, 1
- Houhold's preferences are

 $u(c_0)$

- where $\beta \in [0,1]$ is a discount factor The utility function is increasing and concave:
- We will later assume iso-elastic utility function

 $\mathcal{U}(\mathcal{C})$

$$) + \beta u(c_1)$$

 $u'(c) > 0, \quad u''(c) < 0$

$$=\frac{c^{1-\sigma}}{1-\sigma}$$

Budget Constraint

- The households can freely borrow and save at interest rate r_0
 - $a_0 > 0$: saving, $a_0 < 0$: borrowing
- Households receive (exogenous) income of y_t at time t
- The budget constraints are
- The household's problem is
 - c_0, c_1, a_0

 $c_0 + a_0 = y_0$

 $c_1 = (1 + r)a_0 + y_1$

 $\max u(c_0) + \beta u(c_1)$

s.t. $c_0 + a_0 = y_0$ $c_1 = (1 + r)a_0 + y_1$

The Lagrangian is

$$L = u(c_0) + \beta u(c_1) + \lambda_0 \left[y_0 - c_0 - a_0 \right] + \lambda_1 \left[y_1 + (1+r)a_0 - c_1 \right]$$

The first-order conditions are

and the budget constraints

Solving with Lagrangian

- $u'(c_0) = \lambda_0$
- $\beta u'(c_1) = \lambda_1$
- $\lambda_0 = \beta(1+r)\lambda_1$

Eliminating Lagrangian multipliers, we obtain the following condition

$$u'(c_0) = \beta(1 + r)u'(c_1)$$

- This is called Euler equation and is at the heart of modern macroeconomics
- This summarizes the key trade-off in consumption-saving decisions
- LHS: marginal cost of saving one more dollar
 - If you save a dollar, you consume a dollar less today. You are less happy by $u'(c_0)$
- RHS: marginal benefit of saving one more dollar
 - If you save a dollar, you get (1 + r) tomorrow. You are happier by $(1 + r) \times \beta u'(c_1)$

Euler Equation



Two Equations, Two Unknowns

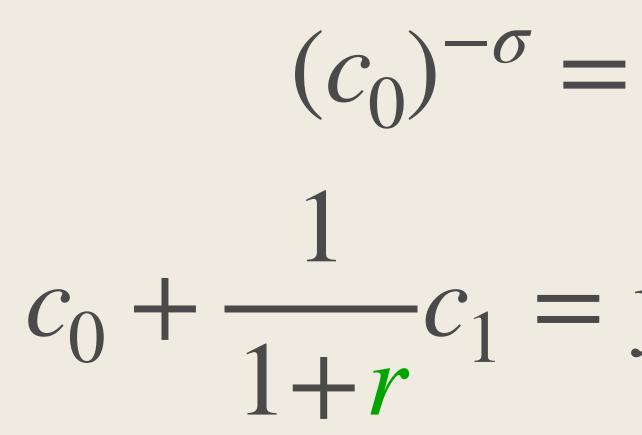
Eliminating a_0 from the budget constraint, we obtain

Lifetime (presented discounted) sum of consumption = lifetime sum of income • Therefore $\{c_0, c_1\}$ solve

 $u'(c_0) =$ C_0

$$c_0 + \frac{1}{1+r}c_1 = y_0 + \frac{1}{1+r}y_1$$

$$\beta(1 + r)u'(c_1) \\ y_0 + \frac{1}{1 + r}y_1$$



• (Euler) provides an increasing relationship between c_0 and c_1

- **(BC)** provides a decreasing relationship between c_0 and c_1
- Now we can draw a figure!

Drawing Figure

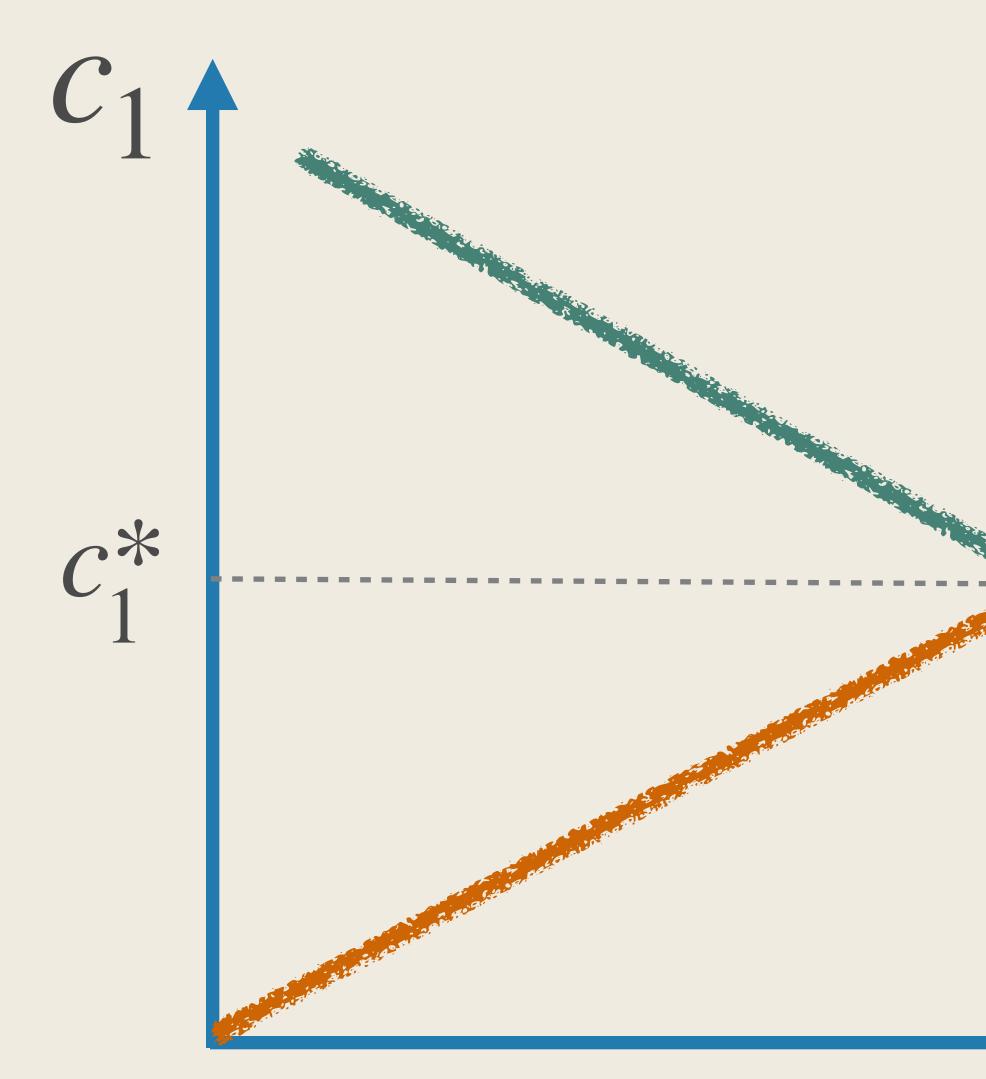
It is convenient to impose functional form assumption, $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$

$$\beta(1+r)(c_1)^{-c_1}$$

$$y_0 + \frac{1}{1+r}y_1$$

(Euler)

(BC)

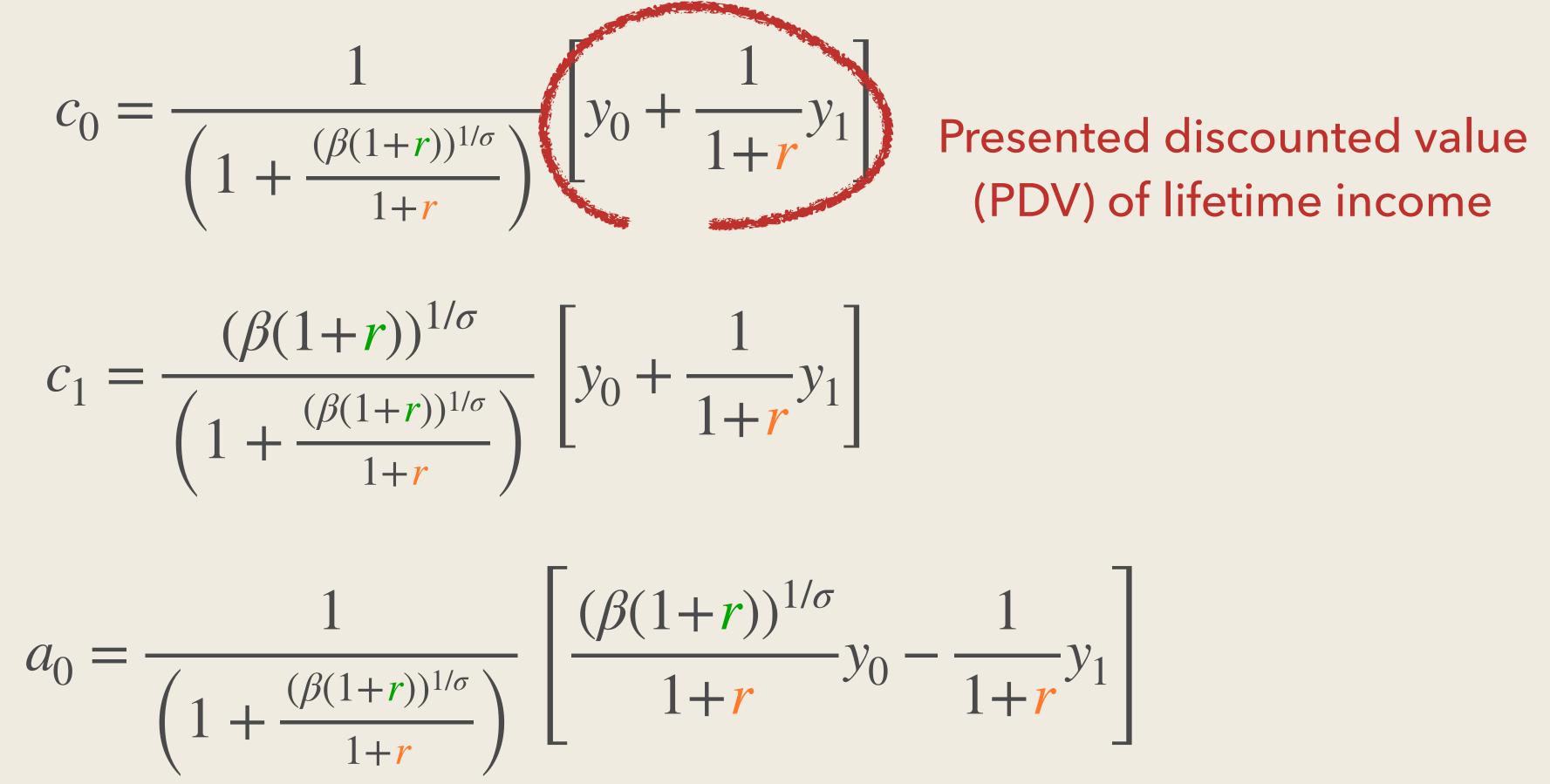


Euler $c_1 = (\beta(1+r))^{1/\sigma} c_0$

$c_1 = (1 + r)(y_0 - c_0) + y_1$

13

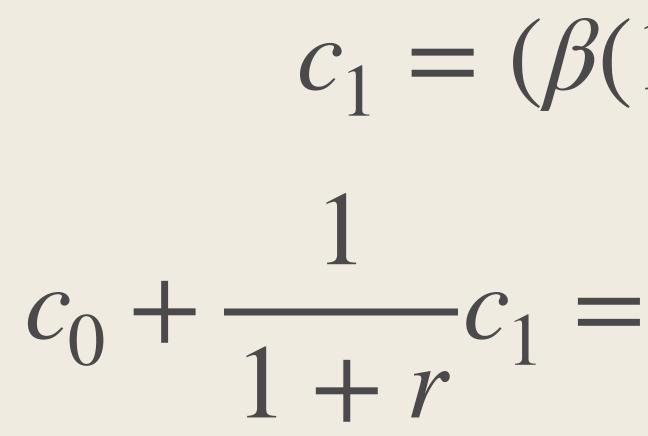
• We can also directly solve for optimal c_0 and c_1



Analytical Soutions

Q1: Impact of Current Income

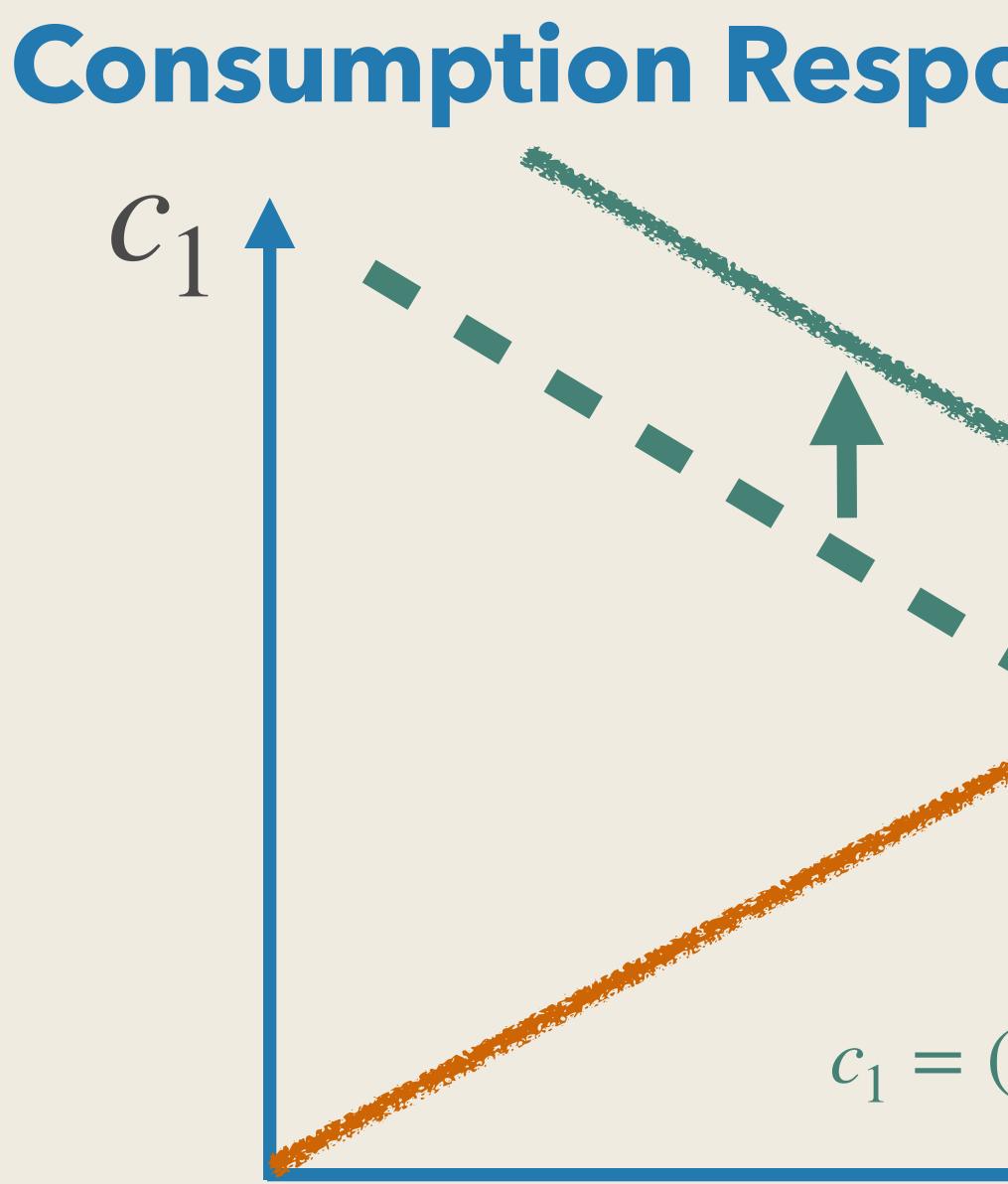
- Now let us study our original questions!



• Q1: How does consumption respond to an increase in y_0 ? (e.g., COVID transfer)

$$(1+r))^{1/\sigma}c_0$$

= $y_0 + \frac{1}{1+r}y_1$



Consumption Response to Current Income $C_1 \bullet Euler$ $c_0 = (\beta(1+r))^{-1/\sigma}c_1$

$c_1 = (1 + r)(y_0 - c_0) + y_1 \diamond BC$

Consumption Response to Current Income

We can derive the effect analytically as well

$$MPC_{0,0} \equiv \frac{\partial c_0}{\partial y_0} = \frac{1}{\left(1 + \beta^{1/\sigma}(1+r)^{\frac{1-\sigma}{\sigma}}\right)} \in (0,1)$$

 If you get \$1, you will spend less than \$1 immediately • Households save the remaining to smooth consumption over time:

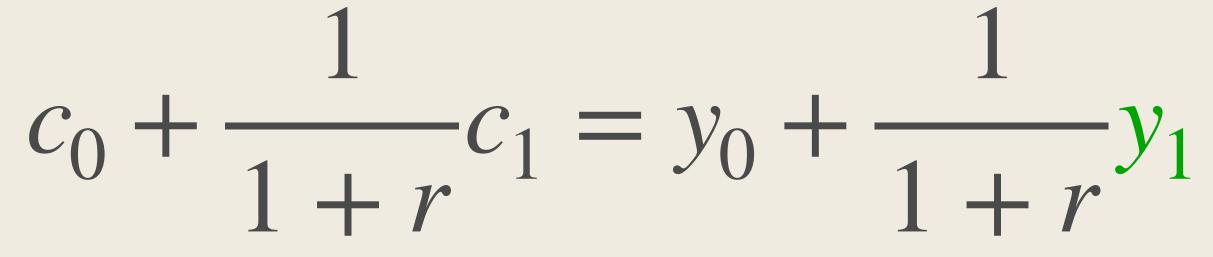
$$\frac{\partial c_1}{\partial y_0} = \frac{\beta^{1/\sigma} (1+r)^{1/\sigma}}{\left(1+\beta^{1/\sigma} (1+r)^{\frac{1-\sigma}{\sigma}}\right)} \in (0,1), \quad \frac{\partial a_0}{\partial y_0} = 1 - \frac{\partial c_0}{\partial y_0}$$

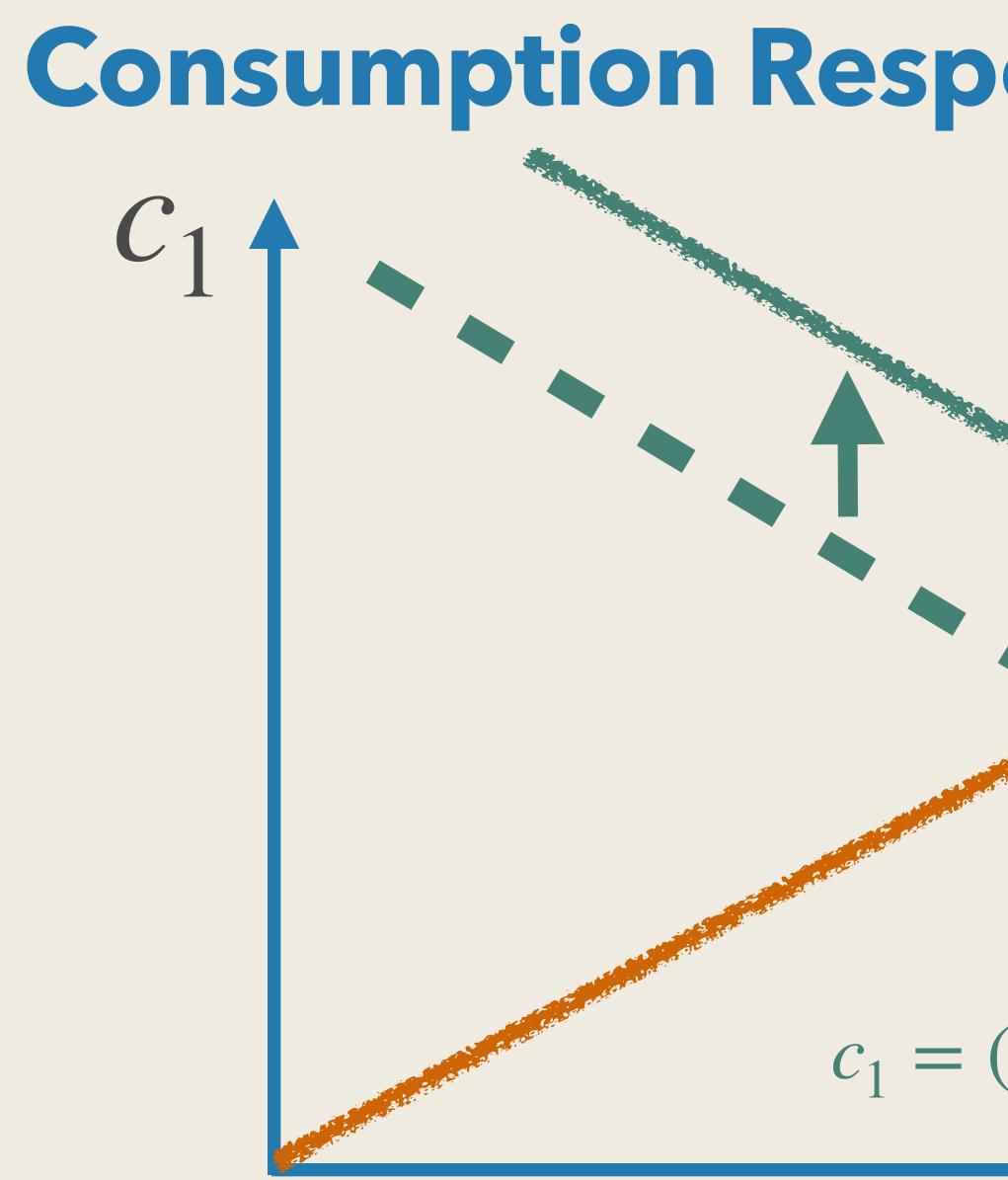


Consumption Response to Future Income

• Q2: How does consumption respond to future income changes, y_1 ?

 $(c_0)^{-\sigma} = \beta(1+r)(c_1)^{-\sigma}$





Consumption Response to Future Income $C_1 \leftarrow Euler$ $c_1 = (\beta(1+r))^{1/\sigma}c_0$

$c_1 = (1 + r)(y_0 - c_0) + y_1 \diamond BC$

Consumption Response to Future Income

We can derive the effect analytically as well

$$\frac{\partial c_0}{\partial y_1} = \frac{1}{\left(1 + \beta^{1/\sigma}(1+r)^{\frac{1-\sigma}{\sigma}}\right)} \frac{1}{1+r} \in (0,1)$$

If you expect higher income in the future, you start increasing consumption today

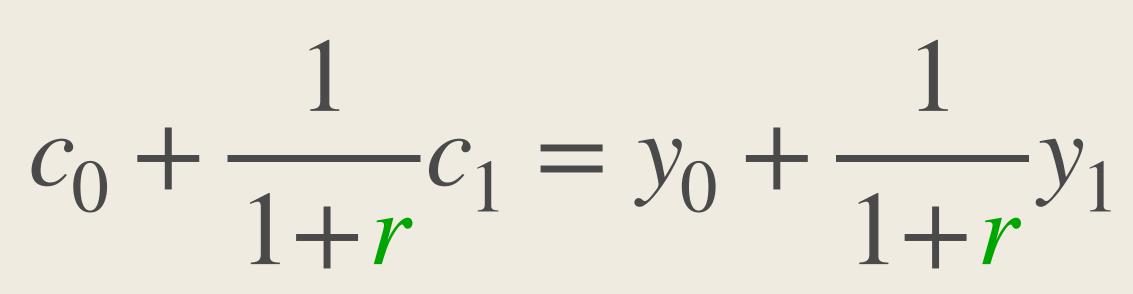
How? – You borrow more to consume more today

$$\frac{\partial a_0}{\partial y_1} = -\frac{1}{\left(1 + \beta^{1/\sigma}(1+r)^{\frac{1-\sigma}{\sigma}}\right)}\frac{1}{1+r} < 0$$

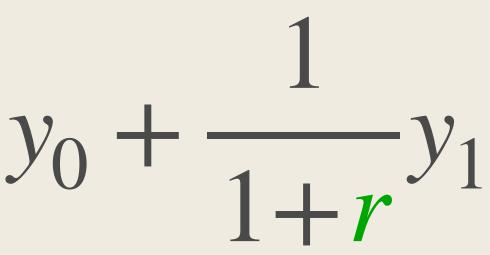
Interest Rate Response

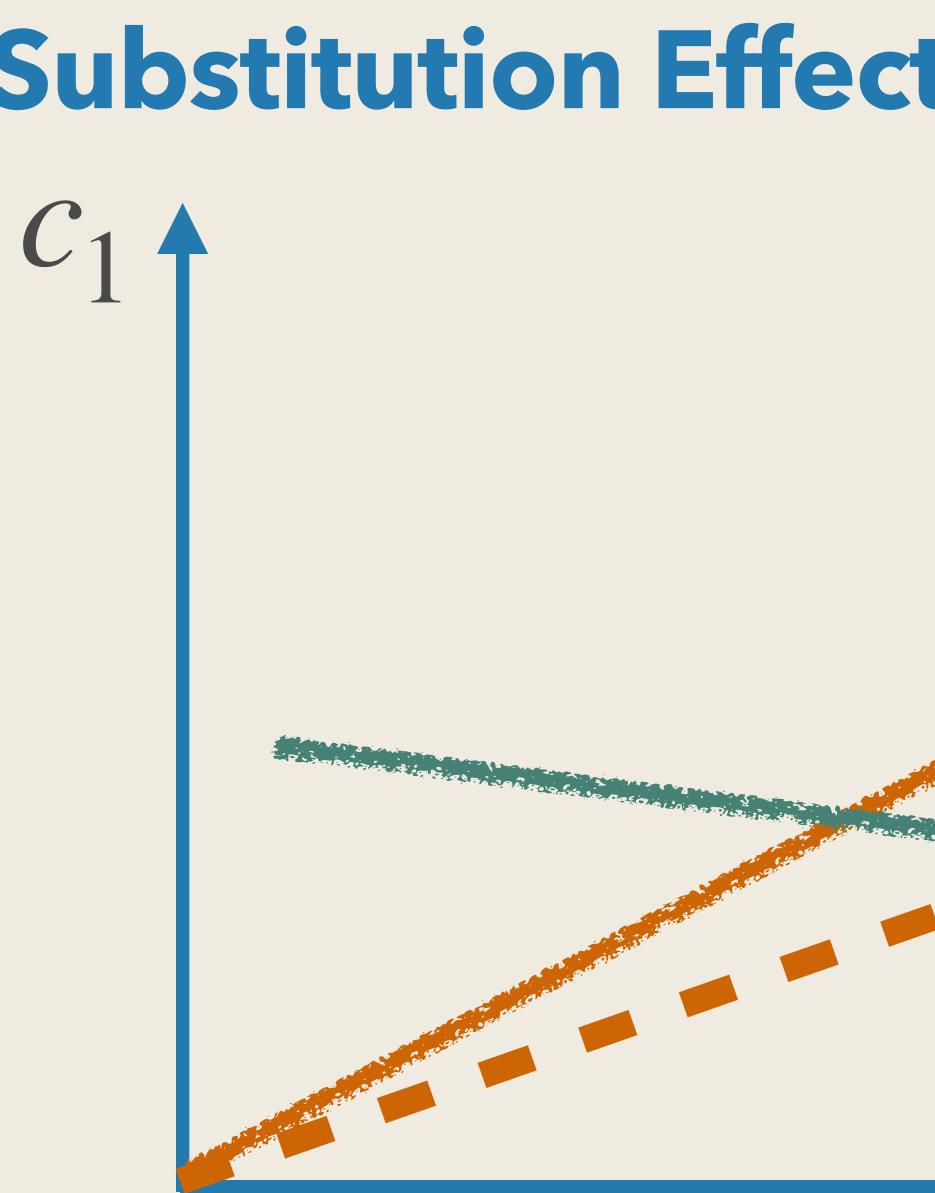
Q3: How does consumption respond to changes in interest rate, r?





- $(c_0)^{-\sigma} = \beta(1+r)(c_1)^{-\sigma}$



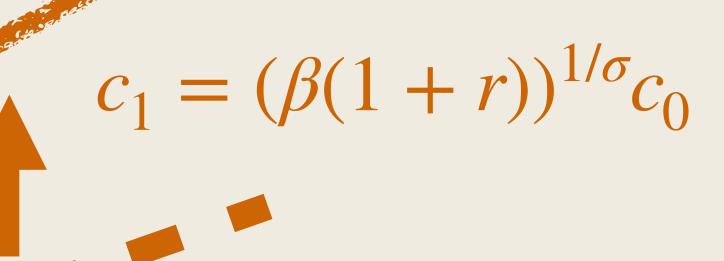


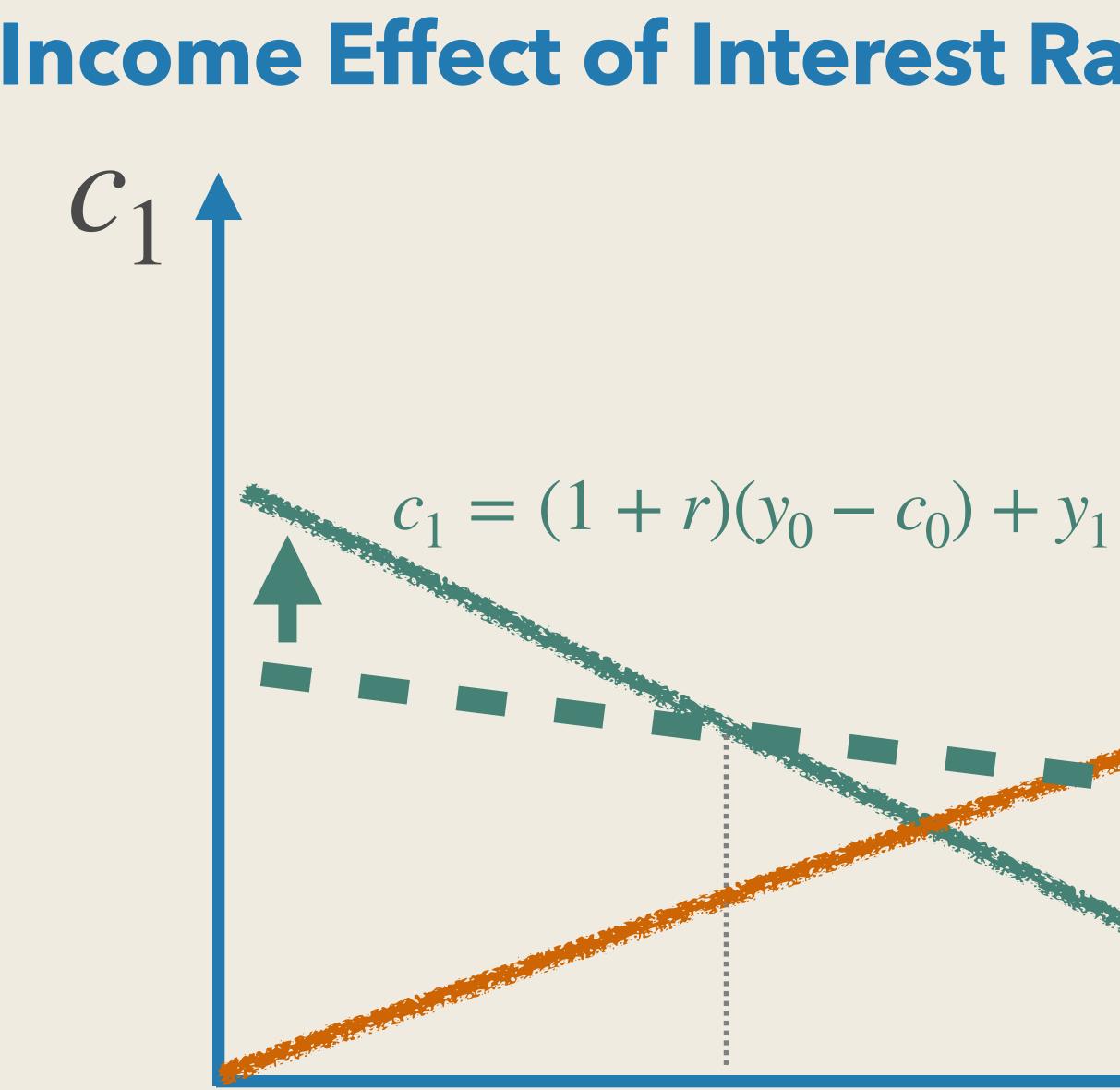
Substitution Effect of Interest Rate Rise

Euler

$c_1 = (1 + r)(y_0 - c_0) + y_1$

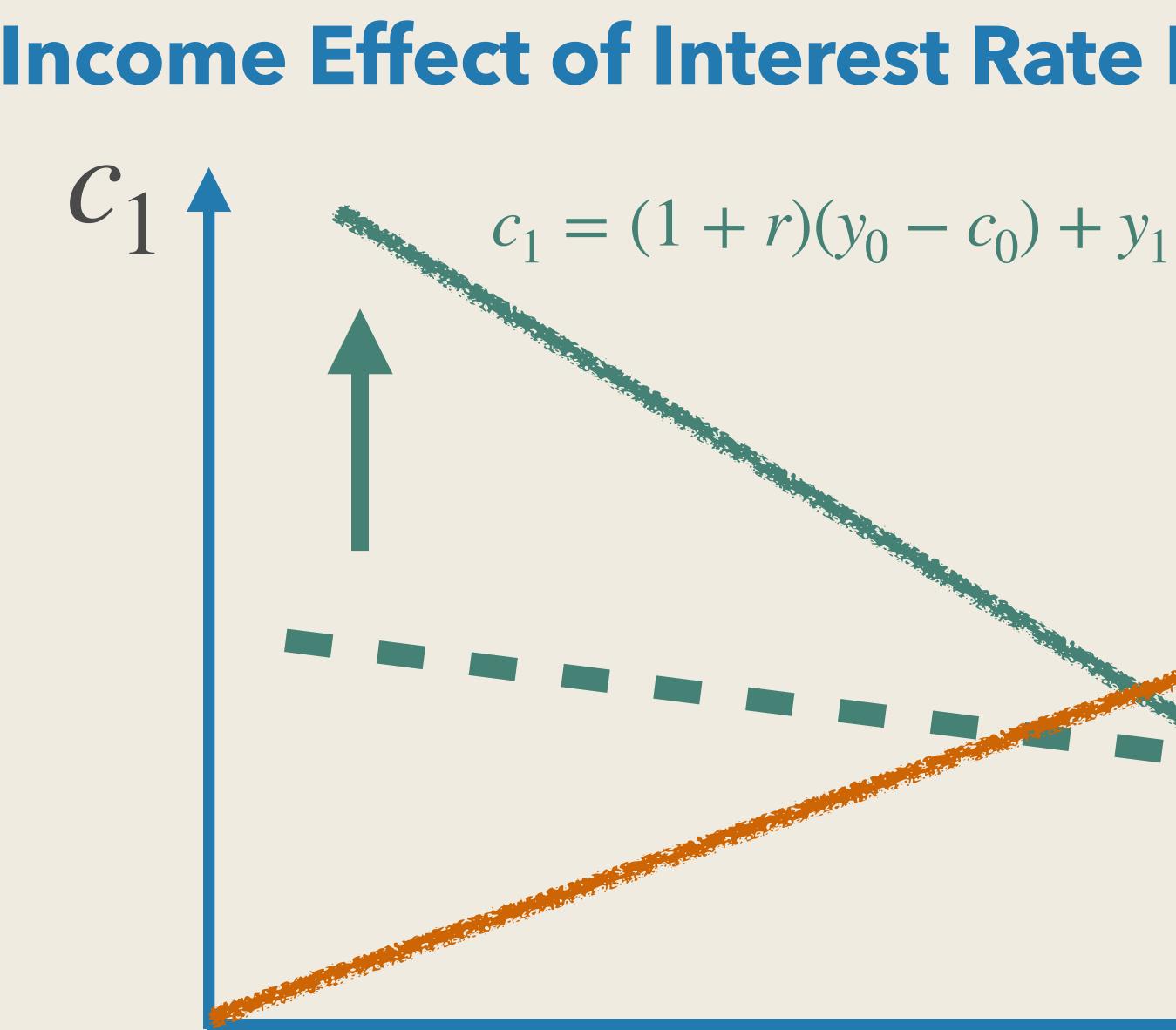
BC





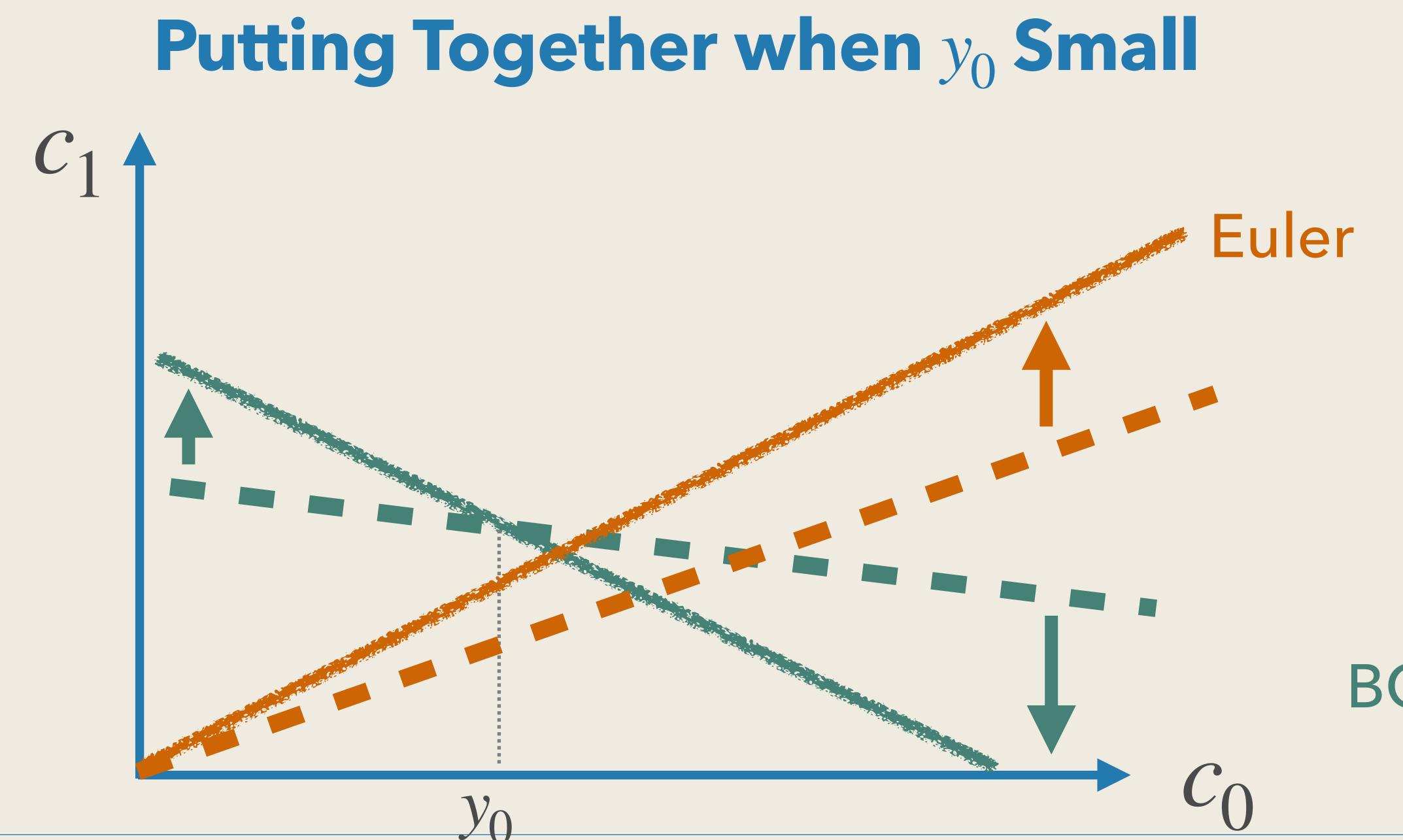
Income Effect of Interest Rate Rise with Small y₀

Euler $c_1 = (\beta(1+r))^{1/\sigma}c_0$

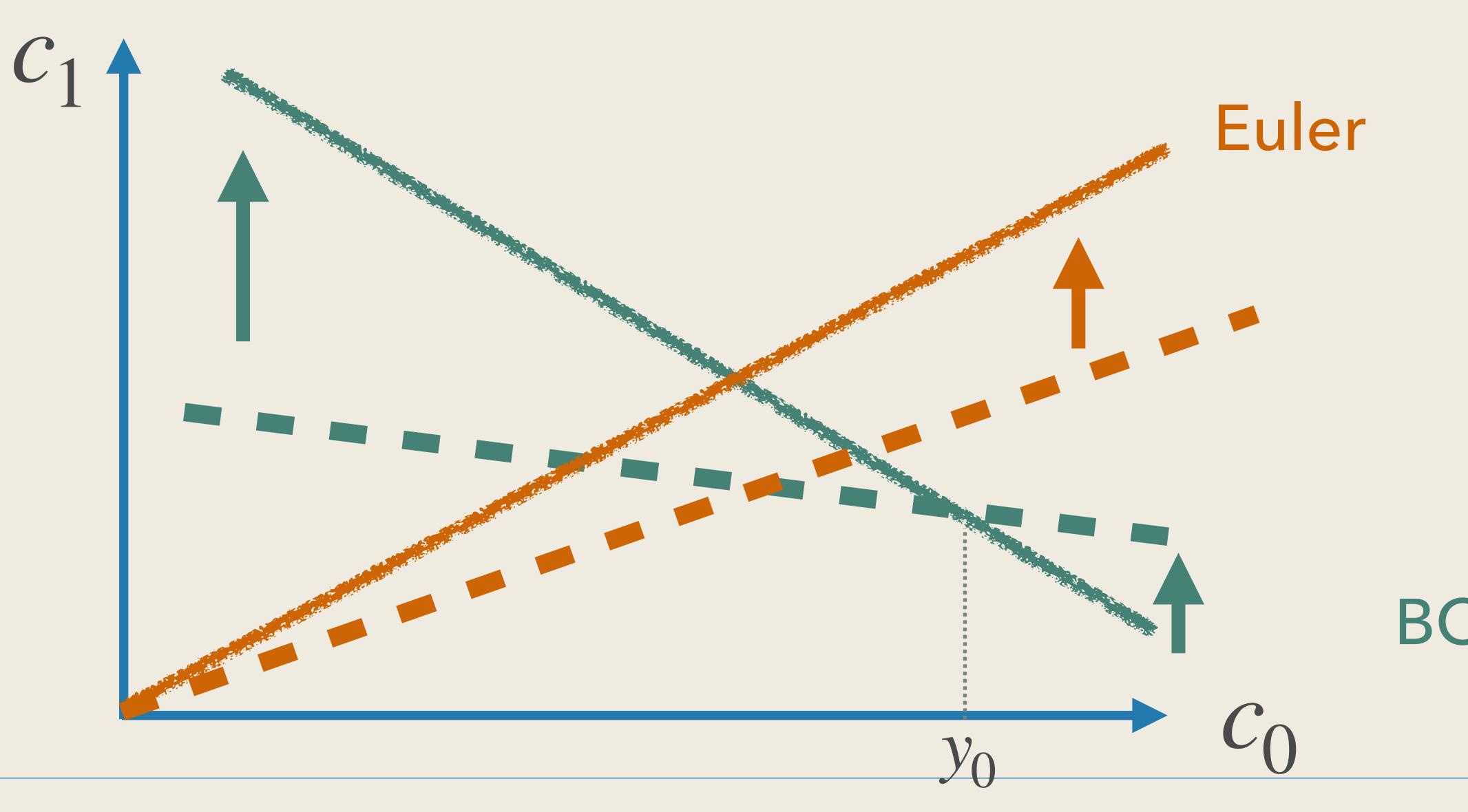


Income Effect of Interest Rate Rise with Large y₀

Euler $c_1 = (\beta(1+r))^{1/\sigma}c_0$



Putting Together when y₀ **Large**



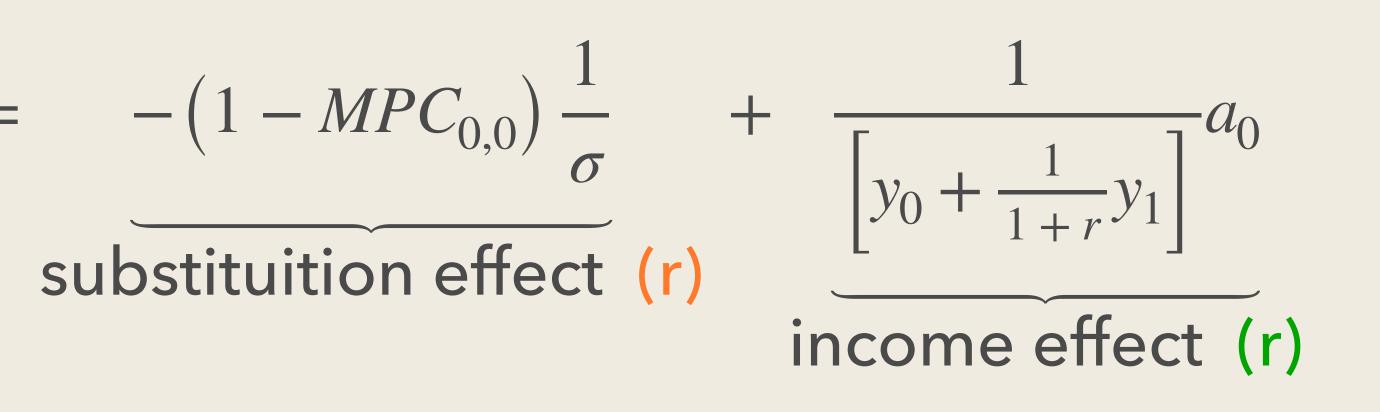
Interest Rate Response

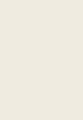
Q3: How does consumption respond to changes in interest rate, r?

$$\frac{\partial \log c_0}{\partial \log(1+r)} = -(1-MP)$$

Substitution effect (always negative): effect through Euler equation

- Higher $r \Rightarrow$ borrow less to consume less today and more tomorrow
- Income effect (ambiguous): effect through budget constraint
 - Higher $r \Rightarrow$ If I am a borrower ($a_0 < 0$), I suffer from higher repayments
 - Higher $r \Rightarrow$ If I am a saver ($a_0 > 0$), I benefit from higher returns
- The net effect is ambiguous!





When Does Higher *r* Lower c_0 ? If a household is a borrower, $a_0 < 0$, then $\frac{\partial c_0}{\partial r} < 0$

- If a household is a saver ($a_0 > 0$), then it depends on
 - 1. Savings, a_0
 - If *a*₀ is high, positive income effective
 - If a_0 is low, positive income effect
 - 2. Curvature of utility σ
 - If σ is low, substitution effect is str
 - If σ is high enough, substitution e
- Higher r tends to stimulate the consumption of people with large savings

t is strong enough
$$\frac{\partial c_0}{\partial r} > 0$$

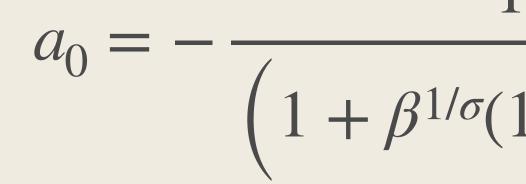
is not strong enough $\frac{\partial c_0}{\partial r} < 0$

Frong enough. So
$$\frac{\partial c_0}{\partial r} < 0$$
.
ffect is weak. So $\frac{\partial c_0}{\partial r} > 0$.

Consumption and Savings with Borrowing Constraints

How Realistic Was Our Model?

- Suppose that $y_0 = 0$ and but y_1 is very large (students!)
- What would they do?



Borrow a lot today

Is this realistic? How much can you borrow?

$$\frac{1}{1+r} \frac{1}{\sigma} \frac{1}{1+r} y_1 \ll 0$$

We impose the borrowing constraint:

Now the problem is

 c_{0}, c_{1}, a_{0}

 $a_0 \geq a$ If the borrowing constraint is not binding, $a_0 > \underline{a}$, then the same solution as before

What if the borrowing constraint binds?

Borrowing Constraint

$a_0 \geq a$

- $\max u(c_0) + \beta u(c_1)$
- s.t. $c_0 + a_0 = y_0$ $c_1 = (1 + r_0)a_0 + y_1$

Consumption with Binding Borrowing Constraint

If the borrowing constraint is binding, $a_0 = a$, we have

Now let us revisit all the questions

- $c_0 = y_0 a$ $c_1 = (1 + r_0)a + y_1$

Q1: Response to Current Income

• Q1: How does consumption respond to an increase in y_0 ?

$$\frac{\partial c_0}{\partial y_0} = 1,$$

- Consume all the increase in temporary income (high MPC)

$$\frac{\partial c_1}{\partial y_0} = 0$$

Binding borrowing constraints imply that households cannot smooth consumption



Q2: Response to Future Income

Q2: How does consumption respond to future income changes?

- Households cannot borrow against future income
- Completely unresponsive to future income changes

- $\frac{\partial c_0}{\partial y_1} = 0$

Effect of Interest Rate

Q3: How does consumption respond to changes in interest rate, r?

- Households are already hitting the borrowing limit
- Cannot make any borrowing adjustment at the margin

$$\frac{\partial c_0}{\partial r} = 0$$

Summary

Q1: How does consumption respond to an increase in y_0 ?

- If unconstrained, c₀ increases less than one-for-one
- If constrained, c₀ increases one-for-one

Q2: How does consumption respond to an increase in y_1 ?

- If unconstrained, c₀ increases
- If constrained, c_0 do not react

Q3: How does consumption respond to an increase in *r*?

- If unconstrained, c_0 may increase or decrease depending on σ and a_0
- If constrained, c_0 do not react

Consumption and Savings with Many Periods

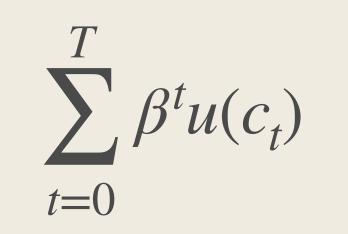
Setup with Many Periods

- Many periods, t = 0, ..., T (years)
- Households preferences are

The budget constraints are

where $a_{-1} = 0$

• The household chooses $\{c_t, a_t\}_{t=0}^T$ to maximize utility subject to budget constraints



 $c_t + a_t = (1 + r_{t-1})a_{t-1} + y_t$

Equilibrium Characterization

As before, we have the Euler equation

$$u'(c_t) = \beta$$

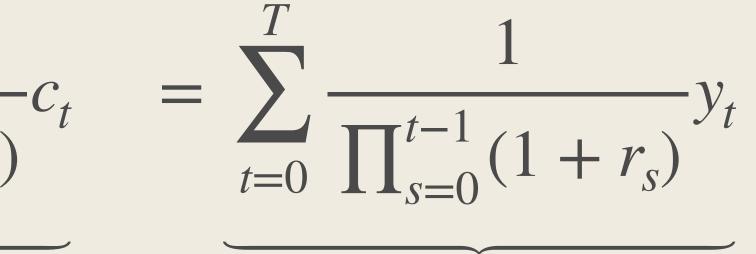
The lifetime budget constraint (after eliminating a_t) is

$$\sum_{t=0}^{T} \frac{1}{\prod_{s=0}^{t-1} (1+r_s)}$$

PDV of consumption PDV of income

• $\{c_t\}_{t=0}^{I}$ are given by the solutions to the above equations

 $S(1 + r_t)u'(c_{t+1})$



Consumption Smoothing

• Assume
$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}$$
, then we obtain a closed-form expression form $c_t = \frac{\prod_{s=0}^{t-1} \left(\beta(1+r_s)\right)^{1/\sigma}}{\sum_{\tau=0}^{T} \frac{\prod_{s=0}^{\tau-1} \left(\beta(1+r_s)\right)^{1/\sigma}}{\prod_{s=0}^{\tau-1} (1+r_s)}} \sum_{\tau=0}^{T} \frac{1}{\prod_{s=0}^{\tau-1} (1+r_s)} y_{\tau}$

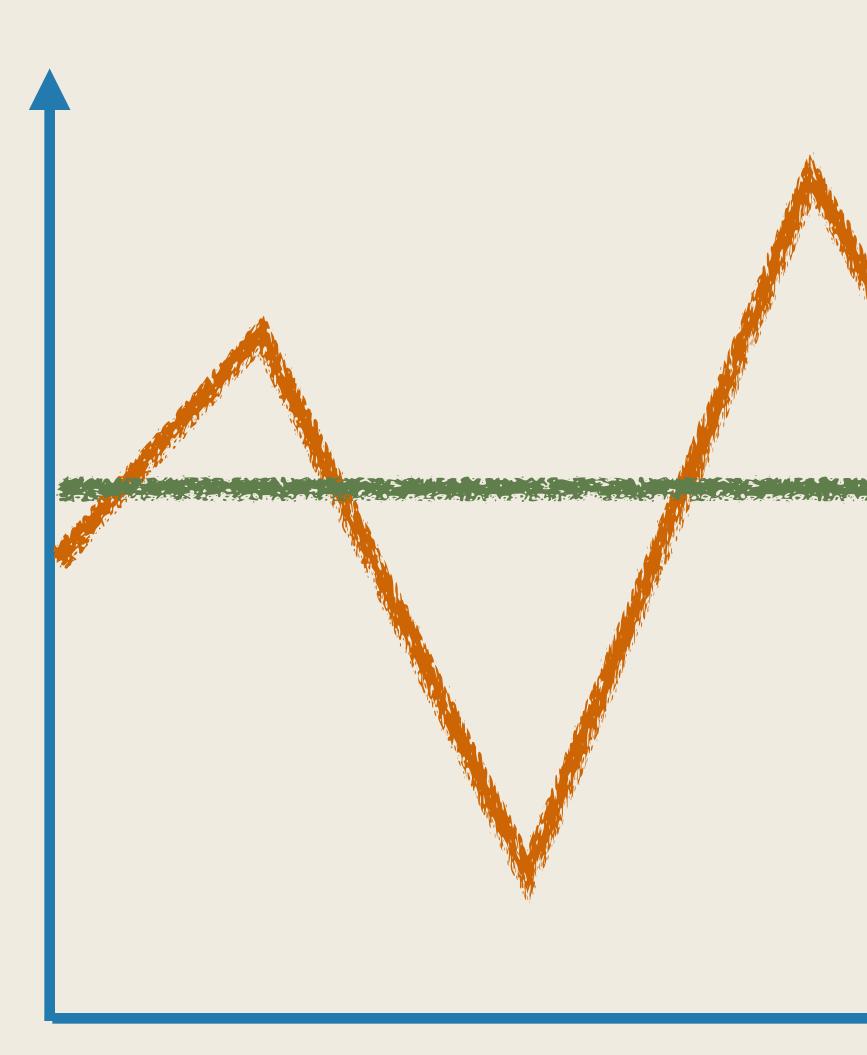
• When $\beta(1 + r_t) = 1$ for all t, it simplifie

for C_t :

$$\frac{1}{1+r)^{\tau}} \sum_{\tau=0}^{T} \frac{1}{(1+r)^{\tau}} y_{\tau}$$

 $\Rightarrow c_t = c$ (perfect consumption smoothing) even when y_t changes over time

Consumption Smoothing

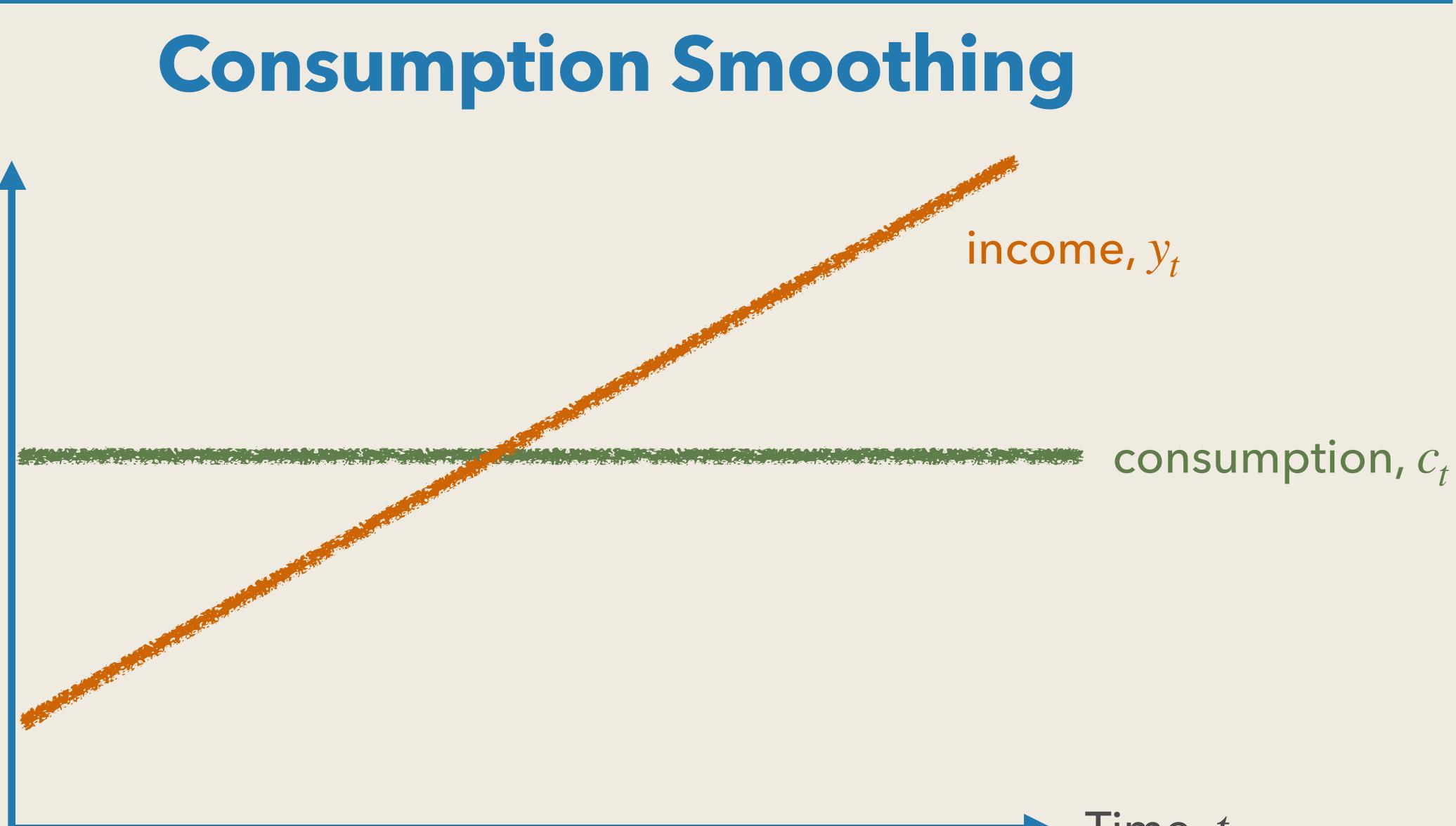


income, y_t

consumption, C_t

CANAL STANDER OF A CANAL STANDER STANDER

SAL TO SAL DE BALCIA



Marginal Propensity to Consume

• How does consumption at t = 0 react if there is an increase in y_0 ?

• With $\beta(1 + r_t) = 1$,

 $\frac{\partial c_0}{\partial y_0} = \frac{r}{1+r}$

Suppose r = 2%, T = 40 years, then

$$\frac{\partial c_0}{\partial y_0} \approx 0.036 \qquad \Rightarrow \text{spend}$$

$$\frac{1}{\left[1 - \left(\frac{1}{1+r}\right)^{T+1}\right]}$$

d 3.6 cents out of \$1 within one year

MPC More Generally

• More generally, response c_t to an increase in y_k is

$$MPC_{t,k} \equiv \frac{\partial c_t}{\partial y_k} = \frac{\prod_{s=0}^{t-1} \prod_{s=0}^{t-1} \sum_{s=0}^{t-1} \sum_{s=0}^{t$$

 $MPC_{t,k}$

crease in y_k is $\frac{-1}{=0} \left(\beta(1+r_s) \right)^{1/\sigma} \qquad 1$ $\frac{\prod_{s=0}^{\tau-1} \left(\beta(1+r_s) \right)^{1/\sigma}}{\prod_{s=0}^{\tau-1} (1+r_s)} \prod_{s=0}^{k-1} (1+r_s)$

k = 1 k = 2 k = 3 k = 3

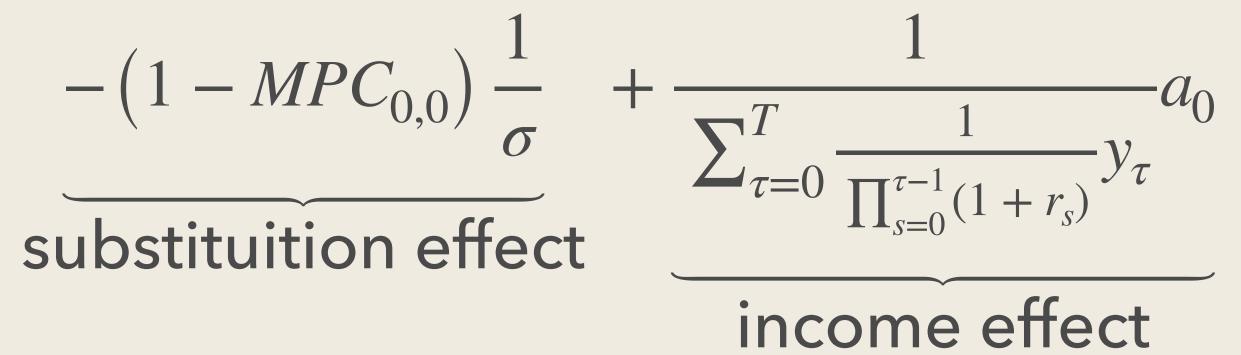
Consumption Response to Interest Rate

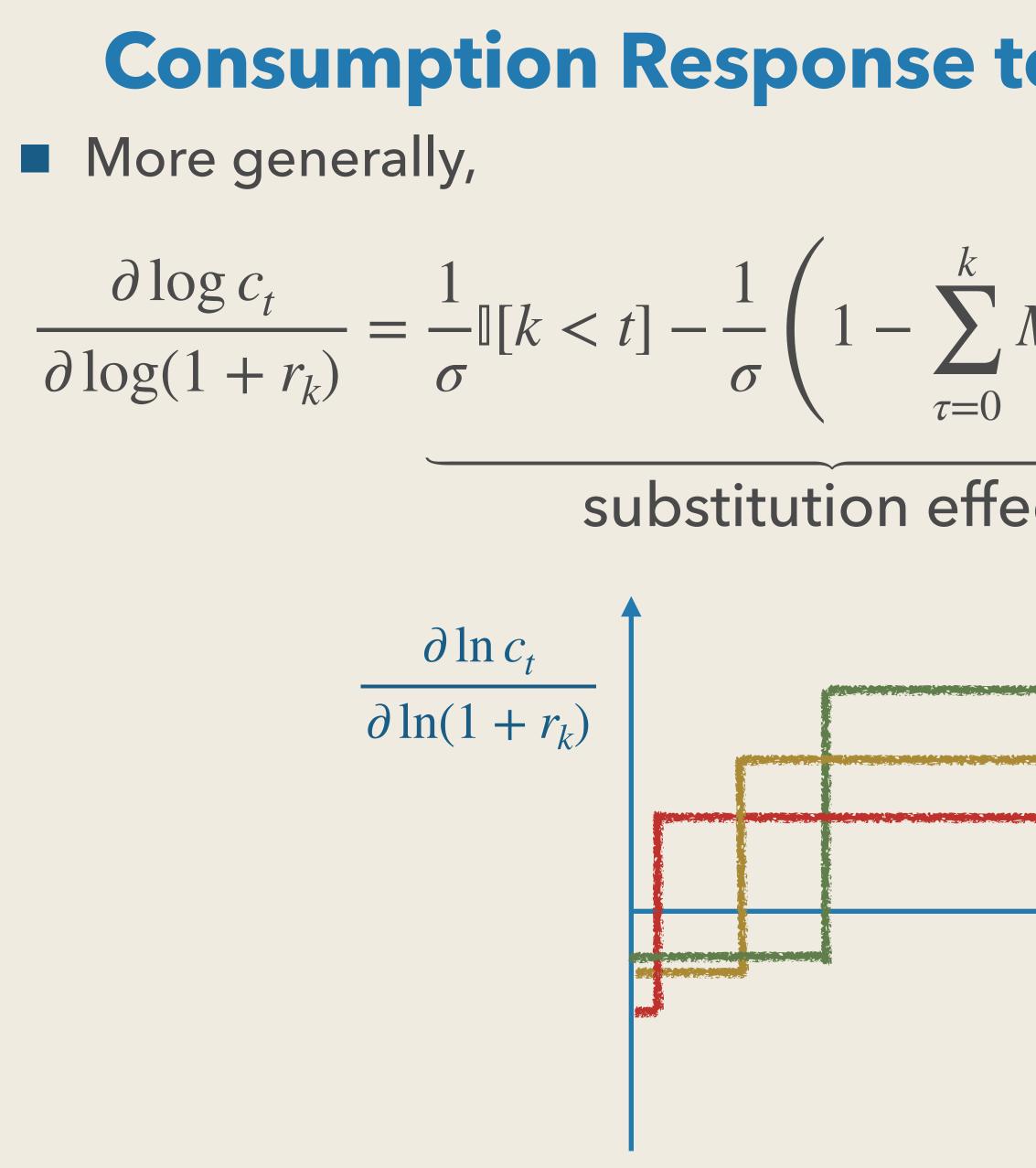
• How does consumption at t = 0 react if there is an increase in r_0 ?

$$\frac{\partial \ln c_0}{\partial \ln(1+r_0)} = -(1 - MP)$$

Once again:

- 1. substitution effect is always negative
- 2. income effect is
 - negative if borrower at t = 0 ($a_0 < 0$)
 - positive if saver at t = 0 ($a_0 > 0$)



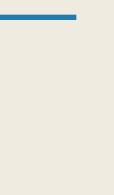


Consumption Response to Interest Rate: General Case

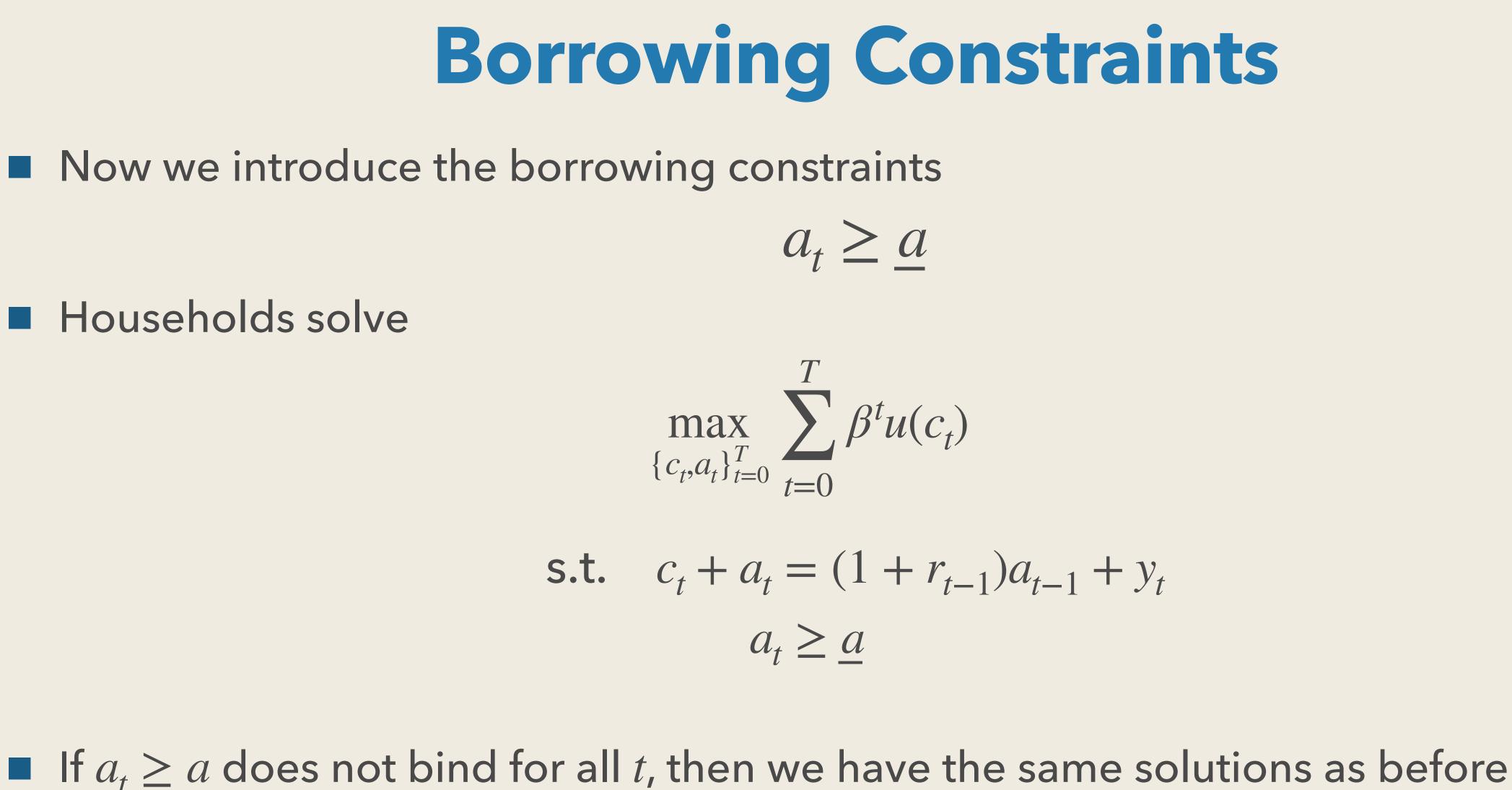
$$MPC_{\tau,\tau} + \frac{1}{\sum_{\tau=0}^{T} \frac{1}{\prod_{s=0}^{\tau-1} (1+r_s)} y_{\tau}} \frac{1}{\prod_{\tau=0}^{k} (1+r_{\tau})} a_{\tau=0}^{k}$$

income effect

	<i>k</i> = 3
n de la compañía de l	<i>k</i> = 2
	<i>k</i> = 1
	. +



Consumption and Savings with Many Periods ... and Borrowing Constraints



• What if $a_t \ge a$ binds at some time T^* ?

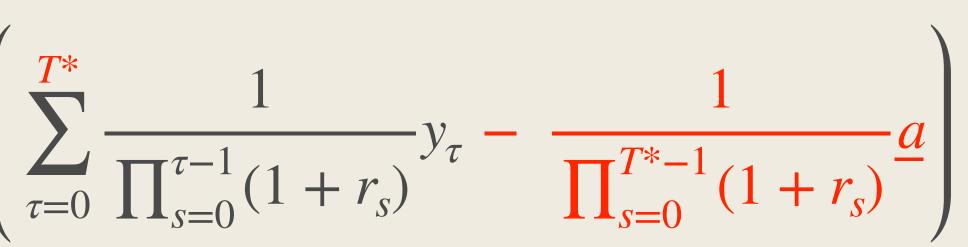
Binding Borrowing Constraint

If $a_{T^*} = \underline{a}$, then $\{c_t, a_t\}_{t=0}^{T^*}$ do not influence $\{c_t, a_t\}_{t=T^*+1}^{T}$

- At $t = T^*$, you have to start from $a_{t-1} = \underline{a}$ anyway
- Therefore $\{c_t, a_t\}_{t=0}^{T*}$ solve
- $\max_{\substack{\{c_t,a_t\}_{t=0}^{T^*} t=0}} \sum_{t=0}^{T^*} \beta^t u(c_t)$
- s.t. $c_t + a_t = (1 + r_{t-1})a_{t-1} + y_t$
 - $a_{T^*} = a$

Effective time horizon is shorter:

$$c_{t} = \frac{\prod_{s=0}^{t-1} \left(\beta(1+r_{s})\right)^{1/\sigma}}{\sum_{\tau=0}^{T^{*}} \frac{\prod_{s=0}^{\tau-1} \left(\beta(1+r_{s})\right)^{1/\sigma}}{\prod_{s=0}^{\tau-1} (1+r_{s})} \left(\frac{1}{1+r_{s}}\right)^{1/\sigma}}$$



MPC with Borrowing Constraint • With $\beta(1 + r_t) = 1$, it simplifies to $c_t = \frac{1}{\sum_{\tau=0}^{T^*} \frac{1}{(1 + r)^{\tau}}}$

 $MPC_{0,0} = \frac{\partial c_0}{\partial y_0} = -\frac{\partial c_0}{\partial y_0}$

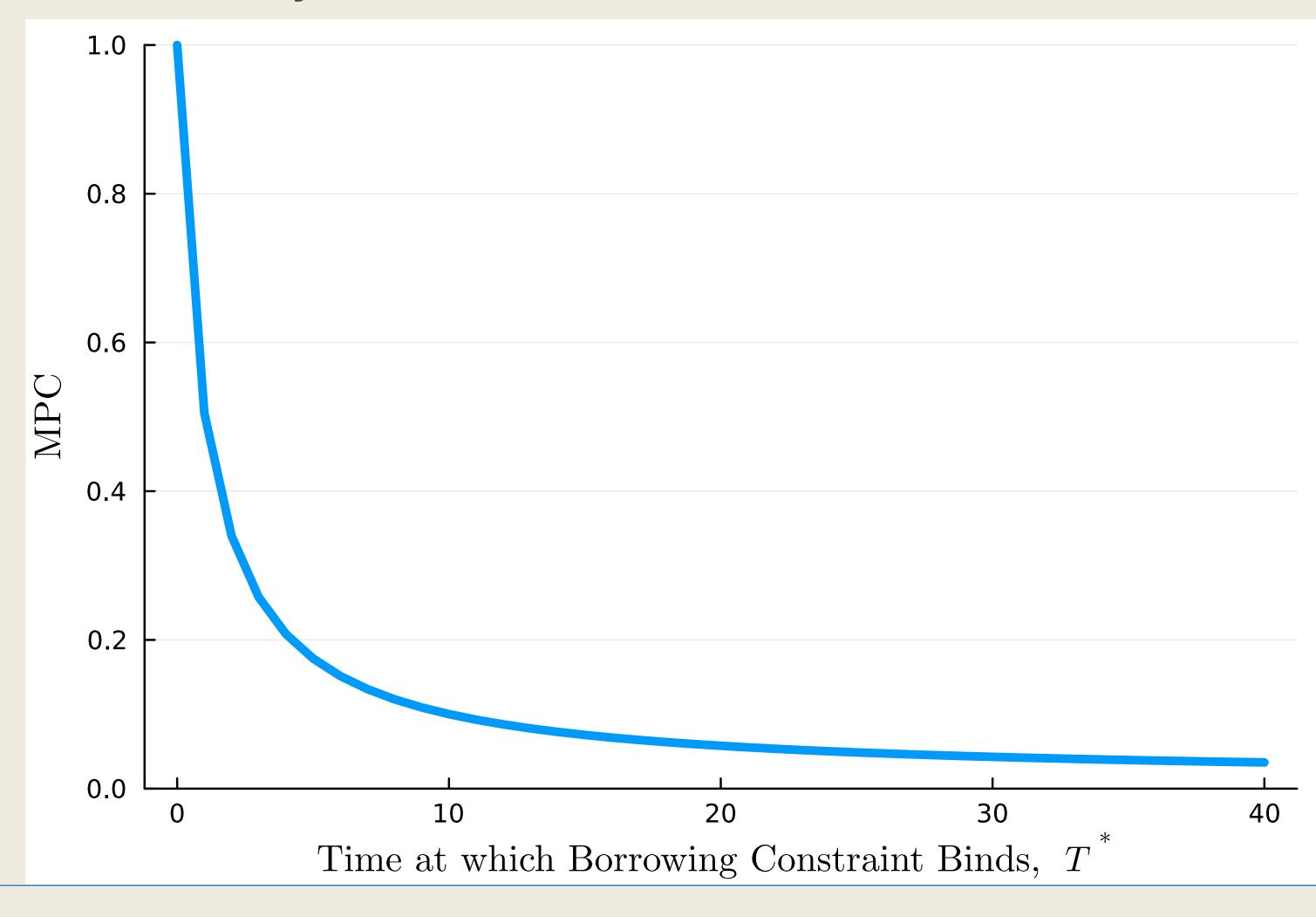
MPC can be very large if the borrowing constraint binds in the near future In fact, if $T^* = 0$, $MPC_{0,0} = 1!$

$$\left(\sum_{\tau=0}^{T^*} \frac{1}{(1+r)^{\tau}} y_{\tau} + \frac{1}{(1+r)^{T^*}} y_{\tau}\right)$$

$$\frac{r}{1+r} \begin{bmatrix} 1\\ 1-\left(\frac{1}{1+r}\right)^{T^*+1} \end{bmatrix}$$

MPC Increases as T* **Gets Closer to Today**

• Assume r = 2% and vary T^*

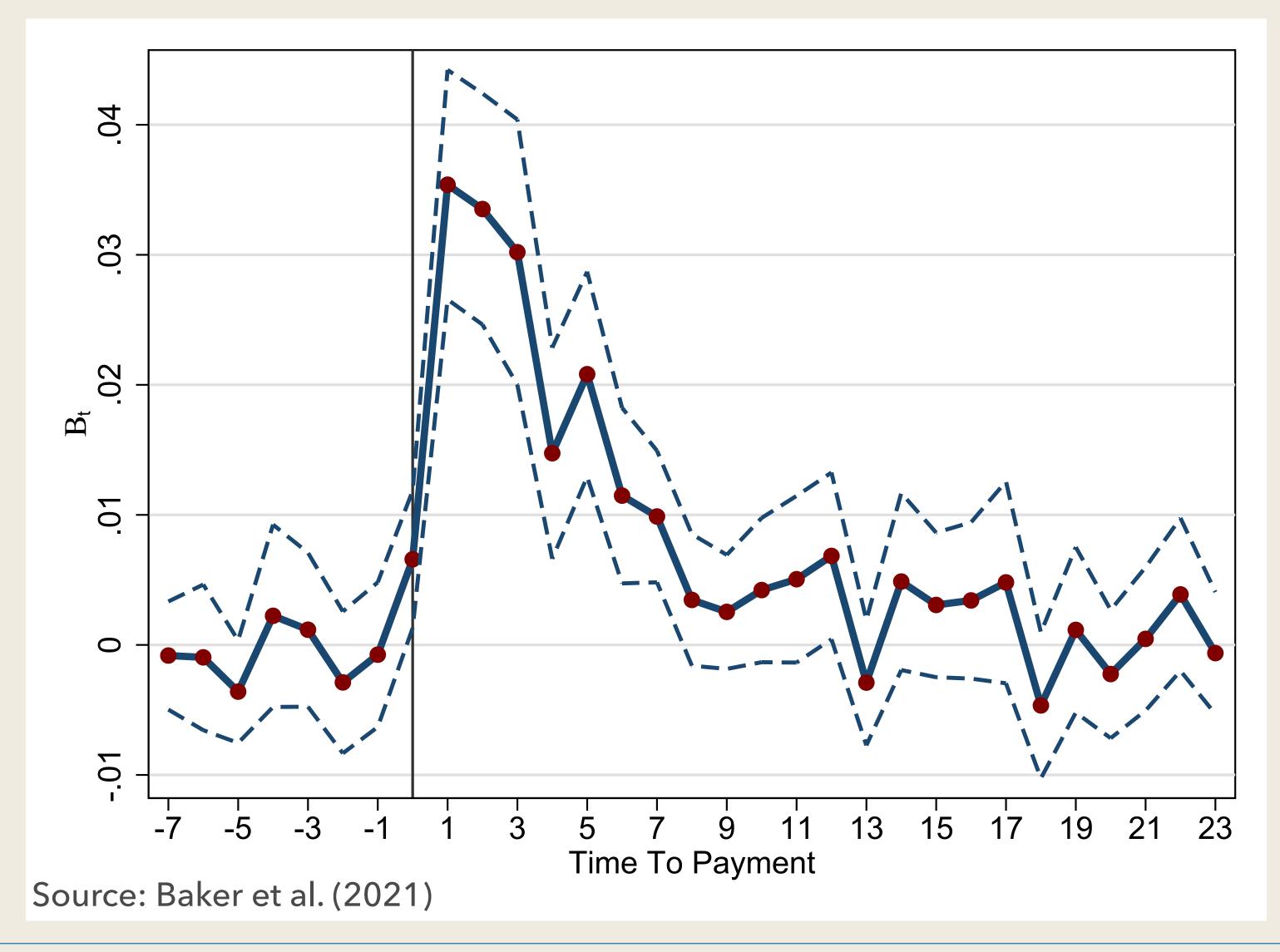


Marginal Propensity to Consume in the Data

– Baker, Farrokhnia, Meyer, Pagel, & Yannelis (2021)

MPC in the Data

- How large is the MPC in the data?
- 2020 CARES Act:
 - Directed cash transfers to households
 - \$1,200 per adult and an additional \$500 per child under the age of 17
- How much did households spend in response to the transfers?
- Compare households who received the transfer to those who haven't
- Use transaction-level data from a financial app (SaverLife)



MPC at Different Horizons

	(1)	(2)	(2)	(1)	(5)
	(1)	(2)	(3)	(4)	(5)
	Total	Total	Total	Total	Total
1-Week MPC	0.140***				
	(0.0124)				
2-Week MPC		0.190***			
		(0.0171)			
1-Month MPC			0.219***		
			(0.0254)		
2-Month MPC				0.286***	
				(0.0490)	
3-Month MPC					0.265**
					(0.0757
Date FE	Χ	Χ	X	Χ	Χ
Individual FE	X	X	X	X	X
Observations	523208	523208	523208	523208	523208
R^2	0.200	0.200	0.199	0.199	0.199

Source: Baker et al. (2021)

What Do High MPCs Mean?

- MPCs are high \approx 25-30% over three months
- Recall a model without borrowing constraint suggests MPC of 3% over a year
- This suggests many households are borrowing constrained
- Are they really constrained?

Are Households Borrowing Constrained?

Earnings plus benefits (age 22-59)

Net worth

Source: Kaplan and Violante (2014)

Median	Mean	Fraction	Return
(\$2001)	(\$2001)	Positive	(%)
41,000	52,745		

62,442 150,411 0.90 1.67

Are Households Borrowing Constrained?

Earnings plus benefits (age 22-59)

Net worth

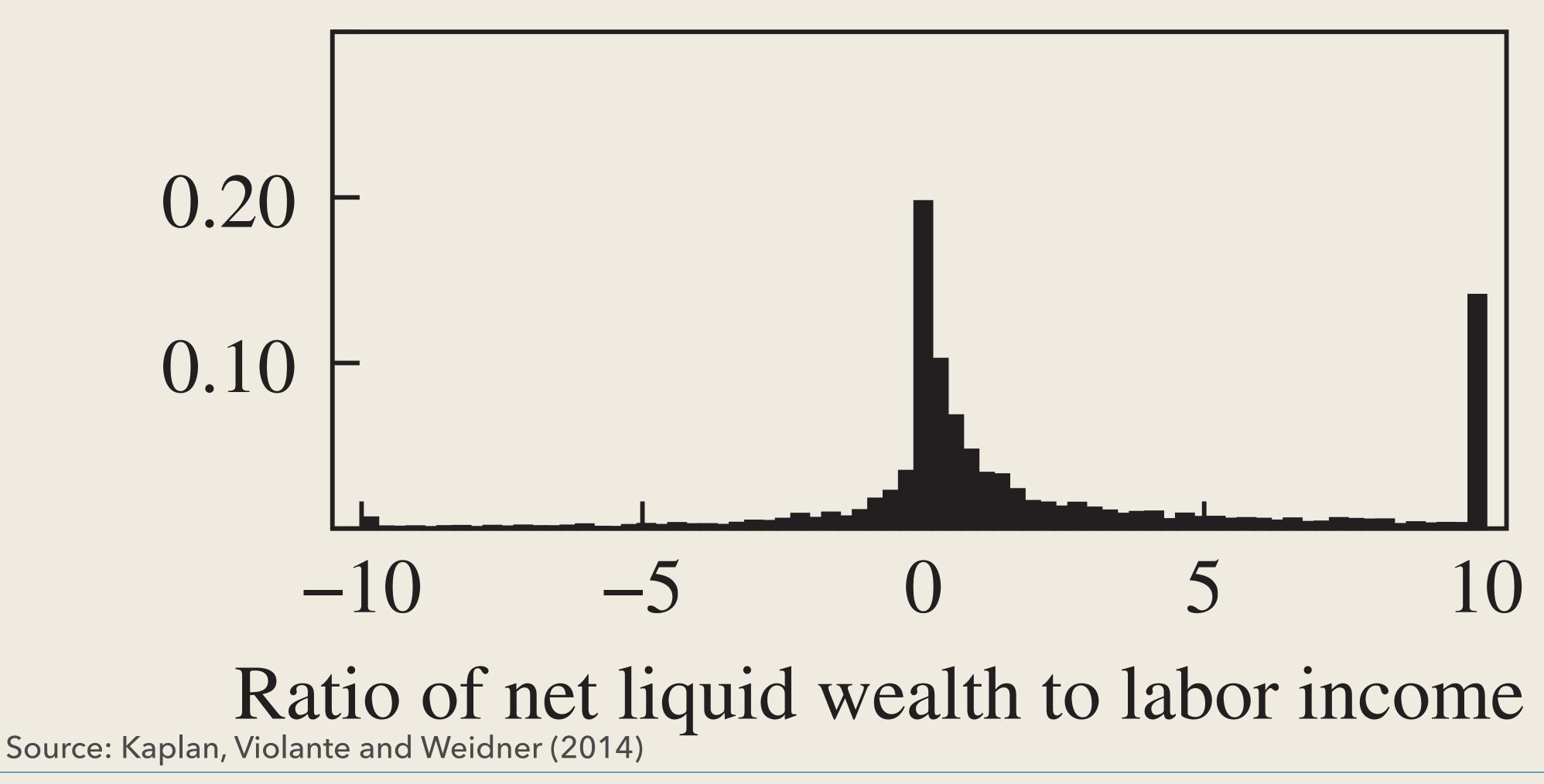
Net liquid wealth Cash, checking, saving, MM accounts Directly held stocks, bonds, T-Bills Revolving credit card debt

Net illiquid wealth Housing net of mortgages Retirement accounts Life insurance Certificates of deposit Saving bonds

Source: Kaplan and Violante (2014)

	Median	Mean	Fraction	Return
	(\$2001)	(\$2001)	Positive	(%)
	41,000	52,745		
	$62,\!442$	$150,\!411$	0.90	1.67
	$2,\!629$	$31,\!001$	0.77	-1.48
\mathbf{S}	$2,\!858$	$12,\!642$	0.92	-2.2
\mathbf{S}	0	$19,\!920$	0.29	1.7
t	0	1,575	0.41	
	$54,\!600$	$119,\!409$	0.93	2.29
\mathbf{S}	$31,\!000$	$72,\!592$	0.68	2.0
\mathbf{S}	950	$34,\!455$	0.53	3.5
е	0	$7,\!740$	0.27	0.1
t	0	$3,\!807$	0.14	0.9
\mathbf{S}	0	815	0.17	0.1

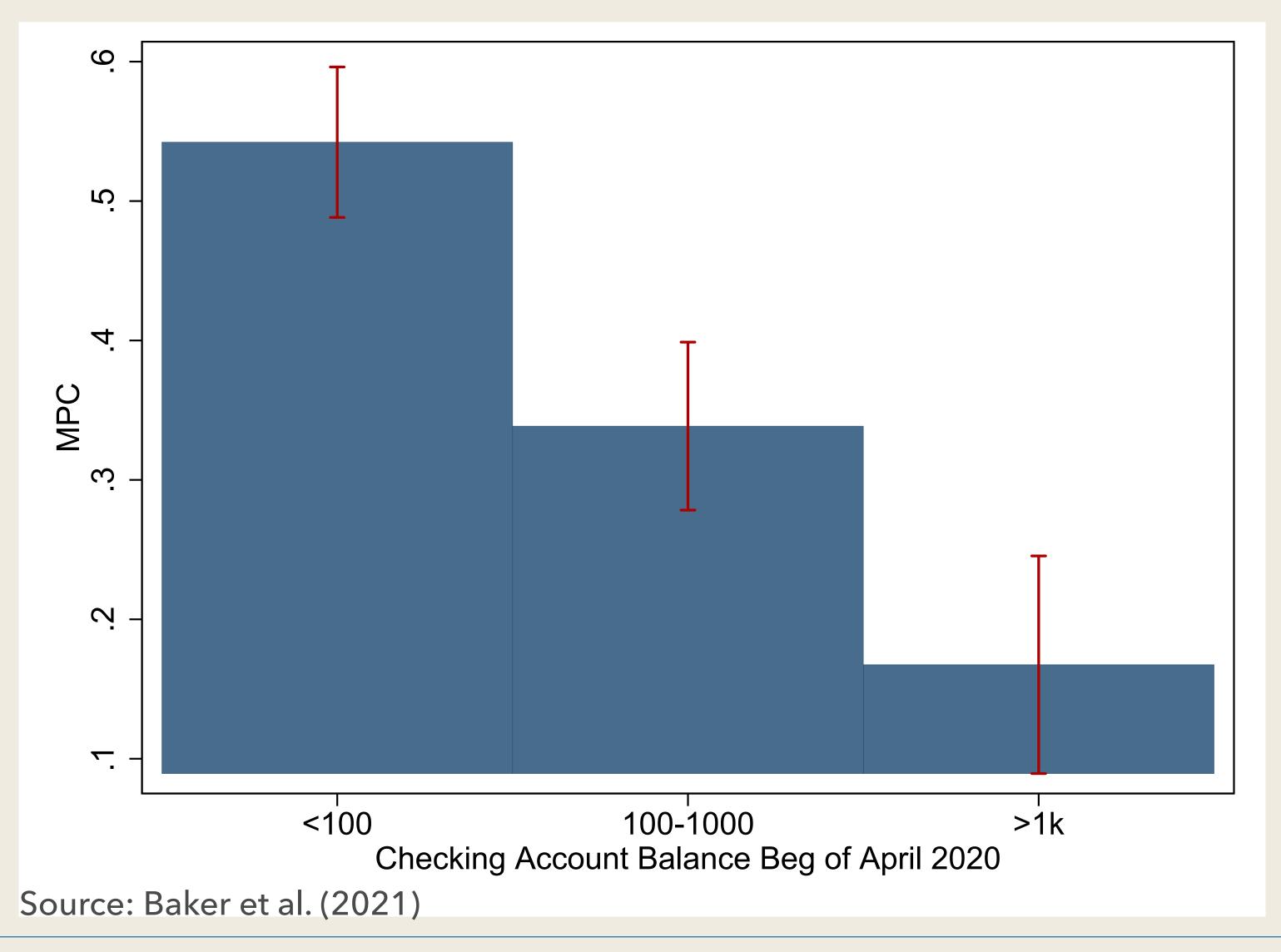
Distribution of Liquid Assets Fraction of households



- The majority of households do appear to have enough net worth
 - At first, they do not seem to be borrowing constrained
- Yet, a large fraction of net worth consists of illiquid assets
 - Housing, retirement account
 - It's not easy to sell these assets (illiquid)
- The majority of households hold little liquid assets
 - cash, checking/deposit accounts
- Households do appear to have little a_t that they can easily transact

Liquidity Constrained

MPC by Liquidity



Uncertainty and Consumption: Theory

- So far, everything is deterministic
- Households perfectly anticipate what their future income y_1 is going to be In reality, households face a large uncertainty in future income
- How does uncertainty affect consumption?

- Consider two-period model without borrowing constraint
- At period 1, households can be high- or low-income
- Suppose now

$$y_1 = \begin{cases} y_1^h = \bar{y}_1 \\ y_1^l = \bar{y}_1 \end{cases}$$

- The mean is $\mathbb{E}y_1 = \bar{y}_1$
- When $\epsilon = 0$, we go back to the deterministic model

- + ϵ with prob 1/2
- $-\epsilon$ with prob 1/2

Preferences and Budget Constraints

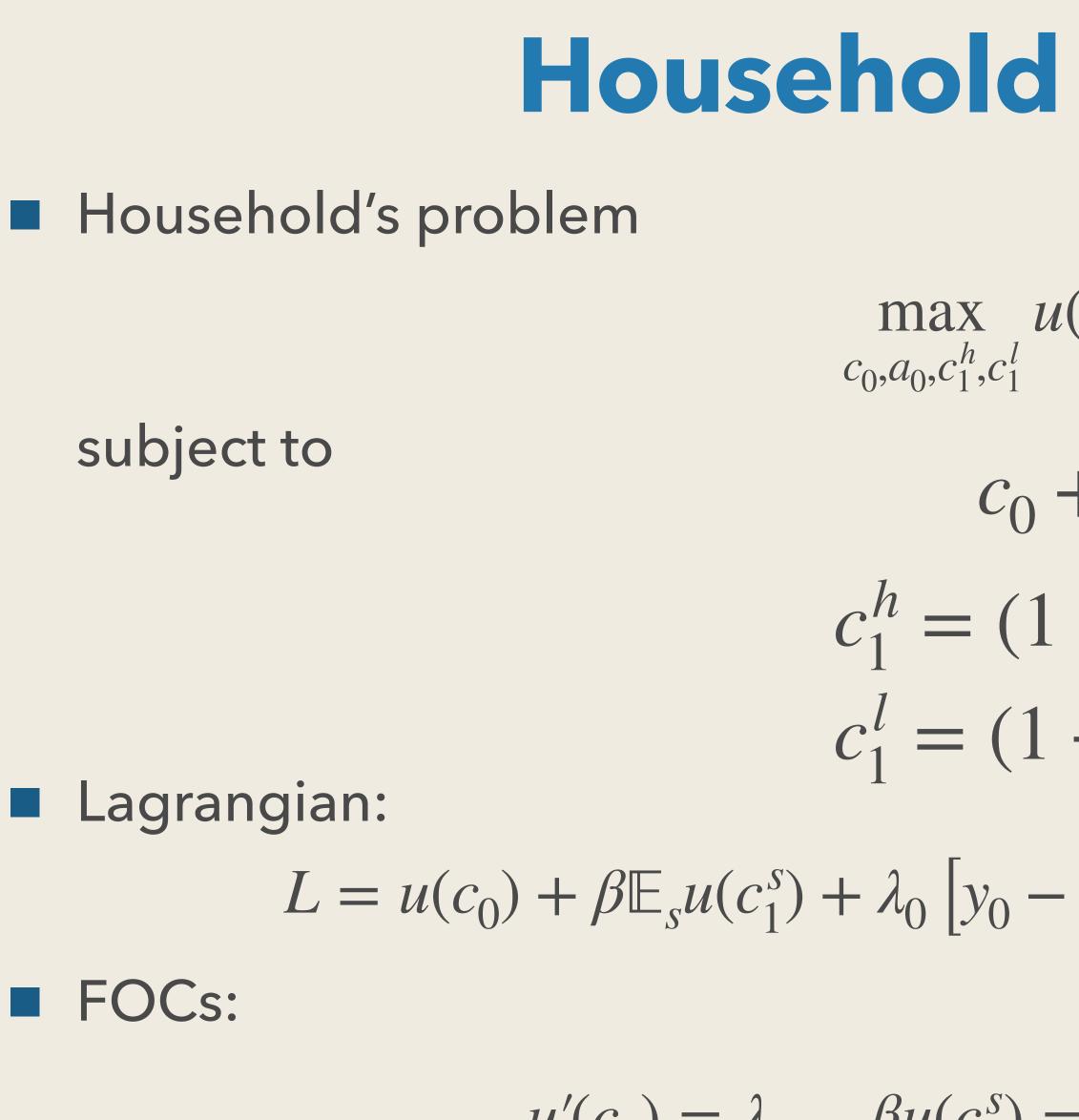
Household's preferences are

where $\mathbb{E}_{s}u(c_{2}^{s}) = \frac{1}{2}u(c_{2}^{h}) + \frac{1}{2}u(c_{2}^{l})$

- More generally define $\mathbb{E}_{s}x^{s} = \sum_{s} \pi^{s}x^{s}$, where π^{s} is Probability of s happening
- Now budget the budget constraints are

$u(c_1) + \beta \mathbb{E}_{s} u(c_2)$

 $c_0 + a_0 = y_0$ $c_1^h = (1+r)a_0 + y_1^h$ $c_1^l = (1 + r)a_0 + y_1^l$



Household Optimization

$\max_{c_0, a_0, c_1^h, c_1^l} u(c_0) + \beta \mathbb{E}_s u(c_1^s)$

- $c_0 + a_0 = y_0$ $c_1^h = (1 + r)a_0 + y_1^h$ $c_1^l = (1 + r)a_0 + y_1^l$
- $L = u(c_0) + \beta \mathbb{E}_s u(c_1^s) + \lambda_0 \left[y_0 c_0 a_0 \right] + \mathbb{E}_s \lambda_1^s \left[y_1^s + (1+r)a_0 c_1^s \right]$

 $u'(c_0) = \lambda_0, \quad \beta u(c_1^s) = \lambda_1^s, \quad \lambda_0 = \beta(1+r)\mathbb{E}_s \lambda_1^s$

Euler Equation with Uncertainty Combining previous FOCs give

 $u'(c_0) = \beta($

Now RHS, the marginal benefit of saving, reflects uncertainty in c_1^s

Substituting budget constraints, {c₀, a₀} jointly solve

$u'(c_0) = \beta(1+r)\mathbb{E}_s u$

 $c_0 + a_0 = y_0$ • (Euler) gives an increasing relationship between c_0 and a_0

(BC) gives a decreasing relationship between c_0 and a_0

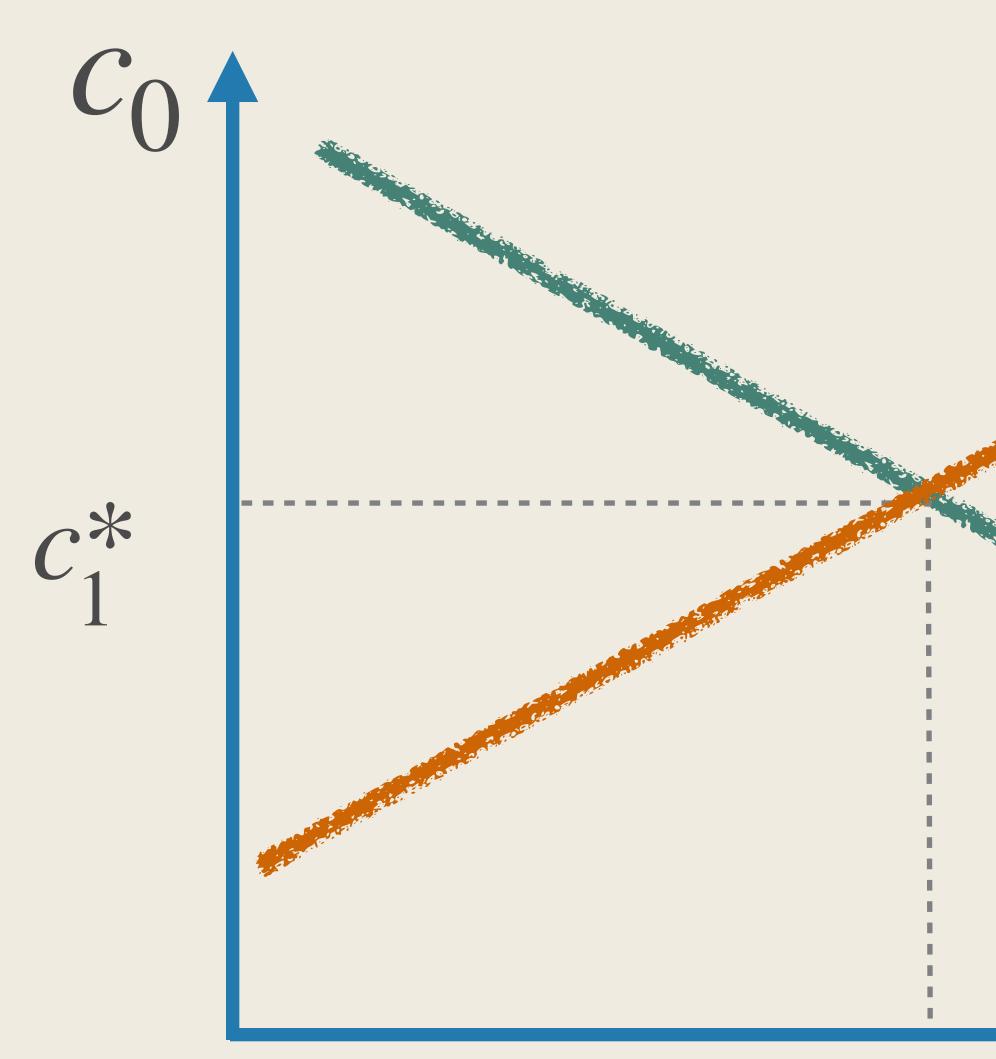
$$1 + r) \mathbb{E}_{s} u'(c_1^s)$$

$$u'((1+r)a_0+y_1^s)$$

(BC)

67

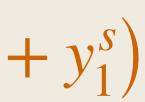
Optimal Consumption



Euler

 $u'(c_0) = \beta(1+r)\mathbb{E}_s u'((1+r)a_0 + y_1^s)$

$c_0 = y_0 - a_0$

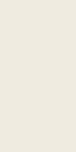


An Increase in Uncertainty

- Now suppose that uncertainty increases
- We capture this through an increase in ϵ
 - Note that it leaves the mean of future income unchanged • Only changes the variance of future income
- This wouldn't affect (BC)
- How does it affect (Euler)?

$$u'(c_0) = \beta(1+r) \mathbb{E}$$

 $((1 + r)a_0 + y_1^s)$ $\mathbb{E}_{s}u'(c_{1}^{s})$



Constant Marginal Utility

$u'(c_1)$

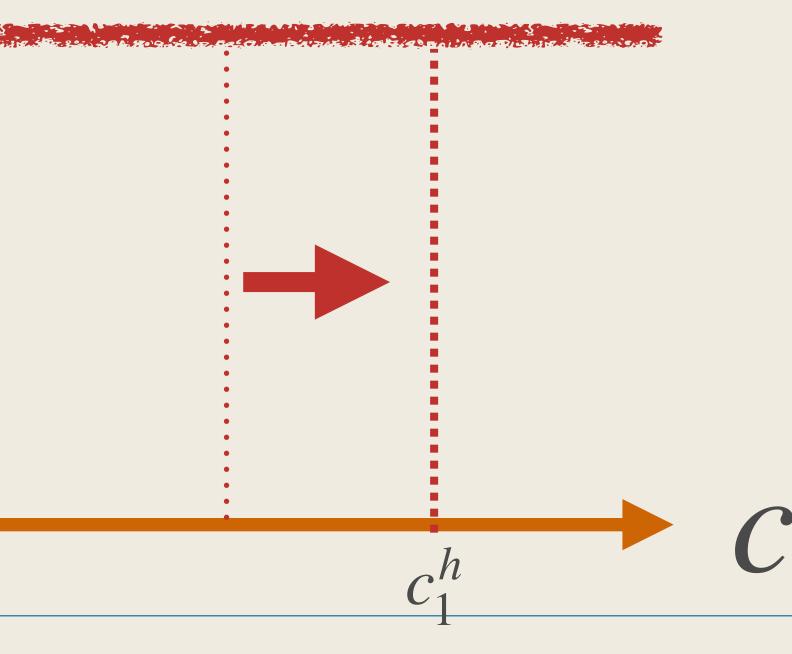
 $\mathbb{E}_{s}u'(c_{1}^{s})$

 $c_1^l = (1+r)a_0 + y_1^l$ $c_1^h = (1+r)a_0 + y_1^h$

Constant Marginal Utility: An Increase in Uncertainty

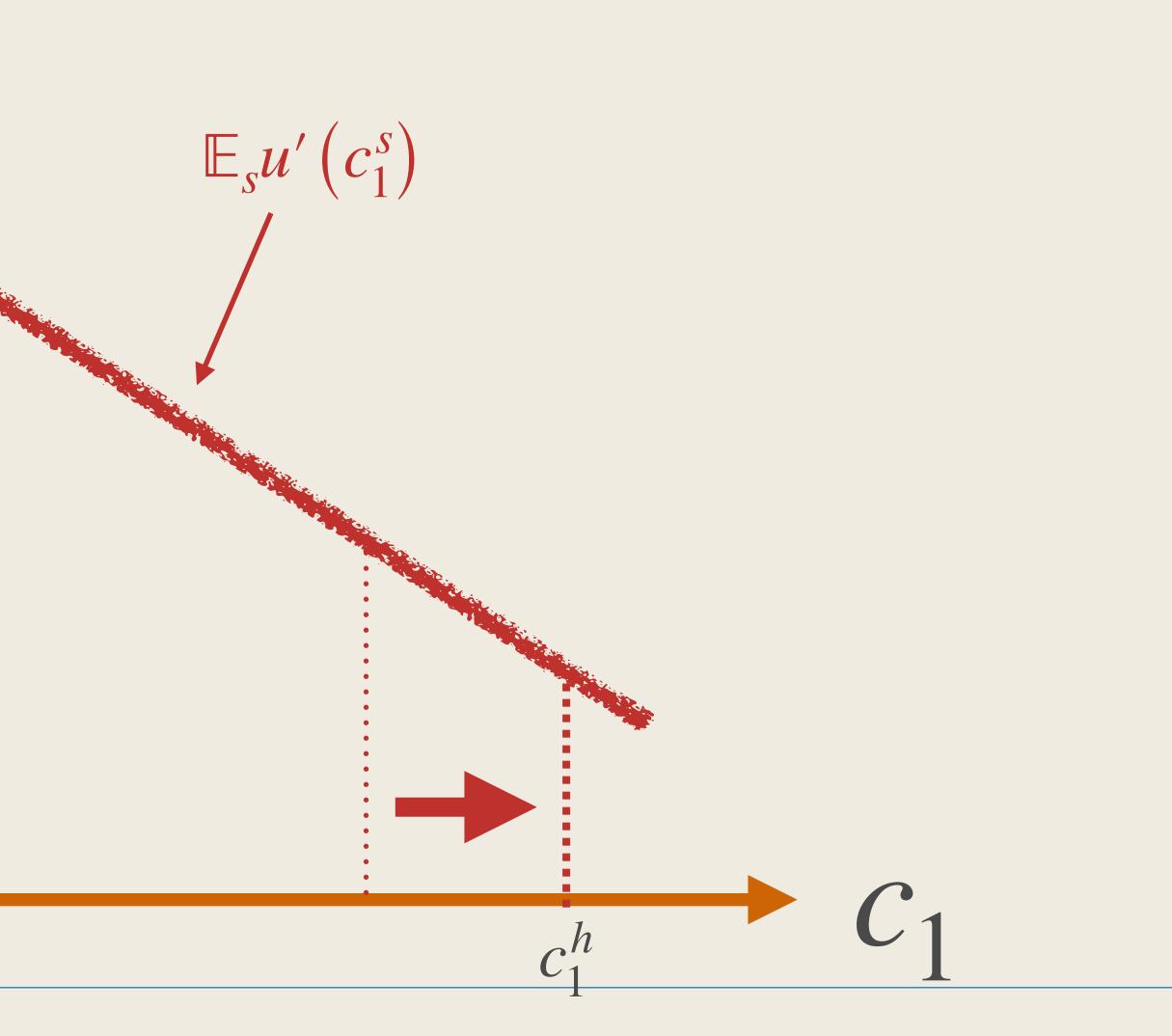
 $u'(c_1)$

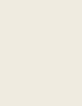
 $\mathbb{E}_{s}u'(c_{1}^{s})$



Linear Marginal Utility

$u'(c_1)$

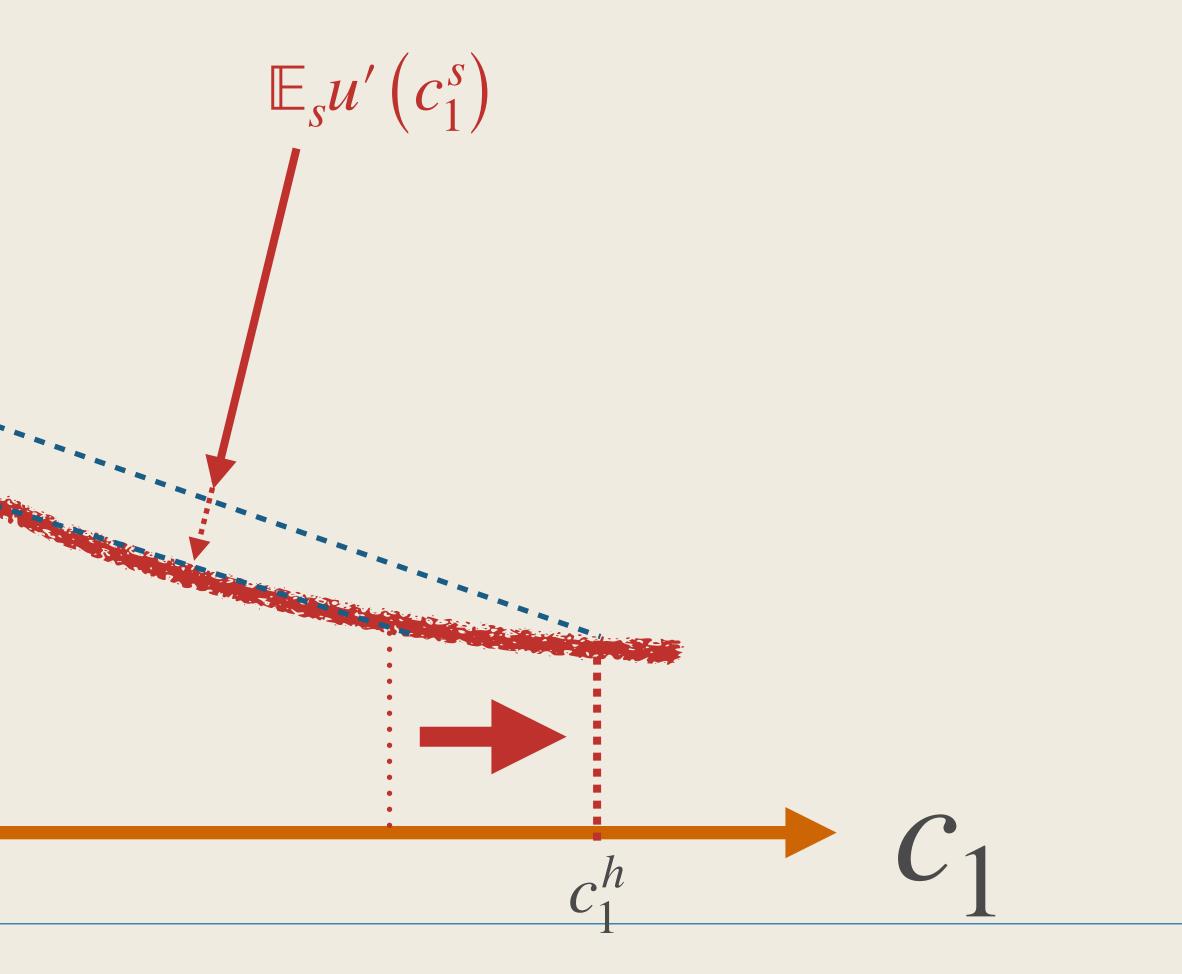




72

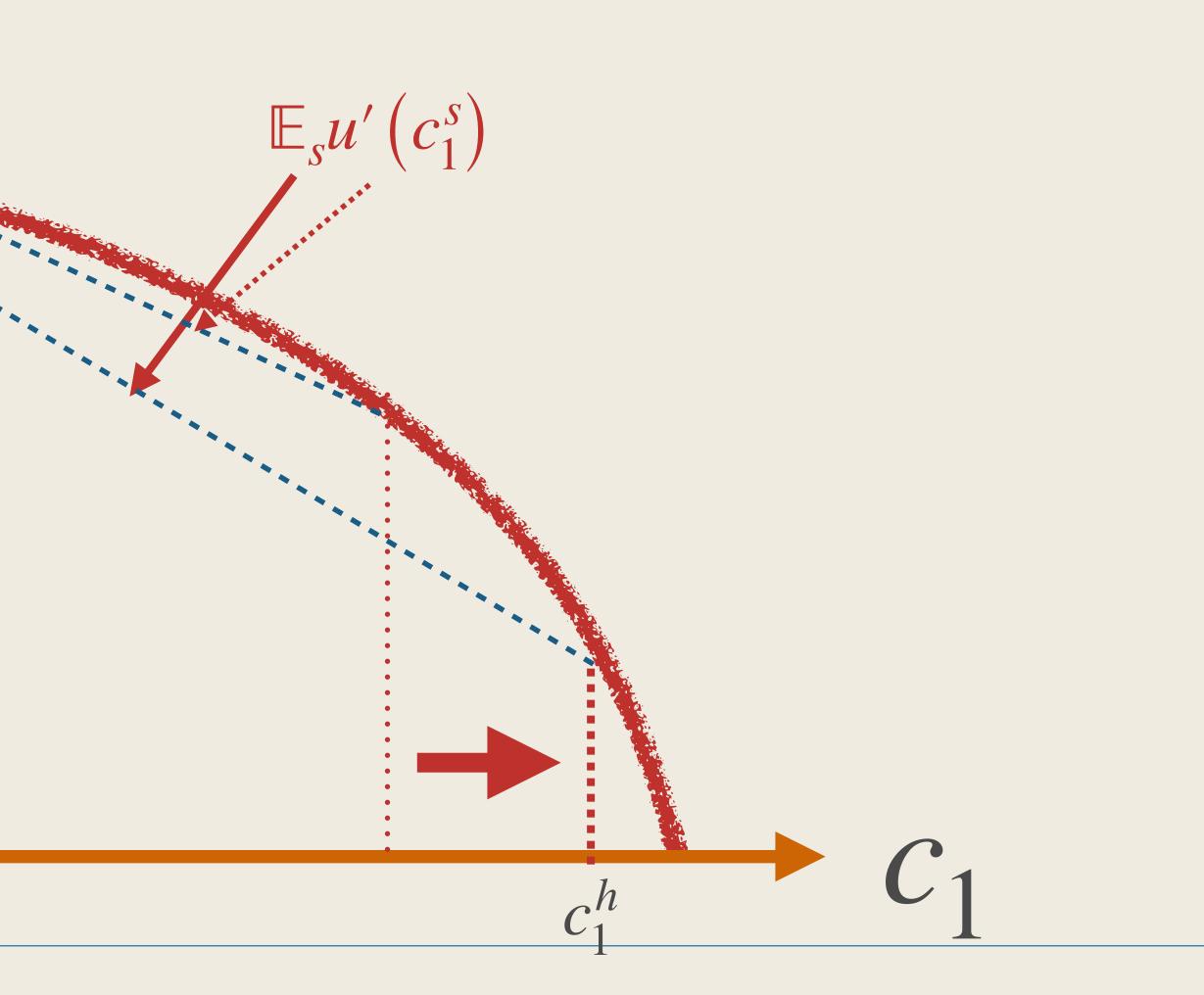
Convex Marginal Utility

$u'(c_1)$



$u'(c_1)$

Concave Marginal Utility



Concave or Convex u'(c)?

Jensen's inequality:

1. If u'(c) is linear, $\mathbb{E}_{s}u'(c_{1}^{s})$ is unchanged with an increase in ϵ

2. If u'(c) is convex, $\mathbb{E}_{s}u'(c_{1}^{s})$ increases with an increase in ϵ

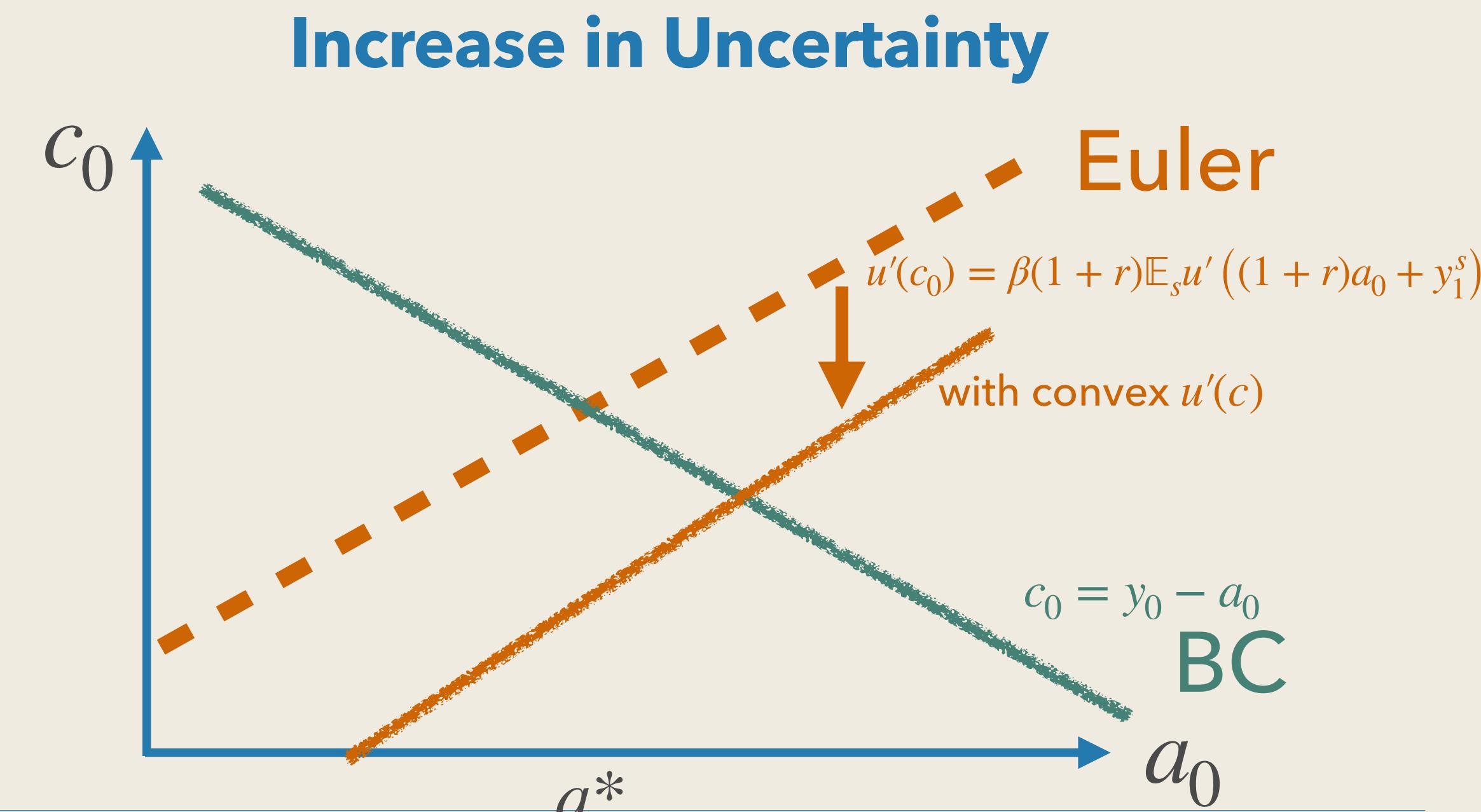
3. If u'(c) is concave, $\mathbb{E}_{s}u'(c_{1}^{s})$ increases with an increase in ϵ

• What happens when $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$?

• $u'(c) = c^{-\sigma} \Rightarrow u'(c)$ is convex!

- In fact, for most utility functions we use, u'(c) is convex
- This is not a coincidence. There is a natural reason why we expect convex u'(c)
- If u'(c) were globally concave, u'(c) needs to be negative at some point
 ... but that means u(c) is decreasing

ed with an increase in ϵ with an increase in ϵ s with an increase in ϵ



- We call it precautionary savings
- Do we have evidence for it?

Precautionary Savings

Therefore, an increase in uncertainty lowers consumption and increases savings

Uncertainty and Consumption: Evidence

– Coibion, Georgarakos, Gorodnichenko, Kenny, Weber (2021)

Randomized Controlled Trials

- Survey 10,000 European households (Aug 2020 Jan 2021)
- Elicit their subjective (macro) uncertainty:

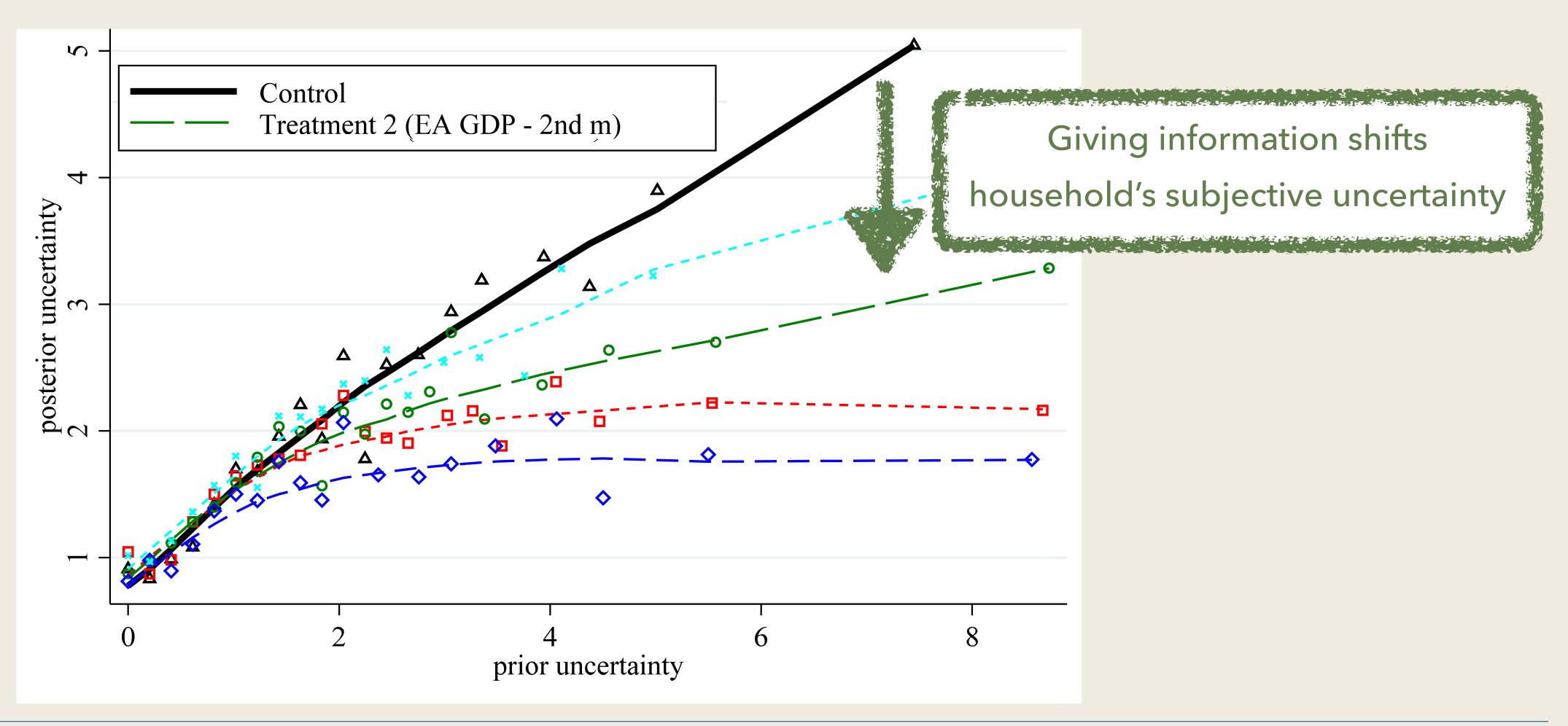
"Please give your best guess about the lowest growth rate (your prediction for the most pessimistic scenario for the euro area growth rate over the next 12 months) and the highest growth rate (your most optimistic prediction)."

Give the following information to a random subset of households:

"Professional forecasters are uncertain about economic growth in the euro area in 2021, with the difference between the most optimistic and the most pessimistic predictions being 4.8 percentage points. By historical standards, this is a big difference."

RCT Shifts Perceived Uncertainty

Now ask about their subjective uncertainty again:



Uncertainty Reduces Consumption

Consumption Response to Changes in Perceived Uncertainty

	One month after treatment	Four months after treatment		
	(October 2020)	(January 2021)		
	(1)	(2)		
Posterior: mean	-0.82	-0.26		
	(0.52)	(0.49)		
Posterior: uncertainty	-4.61**	-4.51**		
	(2.23)	(2.25)		

1 p.p. increase in (perceived) standard deviation of GDP growth reduces consumption by 4.5% even after several months

Macro Uncertainty ⇒ Micro Uncertainty

Posterior: mean

Posterior: uncertainty

Perceived uncertainty about their own future income increases with macro uncertainty

Uncertainty about personal income growth						
One month	Two months after	Three months				
after treatment	treatment	after treatment				
(October 2020)	(November 2020)	(December 2020)				
(1)	(2)	(3)				
0.00	-0.01	-0.01				
(0.01) 0.07**	(0.01)	(0.01)				
0.07**	0.11***	0.04				
(0.04)	(0.04)	(0.04)				

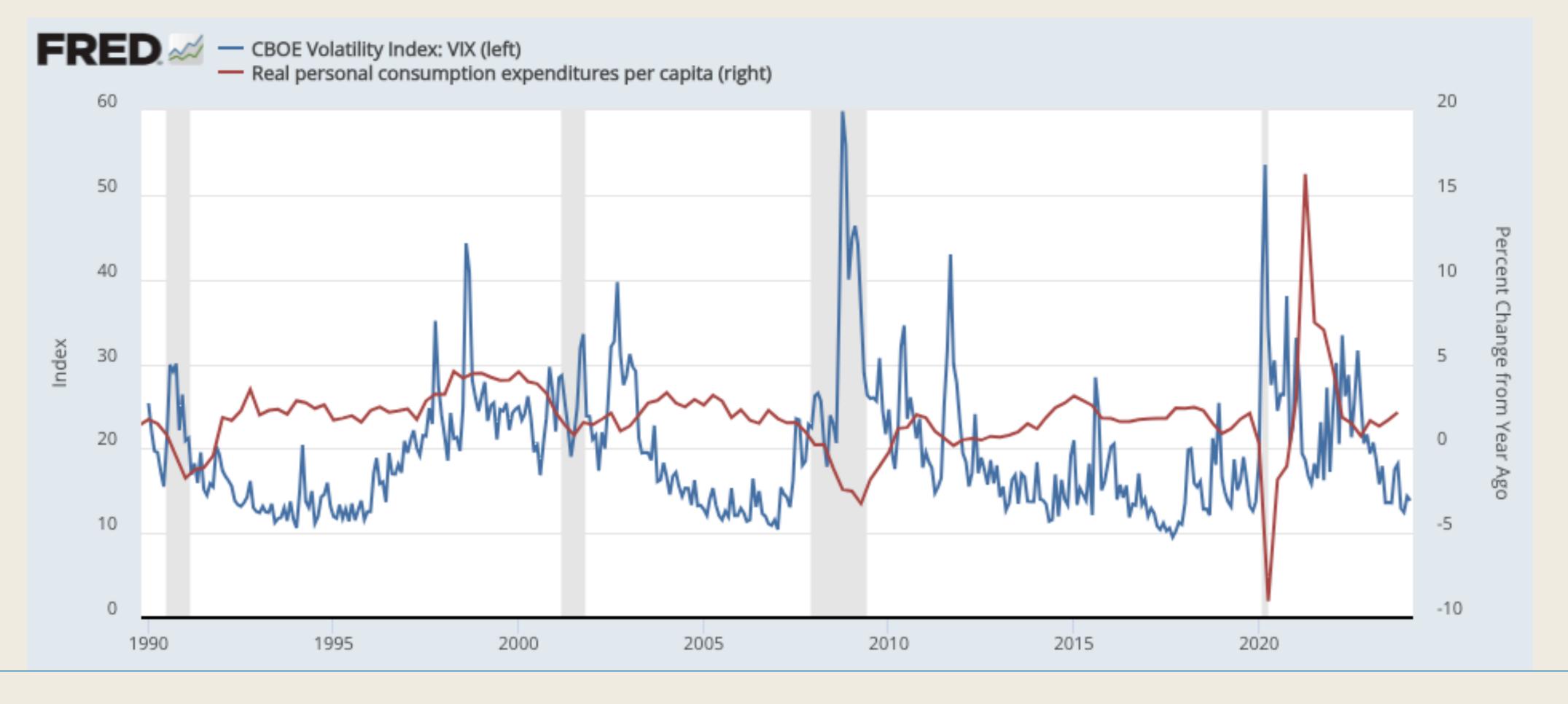
Heterogenous Consumption Response

	'High Risk'	'Low Risk'	Datirad	Portfolio incl.	Portfolio only
	Sector	Sector	Retired	risky assets	in safe assets
	(1)	(2)	(3)	(4)	(5)
Posterior: mean	-0.58	-0.95	-0.52	-1.30	-0.53
	(1.02)	(0.73)	(1.47)	(1.07)	(0.68)
Posterior: uncertainty	-8.85**	2.48	-8.15	-14.15***	-1.06
	(3.71)	(3.13)	(7.69)	(5.11)	(2.79)

- The response is particularly negative for
 - households working in the high-risk sector with respect to COVID-19 (agriculture, manufacturing, construction, restaurants, transport, etc)
 - households with risky portfolios

Heterogeneity

- Strong evidence that supports precautionary savings



This may explain why times with higher uncertainty are the times with low spending

