Investment

EC502 Macroeconomics
 Topic 8

Masao Fukui

2024 Spring

Consumption in GDP

Investment

FRED \approx - Real Gross Private Domestic Investment

Investment Growth

FRED \approx - Real Gross Private Domestic Investment

Investment over GDP

FRED \approx - Gross Private Domestic Investment/Gross Domestic Product

Questions

■ Investment constitutes $\approx 20 \%$ of GDP

- Yet, it is the most volatile component of GDP
- What determines investment?
- Recall in Solow model, this was mechanical, $I_{t}=s Y_{t}$

■ How can a policy stimulate investment in recessions?

Investment with Two Periods

Setup

- Consider a firm operating the following production function

$$
F_{t}\left(K_{t}, L_{t}\right)=A_{t} K_{t}^{\alpha} L_{t}^{1-\alpha}
$$

- Firms own capital stock K_{t} and invest with convex adjustment costs $\Phi\left(I_{t}, K_{t}\right)$

$$
K_{1}=(1-\delta) K_{0}+I_{0}, \quad \delta: \text { depreciation rate }
$$

- Firms hire labor in the competitive labor market with wage w_{t}
- The firm maximizes the presented discounted value of dividends

$$
D_{0}+\frac{1}{1+r} D_{1}
$$

where $D_{t}=F_{t}\left(K_{t}, L_{t}\right)-w_{t} L_{t}-I_{t}-\Phi\left(I_{t}, K_{t}\right)$ is the profit of a firm in period t

Adjustment Costs

■ We assume the following adjustment cost function

$$
\Phi(I, K)=\frac{\phi}{2}\left(\frac{I}{K}\right)^{2} K
$$

- This function is increasing and convex in I
- The additional investment costs more when you are already investing a lot
- This function is constant returns to scale in (I, K)
- doubling your investment and capital also doubles the cost of investment

Firm's Problem

- Given K_{0}, a firm solves

$$
\max _{L_{0}, I_{1}, K_{1}, L_{1}}\left[F_{0}\left(K_{0}, L_{0}\right)-w_{0} L_{0}-I_{0}-\Phi\left(I_{0}, K_{0}\right)\right]+\frac{1}{1+r}\left[F_{1}\left(K_{1}, L_{1}\right)-w_{1} L_{1}\right]
$$

subject to

$$
K_{1}=K_{0}(1-\delta)+I_{0}
$$

■ The first-order conditions with respect to L_{t} :

$$
\begin{equation*}
\frac{\partial F_{t}\left(K_{v}, L_{t}\right)}{\partial L_{t}}=w_{t} \tag{1}
\end{equation*}
$$

- The first-order condition with respect to I_{0} is

$$
\begin{equation*}
1+\frac{\partial \Phi\left(I_{0}, K_{0}\right)}{\partial I_{0}}=\frac{1}{1+r} \frac{\partial F_{1}\left(K_{1}, L_{1}\right)}{\partial K_{1}} \tag{2}
\end{equation*}
$$

LHS: marginal cost of investment, RHS: marginal benefit of investment

Investment Solution

- With our functional forms, we can solve for labor demand using (1):

$$
\begin{equation*}
L_{t}=(1-\alpha)^{1 / \alpha} A_{t}^{1 / \alpha} w_{t}^{-1 / \alpha} K_{t} \tag{3}
\end{equation*}
$$

- Equation (2) is

$$
\begin{equation*}
1+\phi \frac{I_{0}}{K_{0}}=\frac{1}{1+r} \alpha A_{1} K_{1}^{\alpha-1} L_{1}^{1-\alpha} \tag{4}
\end{equation*}
$$

- Combining (3) and (4),

$$
\frac{I_{0}}{K_{0}}=\frac{1}{\phi}\left[\frac{1}{1+r} \alpha(1-\alpha)^{\frac{1-\alpha}{\alpha}} A_{1}^{\frac{1}{\alpha}} w_{1}^{-\frac{1-\alpha}{\alpha}}-1\right]
$$

Comparative Statics

$$
\begin{equation*}
\frac{I_{0}}{K_{0}}=\frac{1}{\phi}\left[\frac{1}{1+r} \alpha(1-\alpha)^{\frac{1-\alpha}{\alpha}} A_{1}^{\frac{1}{\alpha}} W_{1}^{-\frac{1-\alpha}{\alpha}}-1\right] \tag{5}
\end{equation*}
$$

Investment is higher when

- interest rate, r, is lower
- future productivity, A_{1}, is higher
- future wage, w_{1}, is lower

All should be intuitive

Value of Firms

- Let us rewrite firm's investment in a different way
- Define the value of firms (discounted future profits):

$$
V_{1}=\frac{1}{1+r} D_{1}
$$

- In principle, V_{1} should correspond to the stock price of the firm
- Using the definition, $D_{1}=F_{1}\left(K_{1}, L_{1}\right)-w_{1} L_{1}$, and labor demand (3),

$$
V_{1}=\frac{1}{1+r} \alpha A_{1}^{\frac{1}{\alpha}}(1-\alpha)^{\frac{1-\alpha}{\alpha}} w_{1}^{-\frac{1-\alpha}{\alpha}} K_{1}
$$

■ Define $q_{1} \equiv V_{1} / K_{1}$, which we call as " q "

Q-Theory of Investment

■ With the definition of " q ", we can rewrite investment equation (5) as

$$
\frac{I_{0}}{K_{0}}=\frac{1}{\phi}\left[q_{1}-1\right]
$$

■ We often refer to the above expression as "q-theory of investment"

- Investment is positive if and only if $q_{1}>1$
- The average value of capital is higher than its cost
- Investment is negative if and only if $q_{1}<1$
- The average value of capital is lower than its cost
- Importantly, q_{1} summarizes the impact of r, w_{1}, A_{1} ("sufficient statistics")

Investment with Many Periods

Investment Problem with Many Periods

- We generalize the previous model to many periods, $t=0, \ldots, T$

■ The firm solves

$$
\max _{\left\{I_{t}, K_{t+1}, D_{t} L_{t}\right\}} \sum_{t=0}^{T} \frac{1}{\prod_{s=0}^{t-1}\left(1+r_{s}\right)} D_{t}
$$

subject to

$$
\begin{gathered}
D_{t}=F_{t}\left(K_{t}, L_{t}\right)-w_{t} L_{t}-I_{t}-\Phi\left(I_{t}, K_{t}\right) \\
K_{t+1}=(1-\delta) K_{t}+I_{t}
\end{gathered}
$$

Lagrangian

- The Lagrangian is

$$
\mathscr{L}=\sum_{t=0}^{T} \frac{1}{\prod_{s=0}^{t-1}\left(1+r_{s}\right)}\left\{\left[F_{t}\left(K_{t}, L_{t}\right)-w_{t} L_{t}-I_{t}-\Phi\left(I_{t}, K_{t}\right)\right]+q_{t+1}\left[K_{t+1}-(1-\delta) K_{t}-I_{t}\right]\right\}
$$

■ First-order conditions with respect to L_{t}, I_{t}, K_{t} are

$$
\begin{gathered}
\frac{\partial F_{t}\left(K_{t}, L_{t}\right)}{\partial L_{t}}=w_{t} \\
1+\frac{\partial \Phi\left(I_{t}, K_{t}\right)}{\partial I_{t}}=q_{t+1} \\
q_{t}=\frac{1}{1+r_{t-1}}\left[\frac{\partial F_{t}\left(K_{t}, L_{t}\right)}{\partial K_{t}}-\frac{\partial \Phi\left(I_{t}, K_{t}\right)}{\partial K_{t}}+(1-\delta) q_{t+1}\right]
\end{gathered}
$$

Optimality Conditions

■ With our functional form assumptions, the first two conditions can be written as

$$
\begin{gather*}
L_{t}=(1-\alpha)^{1 / \alpha} A_{t}^{1 / \alpha} w_{t}^{-1 / \alpha} K_{t} \tag{7}\\
\frac{I_{t}}{K_{t}}=\frac{1}{\phi}\left[q_{t}-1\right]
\end{gather*}
$$

- Using the above two, the thrid condition is

$$
\begin{align*}
q_{t} & =\frac{1}{1+r_{t}}\left[\alpha A_{t+1} K_{t+1}^{\alpha-1} L_{t+1}^{1-\alpha}+\frac{\phi}{2}\left(\frac{I_{t+1}}{K_{t+1}}\right)^{2}+(1-\delta) q_{t+1}\right] \\
& =\frac{1}{1+r_{t}}\left[\alpha\left(A_{t}\right)^{\frac{1}{\alpha}}(1-\alpha)^{\frac{1-\alpha}{\alpha}} w_{t}^{-\frac{1-\alpha}{\alpha}}-\frac{I_{t+1}}{K_{t+1}}-\frac{\phi}{2}\left(\frac{I_{t+1}}{K_{t+1}}\right)^{2}+\left(\frac{I_{t+1}}{K_{t+1}}+(1-\delta)\right) q_{t+1}\right] \tag{8}
\end{align*}
$$

Firm's Value

- Define the firm's value as the cumulative discounted sum of future profits

$$
\begin{aligned}
V_{t} & =\sum_{k=t}^{T} \frac{1}{\prod_{s=t}^{t}\left(1+r_{s}\right)} D_{k} \\
& =\frac{1}{1+r_{t}}\left[D_{t}+\sum_{k=t+1}^{T} \frac{1}{\prod_{s=t+1}^{t}\left(1+r_{s}\right)} D_{k}\right] \\
& =\frac{1}{1+r_{t}}\left[F_{t}\left(K_{t}, L_{t}\right)-w_{t} L_{t}-I_{t}-\Phi\left(I_{t}, K_{t}\right)+V_{t+1}\right]
\end{aligned}
$$

Firm's Value per unit Capital = \mathbf{Q}

- The firm's value per unit capital is, using (6),

$$
\begin{align*}
\frac{V_{t}}{K_{t}} & =\frac{1}{1+r_{t}}\left[\alpha\left(A_{t}\right)^{\frac{1}{\alpha}}(1-\alpha)^{\frac{1-\alpha}{\alpha}} w_{t}^{-\frac{1-\alpha}{\alpha}}-\frac{I_{t}}{K_{t}}-\frac{\phi}{2}\left(\frac{I_{t}}{K_{t}}\right)^{2}+\frac{K_{t+1}}{K_{t}} \frac{V_{t+1}}{K_{t+1}}\right] \\
& =\frac{1}{1+r_{t}}\left[\alpha\left(A_{t}\right)^{\frac{1}{\alpha}}(1-\alpha)^{\frac{1-\alpha}{\alpha}} w_{t}^{-\frac{1-\alpha}{\alpha}}-\frac{I_{t}}{K_{t}}-\frac{\phi}{2}\left(\frac{I_{t}}{K_{t}}\right)^{2}+\left(\frac{I_{t+1}}{K_{t+1}}+(1-\delta)\right) \frac{V_{t+1}}{K_{t+1}}\right] \tag{9}
\end{align*}
$$

- Comparing (8) and (9), we conclude

$$
q_{t}=\frac{V_{t}}{K_{t}}
$$

Q-Theory of Investment

- Q-theory of investment:

$$
\frac{I_{t}}{K_{t}}=\frac{1}{\phi}\left[q_{t}-1\right]
$$

- Investment is positive if and only if $q_{t}>1$
- The average value of capital, " q ", is higher than its cost
- " q " is of course a function of parameters:

$$
q_{t}=\frac{1}{1+r_{t}}\left[\alpha\left(A_{t+1}\right)^{\frac{1}{\alpha}}(1-\alpha)^{\frac{1-\alpha}{\alpha}} w_{t+1}^{-\frac{1-\alpha}{\alpha}}-\frac{I_{t+1}}{K_{t+1}}-\frac{\phi}{2}\left(\frac{I_{t+1}}{K_{t+1}}\right)^{2}+\left(\frac{I_{t+1}}{K_{t+1}}+(1-\delta)\right) q_{t+1}\right]
$$

- q_{t} is higher if A_{t} is higher, r_{t} is lower, and w_{t} is lower

Stimulating Investment through Temporary Tax Incentives

- Zavick and Mahon (2017)

Background

- Background: weak investment during 00-01 and 07-08 recessions
- In response, Congress passed a bill that allows "bonus depreciation"
- The policies were intended as economic stimulus

■ What is "bonus depreciation"?
■ Was it successful in stimulating investment?

Tax System

- Consider a firm buying $\$ 1$ million worth of computers
- The firm owes corporate taxes on income net of business expenses
- Expenses on nondurable items (e.g., wages): the firm can immediately deduct the full cost of these items on its tax return
- Expenses on investment: the firm split deduction over multiple years (exact schedule differs by investment) Example (corporate tax rate $=35 \%$)

Year:	0	1	2	3	4	5	Total
Normal depreciation							
Deductions $(000 \mathrm{~s})$	200	320	192	115	115	58	1,000
Tax benefit $(\tau=35$ percent $)$	70	112	67.2	40.3	40.3	20.2	350

Bonus Depreciation

- Bonus depreciation allows the firms to deduct $x \%$ of the investment immediately
- The total amount deducted over time does not change

■ Bonus depreciation only accelerates the deductions. Why stimulate investment?

Example of 50\% bonus depreciation

Year:	0	1	2	3	4	5	Total
Normal depreciation							
Deductions $(000 \mathrm{~s})$	70	192	115	115	58	1,000	
Tax benefit $(\tau=35$ percent $)$	70	112	67.2	40.3	40.3	20.2	350
Bonus depreciation $(50$ percent $)$							
Deductions $(000 \mathrm{~s})$ Tax benefit $(\tau=35$ percent $)$	600	160	96	57.5	57.5	29	1,000

Modeling Taxes

- Back to the two-period model
- Let τ be corporate tax rate

■ Let z_{0} be the percentage of $t=0$ investment that firms can deduct immediately

- The remaining $z_{1} \equiv 1-z_{0}$ are deducted at $t=1$

Investment Problem with Taxes

$$
\begin{array}{r}
\max _{L_{0}, I_{1}, K_{1}, L_{1}}[(1-\tau) \\
\left.\left[F_{0}\left(K_{0}, L_{0}\right)-w_{0} L_{0}\right]-I_{0}-\Phi\left(I_{0}, K_{0}\right)+\tau z_{0}\left(I_{0}-\Phi\left(I_{0}, K_{0}\right)\right)\right] \\
+\frac{1}{1+r}\left[(1-\tau)\left(F_{1}\left(K_{1}, L_{1}\right)-w_{1} L_{1}\right)+\tau z_{1}\left(I_{0}+\Phi\left(I_{0}, K_{0}\right)\right)\right]
\end{array}
$$

subject to

$$
K_{1}=K_{0}(1-\delta)+I_{0}
$$

Optimality Conditions

- The first-order conditions are

$$
\begin{gather*}
L_{t}=(1-\alpha)^{1 / \alpha} A_{t}^{1 / \alpha} w_{t}^{-1 / \alpha} K_{t} \tag{10}\\
{\left[1-\tau z_{0}-\frac{1}{1+r} \tau z_{1}\right]\left(1+\phi \frac{I_{0}}{K_{0}}\right)=\frac{1-\tau}{1+r} \alpha A_{1} K_{1}^{\alpha-1} L_{1}^{1-\alpha}} \tag{11}
\end{gather*}
$$

■ Define $z^{N} \equiv \tau z_{0}+\frac{1}{1+r} \tau z_{1}$:

- The presented discounted value of deductions per unit investment
- Plugging (10) into (11),

$$
\frac{I_{0}}{K_{0}}=\frac{1}{\phi}\left[\frac{1}{1+r} \frac{1-\tau}{1-z^{N}} \alpha(1-\alpha)^{\frac{1-\alpha}{\alpha}} A_{1}^{\frac{1}{\alpha}} w_{1}^{-\frac{1-\alpha}{\alpha}}-1\right]
$$

Impact of Bonus Depreciation in the Model

$$
\frac{I_{0}}{K_{0}}=\frac{1}{\phi}\left[\frac{1}{1+r} \frac{1-\tau}{1-z^{N}} \alpha(1-\alpha)^{\frac{1-\alpha}{\alpha}} A_{1}^{\frac{1}{\alpha}} w_{1}^{-\frac{1-\alpha}{\alpha}}-1\right]
$$

- Bonus depreciaation b allows firms to deduct extra $b \%$ of z_{1} at $t=0$

$$
z^{N}=\tau\left(z_{0}+b z_{1}\right)+\frac{1}{1+r} \tau\left(z_{1}-b z_{1}\right)
$$

■ How does bonus depreciation (an increase in b) affect investment?

$$
\frac{d\left(I_{0} / K_{0}\right)}{d z^{N}}>0, \quad \frac{d z^{N}}{d b}=\tau z_{1}\left(1-\frac{1}{1+r}\right)>0
$$

- Bonus depreciation increases present discounted value of deductions if $r>0$
- More deductions lower the effective investment costs and stimulate investment

Empirical Setup

- Bonus depreciation implementation (b in our model):
- 2001-2003: 30\%
- 2003-2004: 50\%
- 2008-2010: 50\%
- 2009-2010: 100\%

■ Construct presented discounted value of deductions (z^{N} in our model) by industry

- Industries had the same b but differed in the original deductions schedule, z_{0} \& z_{1}
- If industries have long-duration schedules (higher z_{1}), the impact of b is higher

$$
\frac{d z^{N}}{d b}=\tau z_{1}\left(1-\frac{1}{1+r}\right)
$$

Impact of Bonus Derpeciation

Panel A. Intensive margin: bonus I

Panel B. Intensive margin: bonus II

--*-. Treatment group (long duration industries)
=- =- = Control group (short duration industries)
■ Higher-duration industries increase investment relative to low-duration industries
■ Bonus depreciation raised investment of eligible capital by 10-15\%

Heterogeneous Responses

Table 6-Heterogeneity by Ex Ante Constraints

	Sales		Div payer?		Lagged cash	
	Small	Big	No	Yes	Low	High
$z_{N, t}$	$\begin{gathered} 6.29 \\ (1.21) \end{gathered}$	$\begin{gathered} 3.22 \\ (0.76) \end{gathered}$	$\begin{gathered} 5.98 \\ (0.88) \end{gathered}$	$\begin{gathered} 3.67 \\ (0.97) \end{gathered}$	$\begin{gathered} 7.21 \\ (1.38) \end{gathered}$	$\begin{gathered} 2.76 \\ (0.88) \end{gathered}$
Equality test	$p=0.030$		$p=0.079$		$p=0.000$	
Observations	177,620	255,266	274,809	127,523	176,893	180,933
Clusters (firms)	29,618	29,637	39,195	12,543	45,824	48,936
R^{2}	0.44	0.76	0.69	0.80	0.81	0.76

- Investment response is larger for
- smaller firms
- firms paying no dividends
- firms with low cash holdings

Why Do Size, Dividend, and Cash Matter?

- Do size, dividend, and cash matter in our model?

■ No. Recall:

$$
\frac{I_{0}}{K_{0}}=\frac{1}{\phi}\left[\frac{1}{1+r} \frac{1-\tau}{1-Z_{0}} \alpha(1-\alpha)^{\frac{1-\alpha}{\alpha}} A_{1}^{\frac{1}{\alpha}} w_{1}^{-\frac{1-\alpha}{\alpha}}-1\right]
$$

- Whether firms are large, pay dividends, or hold cash is irrelevant (on their own)

■ Then why do we find such heterogeneity in the data?

- One explanation is financial friction
- The prevalence of financial friction is correlated with size, dividend, and cash
- Constrained firms could react more to bonus depreciation

