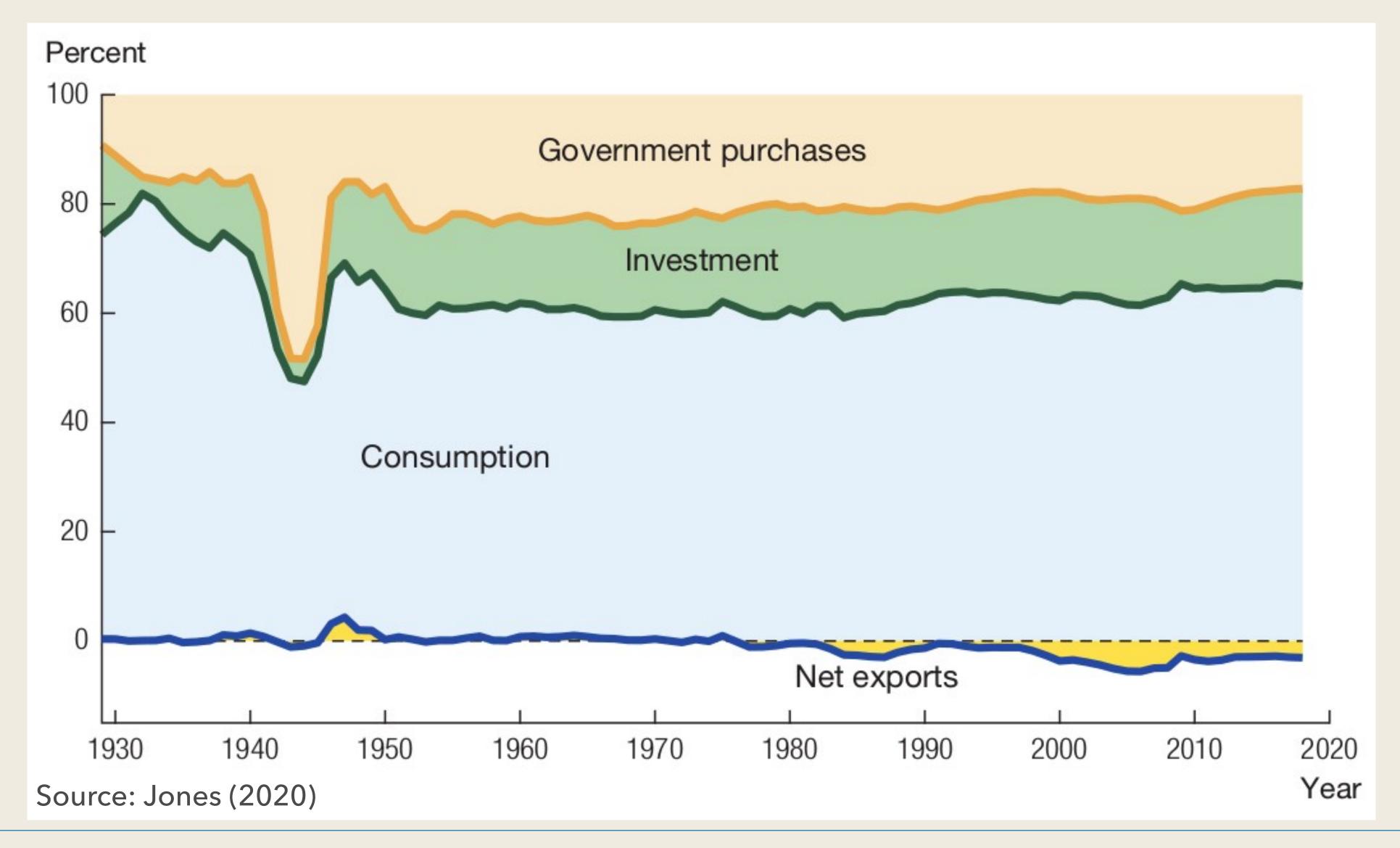
Investment

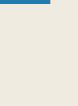
EC502 Macroeconomics Topic 8

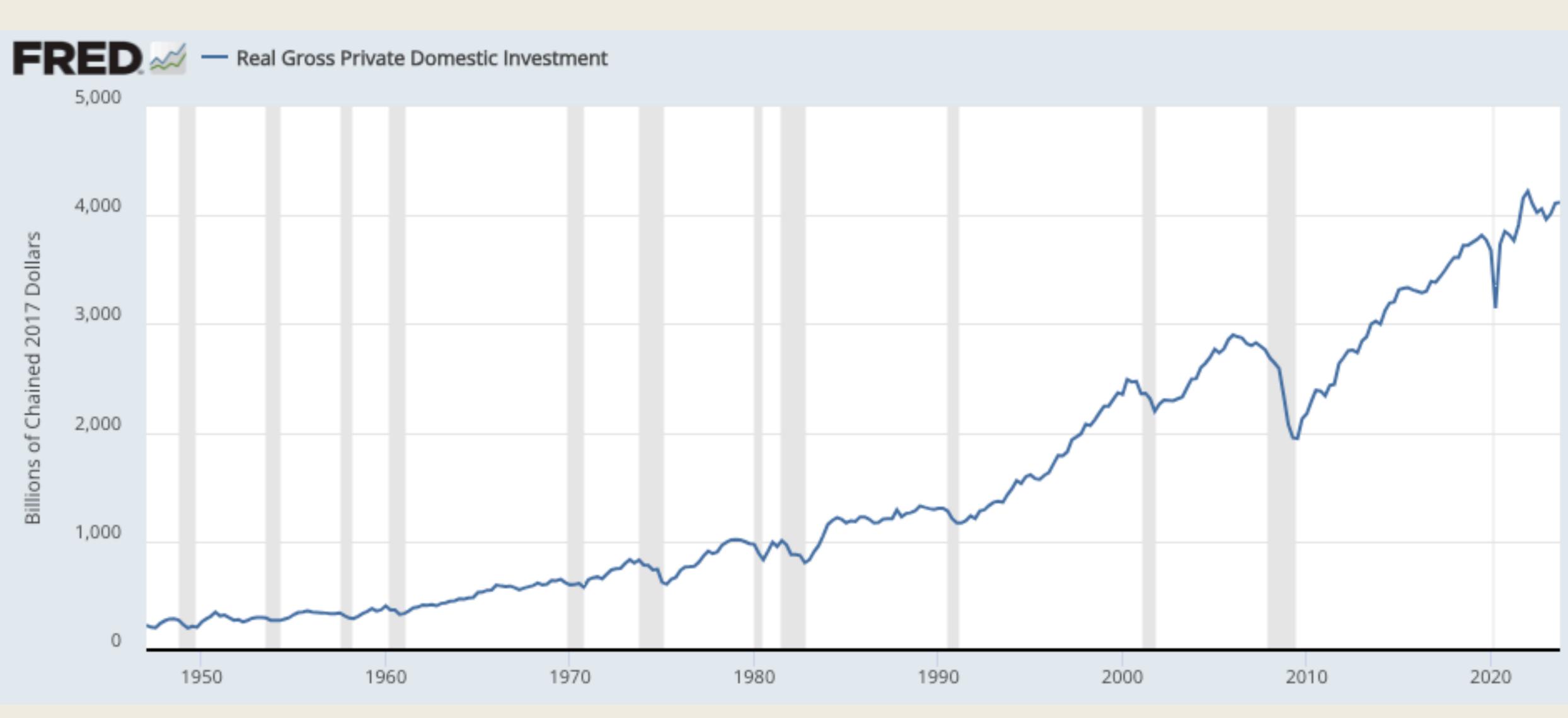
Masao Fukui

2024 Spring

Investment in GDP

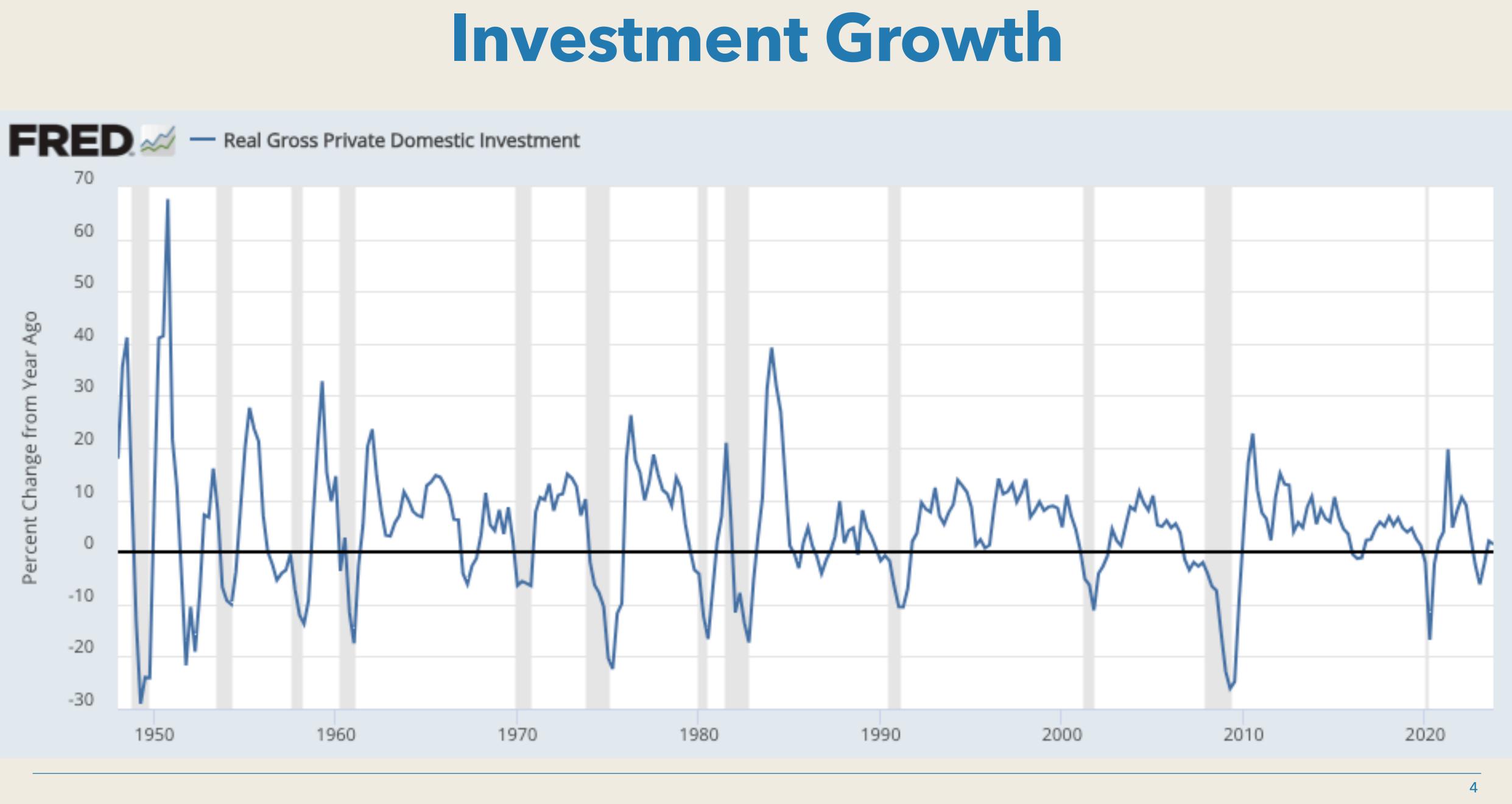






3

Investment



Investment over GDP

- Investment constitutes $\approx 20\%$ of GDP
- Yet, it is the most volatile component of GDP
- What determines investment?
 - Recall in Solow model, this was mechanical, $I_t = sY_t$
- How can a policy stimulate investment in recessions?

Questions

Investment with Two Periods

- Consider a firm operating the following production function $F_{t}(K_{t})$
- Firms own capital stock K_t and invest with convex adjustment costs $\Phi(I_t, K_t)$

$$K_1 = (1 - \delta)K_0 + I_0$$
, δ : depreciation rate

- Firms hire labor in the competitive labor market with wage w_t
- The firm maximizes the presented discounted value of dividends

$$D_0 + \frac{1}{1+r}D_1$$

where
$$D_t = F_t(K_t, L_t) - w_t L_t - I_t - \Phi(I_t)$$

Setup

$$(t, L_t) = A_t K_t^{\alpha} L_t^{1-\alpha}$$

 (K, K_t) is the profit of a firm in period t

We assume the following adjustment cost function

- $\Phi(I,K)$ =
- This function is increasing and convex in I
 - The additional investment costs more when you are already investing a lot
- This function is constant returns to scale in (I, K)
 - doubling your investment and capital also doubles the cost of investment

Adjustment Costs

$$=\frac{\phi}{2}\left(\frac{I}{K}\right)^2 K$$

• Given K_0 , a firm solves $\max_{L_0, I_1, K_1, L_1} \left[F_0(K_0, L_0) - w_0 L_0 - I_0 \right]$

subject to

 $K_1 = K$

• The first-order conditions with respect to L_t :

• The first-order condition with respect to I_0 is

$$1 + \frac{\partial \Phi(I_0, K_0)}{\partial I_0}$$

RHS: marginal benefit of investment LHS: marginal cost of investment,

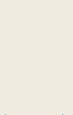
Firm's Problem

$$\int_{0} -\Phi(I_{0}, K_{0})] + \frac{1}{1+r} \left[F_{1}(K_{1}, L_{1}) - w_{1}L_{1}\right]$$

$$X_0(1-\delta) + I_0$$

 $\frac{\partial F_t(K_t, L_t)}{\partial L_t} = W_t$

$$= \frac{1}{1+r} \frac{\partial F_1(K_1, L_1)}{\partial K_1}$$

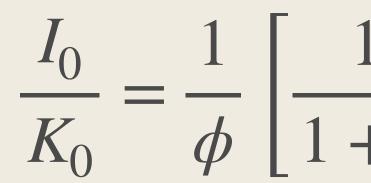


Investment Solution

- With our functional forms, we can solve for labor demand using (1): $L_{t} = (1 - \alpha)^{1/\alpha} A_{t}^{1/\alpha} w_{t}^{-1/\alpha} K_{t}$
- Equation (2) is



Combining (3) and (4),



$$=\frac{1}{1-\alpha}\alpha A_{1}K_{1}^{\alpha-1}L_{1}^{1-\alpha}$$

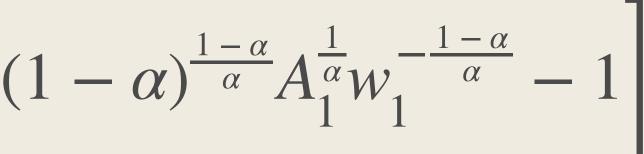
$$\frac{1}{-\alpha}\alpha(1-\alpha)^{\frac{1-\alpha}{\alpha}}A_1^{\frac{1}{\alpha}}w_1^{-\frac{1-\alpha}{\alpha}}-1$$

11

Comparative Statics $\frac{I_0}{K_0} = \frac{1}{\phi} \left[\frac{1}{1+r} \alpha (1-\alpha)^{\frac{1-\alpha}{\alpha}} A_1^{\frac{1}{\alpha}} w_1^{-\frac{1-\alpha}{\alpha}} - 1 \right]$

Investment is higher when

- interest rate, *r*, is lower
- future productivity, A_1 , is higher
- future wage, w_1 , is lower
- All should be intuitive



- Let us rewrite firm's investment in a different way
- Define the value of firms (discounted future profits): $V_1 = \frac{1}{1+r}D_1$
- In principle, V_1 should correspond to the stock price of the firm • Using the definition, $D_1 = F_1(K_1, L_1) - w_1L_1$, and labor demand (3),

$$V_{1} = \frac{1}{1+r} \alpha A_{1}^{\frac{1}{\alpha}} (1-\alpha)^{\frac{1-\alpha}{\alpha}} w_{1}^{-\frac{1-\alpha}{\alpha}} K_{1}$$

Define $q_1 \equiv V_1/K_1$, which we call "q"

Value of Firms

Q-Theory of Investment

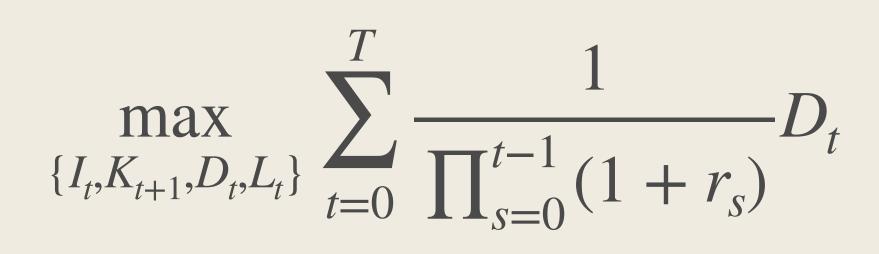
- With the definition of "q", we can rewrite investment equation (5) as $\frac{I_0}{K_0} =$
- We often refer to the above expression as "q-theory of investment"
- Investment is positive if and only if $q_1 > 1$
 - The average value of capital is higher than its cost
- Investment is negative if and only if $q_1 < 1$
 - The average value of capital is lower than its cost
- Importantly, q_1 summarizes the impact of r, w_1, A_1 ("sufficient statistics")

$$=\frac{1}{\phi}\left[q_1-1\right]$$

Investment with Many Periods

Investment Problem with Many Periods

- We generalize the previous model to many periods, t = 0, ..., T
- The firm solves



subject to

 $D_t = F_t(K_t, L_t) - w_t L_t - I_t - \Phi(I_t, K_t)$

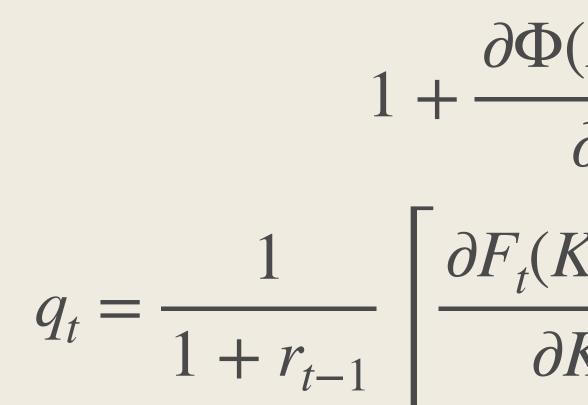
 $K_{t+1} = (1 - \delta)K_t + I_t$

Lagrangian

The Lagrangian is

$$\mathscr{L} = \sum_{t=0}^{T} \frac{1}{\prod_{s=0}^{t-1} (1+r_s)} \left\{ \left[F_t(K_t, L_t) - w_t L_t - I_t - \Phi(I_t, K_t) \right] + q_{t+1} \left[K_{t+1} - (1-\delta) K_t - I_t - \Phi(I_t, K_t) \right] \right\}$$

First-order conditions with respect to ∂F_t



$$L_{t}, I_{t}, K_{t} \text{ are}$$

$$\frac{(K_{t}, L_{t})}{\partial L_{t}} = w_{t}$$

$$\frac{(I_{t}, K_{t})}{\partial I_{t}} = q_{t+1}$$

$$\frac{(I_{t}, L_{t})}{K_{t}} - \frac{\partial \Phi(I_{t}, K_{t})}{\partial K_{t}} + (1 - \delta)q_{t+1}$$

Optimality Conditions

$$L_{t} = (1 - \alpha)^{1/\alpha} A_{t}^{1/\alpha} w_{t}^{-1/\alpha} K_{t}$$

$$\frac{I_t}{K_t} = \frac{1}{\phi} \left[q_t - 1 \right]$$

Using the above two, the thrid condition is

$$q_{t} = \frac{1}{1+r_{t}} \left[\alpha A_{t+1} K_{t+1}^{\alpha-1} L_{t+1}^{1-\alpha} + \frac{\phi}{2} \left(\frac{I_{t+1}}{K_{t+1}} \right)^{2} + (1-\delta)q_{t+1} \right]$$
$$= \frac{1}{1+r_{t}} \left[\alpha (A_{t+1})^{\frac{1}{\alpha}} (1-\alpha)^{\frac{1-\alpha}{\alpha}} w_{t+1}^{-\frac{1-\alpha}{\alpha}} - \frac{I_{t+1}}{K_{t+1}} - \frac{\phi}{2} \left(\frac{I_{t+1}}{K_{t+1}} \right)^{2} + \left(\frac{I_{t+1}}{K_{t+1}} + (1-\delta) \right) q_{t+1} \right]$$

With our functional form assumptions, the first two conditions can be written as

Define the firm's value as the cumulative discounted sum of future profits

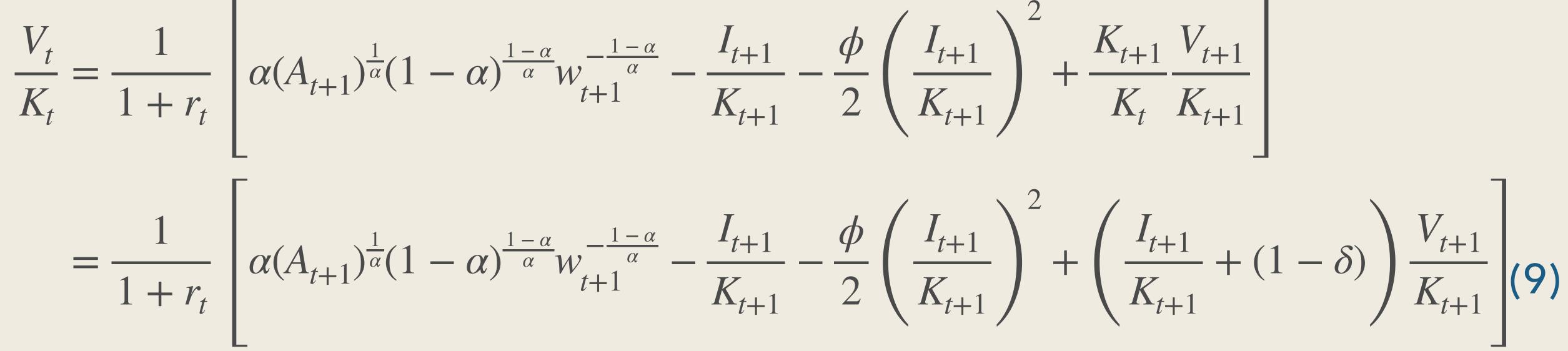
$$V_{t} = \sum_{k=t+1}^{T} \frac{1}{\prod_{s=t}^{t} (1+r_{s})} D_{k}$$

= $\frac{1}{1+r_{t}} \left[D_{t+1} + \sum_{k=t+2}^{T} \frac{1}{\prod_{s=t+1}^{t} (1+r_{s})} D_{k} \right]$
= $\frac{1}{1+r_{t}} \left[F_{t+1}(K_{t+1}, L_{t+1}) - w_{t+1}L_{t+1} - I_{t+1} \right]$

 $-\Phi(I_{t+1}, K_{t+1}) + V_{t+1}$

Firm's Value per unit Capital = Q

The firm's value per unit capital is, using (6),



Comparing (8) and (9), we conclude

$$\frac{+1}{+1} - \frac{\phi}{2} \left(\frac{I_{t+1}}{K_{t+1}} \right)^2 + \frac{K_{t+1}}{K_t} \frac{V_{t+1}}{K_{t+1}}$$

Q-Theory of Investment

Q-theory of investment:

Investment is positive if and only if q_t

- The average value of capital, "q", is higher than its cost
- "q" is of course a function of parameters:

 $q_{t} = \frac{1}{1 + r_{t}} \left[\alpha (A_{t+1})^{\frac{1}{\alpha}} (1 - \alpha)^{\frac{1 - \alpha}{\alpha}} w_{t+1}^{-\frac{1 - \alpha}{\alpha}} - \right]$

• q_t is higher if A_t is higher, r_t is lower, and w_t is lower

$$\frac{1}{\phi} \left[q_t - 1 \right]$$

$$\frac{I_{t+1}}{K_{t+1}} - \frac{\phi}{2} \left(\frac{I_{t+1}}{K_{t+1}}\right)^2 + \left(\frac{I_{t+1}}{K_{t+1}} + (1-\delta)\right) q_t$$

Stimulating Investment through Temporary Tax Incentives

– Zwick and Mahon (2017)

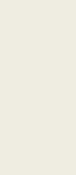
- Background: weak investment during 00-01 and 07-08 recessions
- In response, Congress passed a bill that allows "bonus depreciation"
- The policies were intended as economic stimulus
- What is "bonus depreciation"?
- Was it successful in stimulating investment?

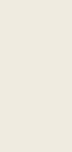
Background

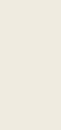
- Consider a firm buying \$1 million worth of computers
- The firm owes corporate taxes on income net of business expenses
- Expenses on nondurable items (e.g., wages): the firm can immediately deduct the full cost of these items on its tax return
- Expenses on investment: the firm split deduction over multiple years (exact schedule differs by investment)

Year:	0	1	2	3		5	Total
	0	1		5	-+	5	10ta1
Normal depreciation							
Deductions (000s)	200	320	192	115	115	58	1,000
Tax benefit ($\tau = 35$ percent)	70	112	67.2	40.3	40.3	20.2	350

orate tax rate = 35%)







Bonus Depreciation

- Bonus depreciation allows to deduct b% of remaining expenses immediately
- The total amount deducted over time does not change
- Bonus depreciation only accelerates the deductions. Why stimulate investment?

Example of 50% bonus depreciation

Year:	0	1	2	3	4	5	Total
Normal depreciation							
Deductions (000s)	200	320	192	115	115	58	1,000
Tax benefit ($\tau = 35$ percent)	70	112	67.2	40.3	40.3	20.2	350
Bonus depreciation (50 percent)							
Deductions (000s)	600	160	96	57.5	57.5	29	1,000
Tax benefit ($\tau = 35$ percent)	210	56	33.6	20.2	20.2	10	350

- Back to the two-period model
- Let τ be corporate tax rate
- The remaining $z_1 \equiv 1 z_0$ are deducted at t = 1

• Let z_0 be the percentage of t = 0 investment that firms can deduct immediately

Investment Problem with Taxes

$$\max_{L_0, I_1, K_1, L_1} \left[(1 - \tau) \left[F_0(K_0, L_0) - w_0 L_0 \right] - \frac{1}{1 + r} \left[(1 - \tau) \left(F_1(K_0, L_0) - \tau \right) \right] \right]$$

subject to

 $-I_0 - \Phi(I_0, K_0) + \tau z_0 \left(I_0 - \Phi(I_0, K_0) \right)$

 $K_1, L_1) - w_1 L_1 + \tau z_1 \left(I_0 + \Phi(I_0, K_0) \right)$

 $K_1 = K_0(1 - \delta) + I_0$

The first-order conditions are

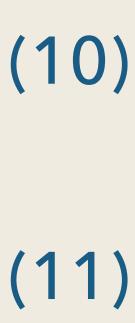
• Define $z_N \equiv \tau z_0 + \frac{1}{1+r} \tau z_1$: The presented discounted value of deductions per unit investment Plugging (10) into (11),

$$\frac{I_0}{K_0} = \frac{1}{\phi} \left[\frac{1}{1+r} \frac{1-\tau}{1-z_N} \alpha (1-\alpha)^{\frac{1-\alpha}{\alpha}} A_1^{\frac{1}{\alpha}} w_1^{-\frac{1-\alpha}{\alpha}} - 1 \right]$$

Optimality Conditions

$$L_{t} = (1 - \alpha)^{1/\alpha} A_{t}^{1/\alpha} w_{t}^{-1/\alpha} K_{t}$$

$$\left[1 - \tau z_{0} - \frac{1}{1 + r} \tau z_{1}\right] \left(1 + \phi \frac{I_{0}}{K_{0}}\right) = \frac{1 - \tau}{1 + r} \alpha A_{1} K_{1}^{\alpha - 1} L_{1}^{1 - \alpha}$$



Impact of Bonus Depreciation in the
$$\frac{I_0}{K_0} = \frac{1}{\phi} \left[\frac{1}{1+r} \frac{1-\tau}{1-z_N} \alpha (1-\alpha)^{\frac{1-\alpha}{\alpha}} A_1^{\frac{1}{\alpha}} w_1^{-\frac{1-\alpha}{\alpha}} - 1 \right]$$

Bonus depreciaation b allows firms to deduct extra b% of z_1 at t=0

$$z_N = \tau(z_0 + bz_1) + \frac{1}{1+r}\tau(z_1 - bz_1)$$

How does bonus depreciation (an increase in b) affect investment?

$$\frac{d(I_0/K_0)}{dz_N} > 0, \quad \frac{dz_N}{db} = \tau z_1 \left(1 - \frac{1}{1+r} \right) > 0$$

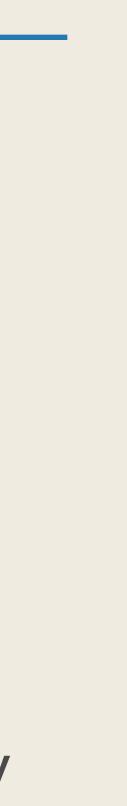
he Mode

• Bonus depreciation increases present discounted value of deductions if r > 0• More deductions lower the effective investment costs and stimulate investment

Bonus depreciation implementation (b in our model):

- 2001-2003: 30%
- 2003-2004: 50%
- 2008-2010: 50%
- 2009-2010: 100%
- Construct presented discounted value of deductions (z_N in our model) by industry
- Industries had the same b but differed in the original deductions schedule, $z_0 \& z_1$
- If industries have long-duration schedules (higher z₁), the impact of b is higher

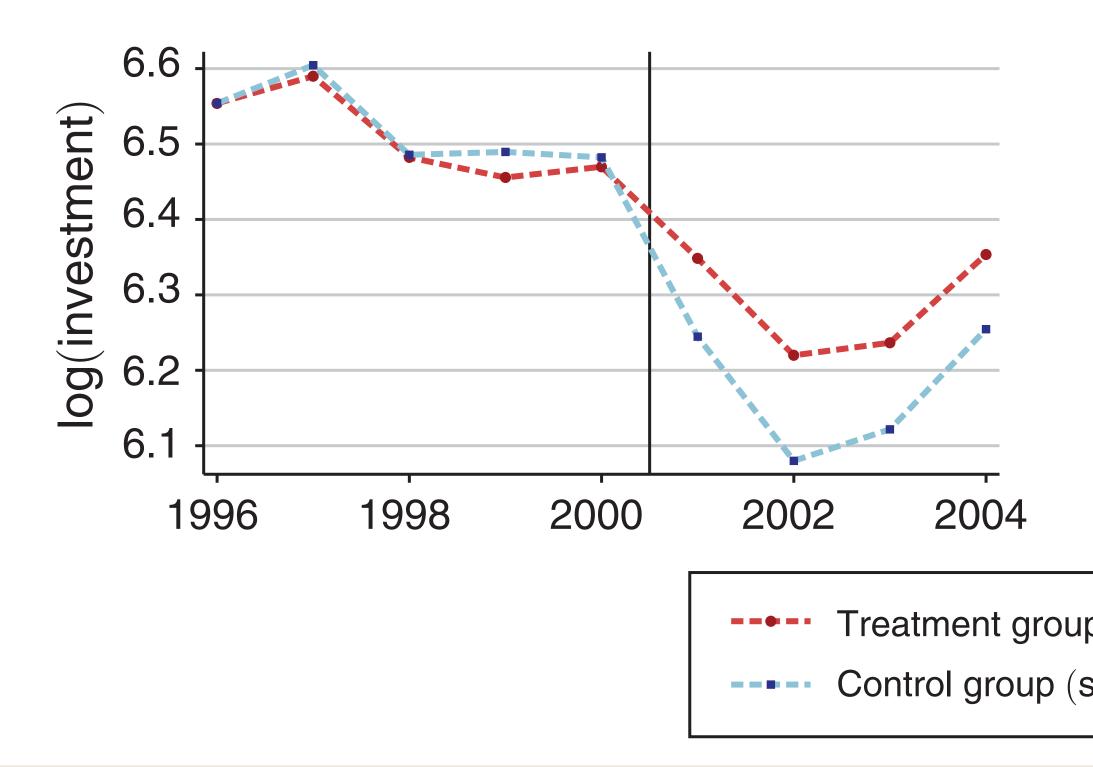
$$\frac{dz_N}{db} = \tau z_1 \left(1 - \frac{1}{1+r} \right)$$



30

Impact of Bonus Derpeciation

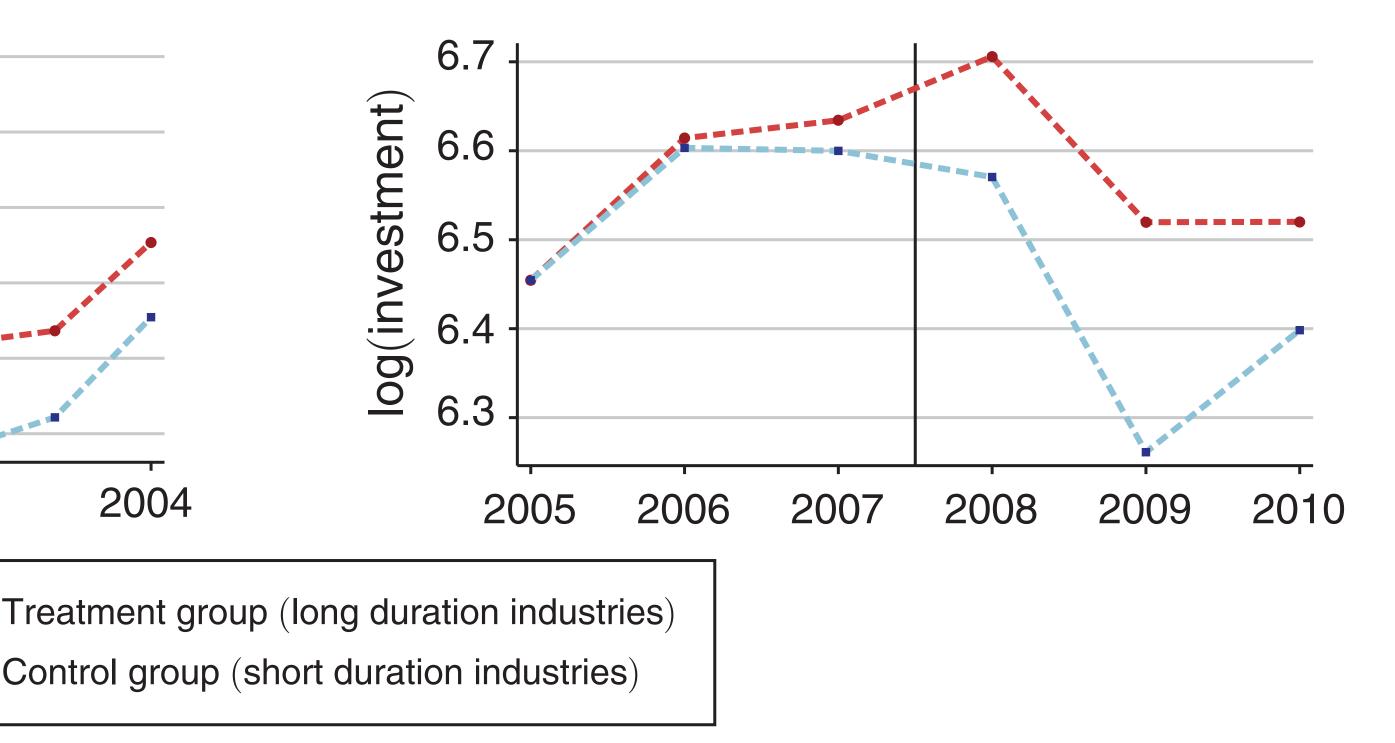
Panel A. Intensive margin: bonus I



Higher-duration industries increase investment relative to low-duration industries

Bonus depreciation raised investment of eligible capital by 10-15%

Panel B. Intensive margin: bonus II



Heterogeneous Responses

	Sales		Div p	ayer?	Lagge	Lagged cash		
	Small	Big	No	Yes	Low	High		
$Z_{N,t}$	6.29 (1.21)	3.22 (0.76)	5.98 (0.88)	3.67 (0.97)	7.21 (1.38)	2.76 (0.88)		
Equality test	p = 0.030		p =	0.079	p =	p = 0.000		
Observations	177,620	255,266	274,809	127,523	176,893	180,933		
Clusters (firms)	29,618	29,637	39,195	12,543	45,824	48,936		
R^2	0.44	0.76	0.69	0.80	0.81	0.76		

Investment response is larger for

- smaller firms
- firms paying no dividends
- firms with low cash holdings

TABLE 6—HETEROGENEITY BY EX ANTE CONSTRAINTS

Why Do Size, Dividend, and Cash Matter?

- Do size, dividend, and cash matter in our model?
- No. Recall:

$$\frac{I_0}{K_0} = \frac{1}{\phi} \left[\frac{1}{1+r} \frac{1-\tau}{1-z_N} \alpha (1-\alpha)^{\frac{1-\alpha}{\alpha}} A_1^{\frac{1}{\alpha}} w_1^{-\frac{1-\alpha}{\alpha}} - 1 \right]$$

- Then why do we find such heterogeneity in the data?
- One explanation is financial friction
- The prevalence of financial friction is correlated with size, dividend, and cash
- Constrained firms could react more to bonus depreciation

Whether firms are large, pay dividends, or hold cash is irrelevant (on their own)

