
Capital Accumulation and Growth: Solow Model

EC502 Macroeconomics
Topic 2

Masao Fukui

2026 Spring

Capital Accumulation as a Source of Growth

- Why do countries grow? Why are some countries richer than others?
- In the previous lectures, we saw capital plays an important role in an accounting sense
- This opens two questions
 - How do countries accumulate capital?
 - Why do some countries have higher capital stock than others?
- Idea: countries invest some of their resources into capital over time

Solow Model

Production:

$$Y_t = A(K_t)^\alpha(L_t)^{1-\alpha}$$

Capital accumulation:

$$K_{t+1} = (1 - \delta)K_t + I_t$$

Population growth:

$$L_{t+1} = (1 + n)L_t$$

Resource constraint:

$$C_t + I_t = Y_t$$

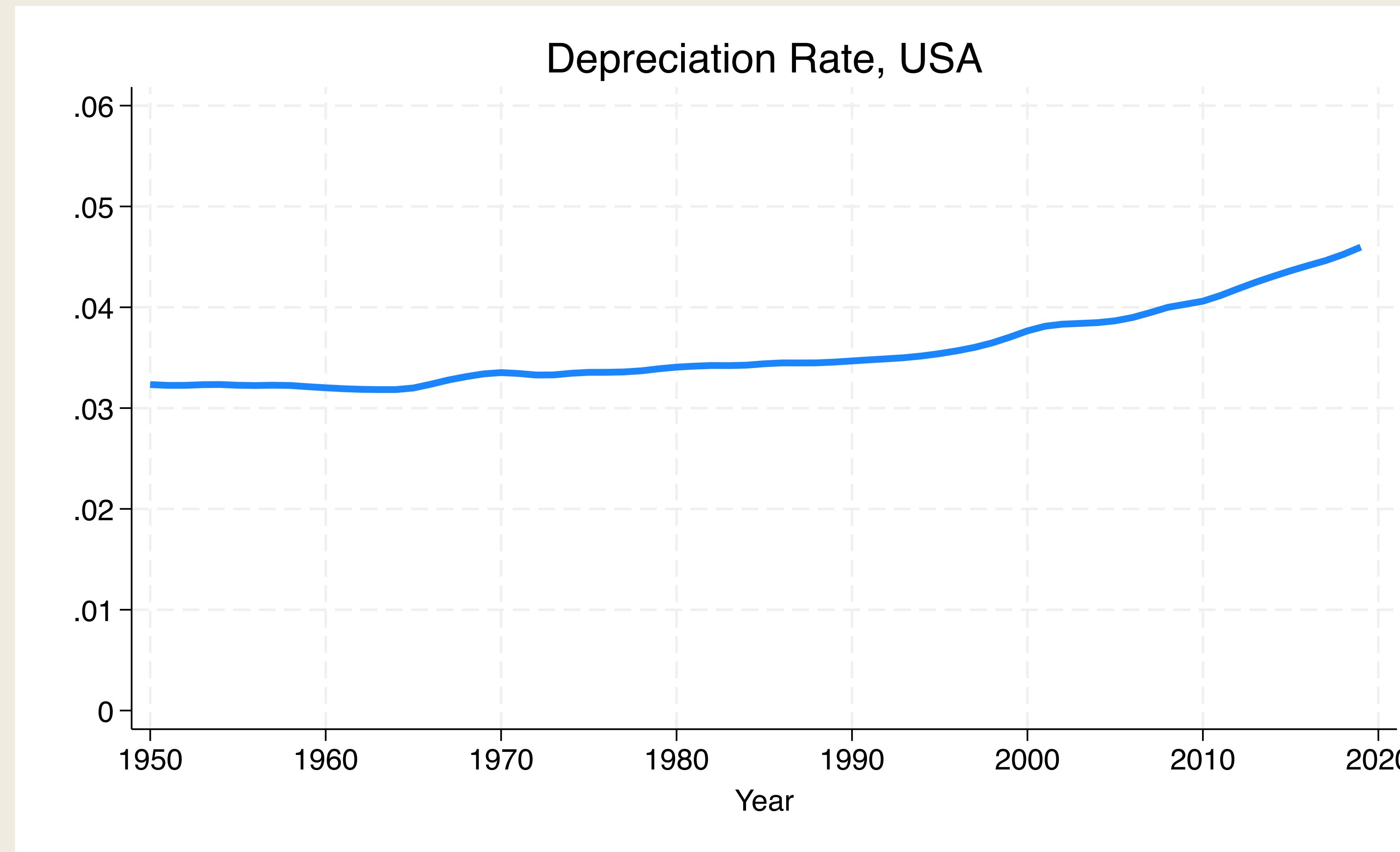
Investment:

$$I_t = sY_t$$

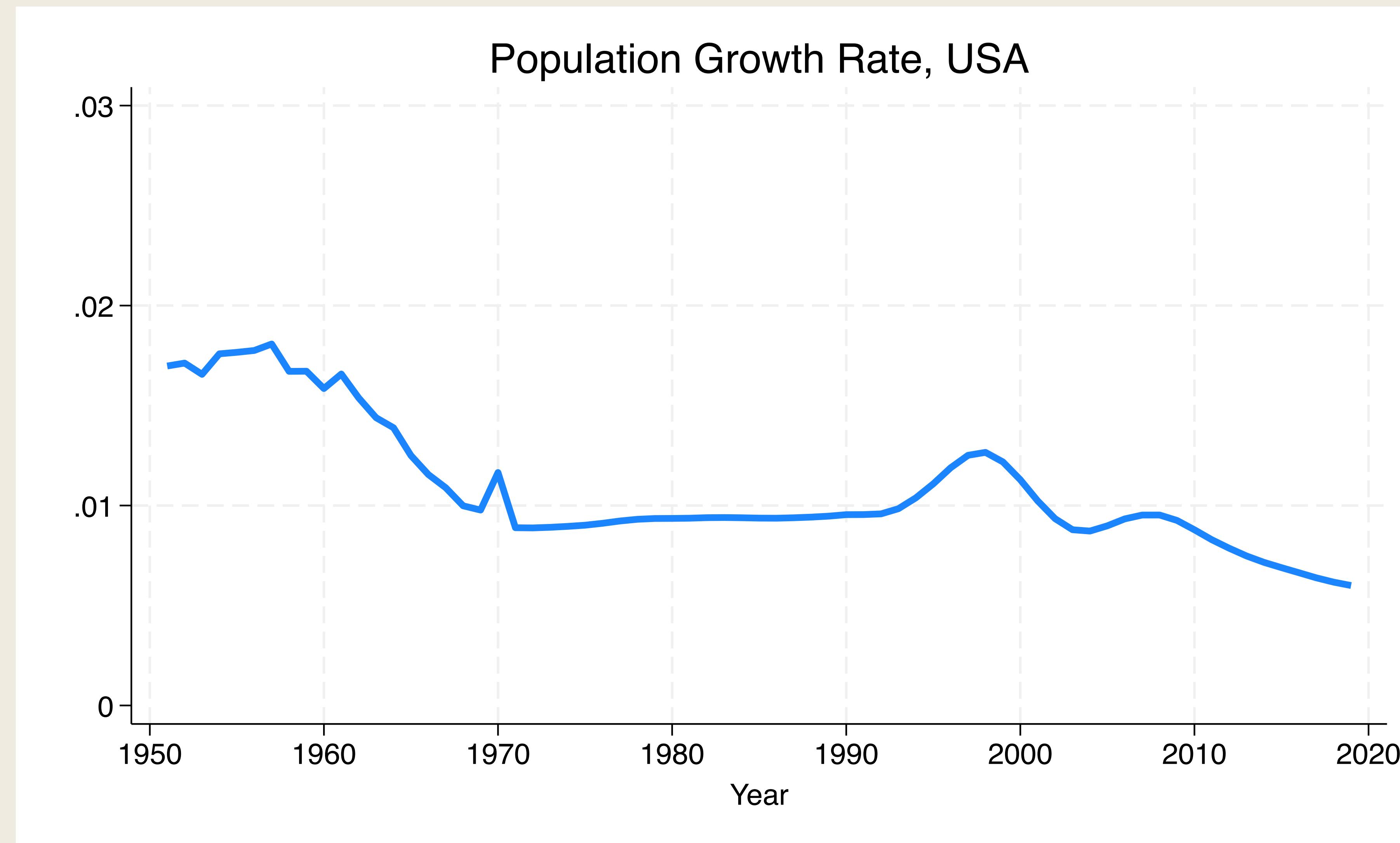
What Did We Assume?

- Production $Y_t = A(K_t)^\alpha(L_t)^{1-\alpha}$ comes from the previous lecture
- Capital accumulation $K_{t+1} = (1 - \delta)K_t + I_t$ assumes constant depreciation
- We assume constant labor (population) growth $L_{t+1} = (1 + n)L_t$
 - Plus, everyone in the economy supplies one unit of labor
- Resource constraint $C_t + I_t = Y_t$ is national accounting identity
 - We abstract away from G and NX
- Investment $I_t = sY_t$ assumes constant fraction of output is invested every period
- Are these assumptions reasonable?

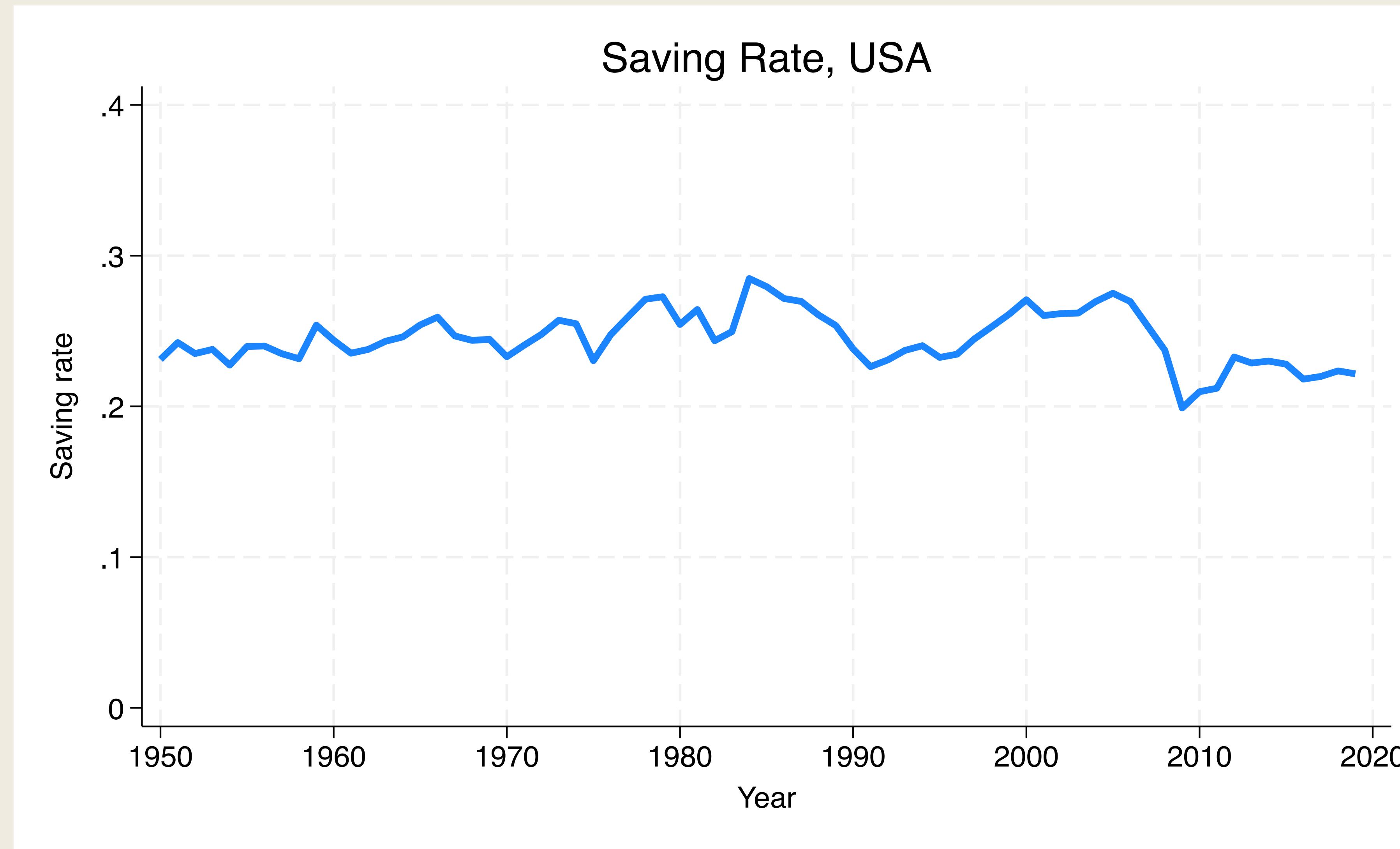
Depreciation Rate, δ



Population Growth Rate



Saving Rate, s



Normalization

- It will be convenient to divide everything by L to express in per-capita unit

$$y_t \equiv \frac{Y_t}{L_t}, \quad k_t \equiv \frac{K_t}{L_t}$$

- The production equation now becomes:

$$y_t = Ak_t^\alpha$$

- Combining capital accumulation and investment equations,

$$\underbrace{\frac{K_{t+1}}{L_{t+1}}}_{k_{t+1}} \underbrace{\frac{L_{t+1}}{L_t}}_{1+n} = k_t(1 - \delta) + sy_t$$

Key Equation

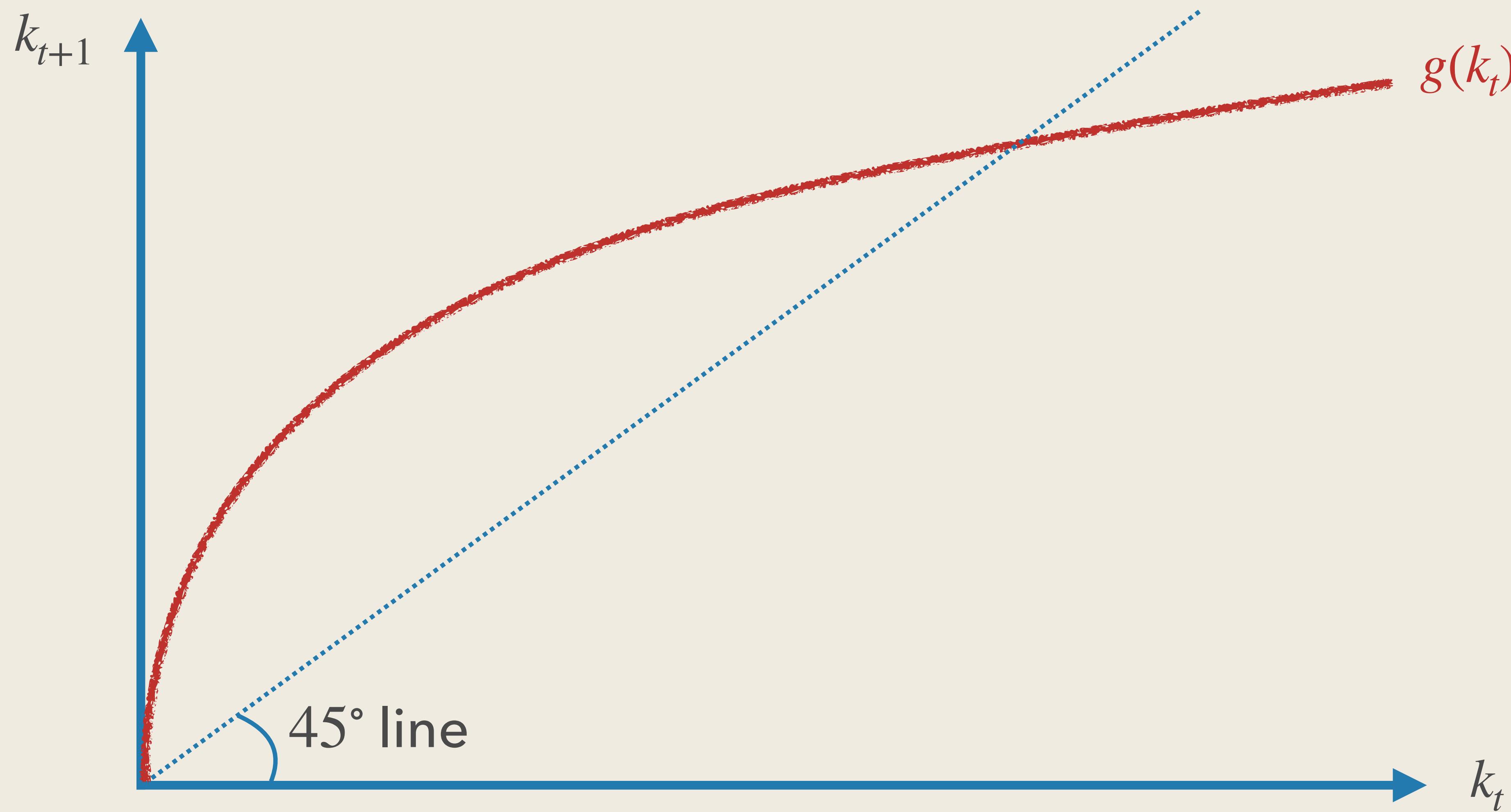
- Putting the previous two equations together,

$$\begin{aligned} k_{t+1} &= \frac{1}{1+n} [(1 - \delta)k_t + sAk_t^\alpha] \\ &\equiv g(k_t) \end{aligned}$$

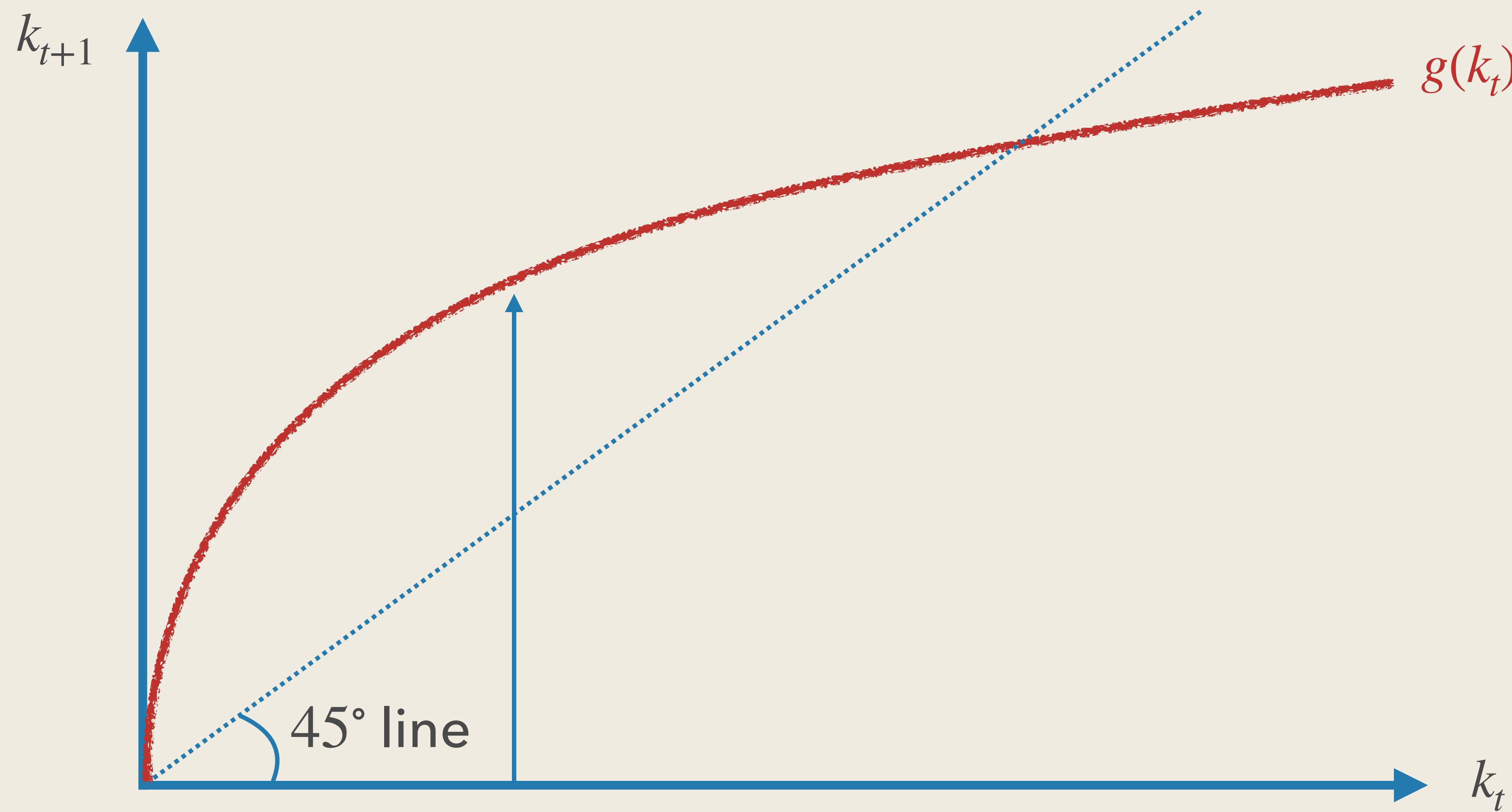
- Given k_0 , the above equation determines the path of k_1, k_2, k_3, \dots
- What is the property of $g(k_t)$?
 - Increasing: $g'(k_t) = \frac{1}{1+n} [1 - \delta + s\alpha Ak_t^{\alpha-1}] > 0$
 - Concave: $g''(k_t) = \frac{1}{1+n} s\alpha(\alpha - 1)k_t^{\alpha-2} < 0$
 - Also satisfies

$$g(0) = 0, \quad g'(0) = \infty, \quad \lim_{k \rightarrow \infty} g'(k) = \frac{1 - \delta}{1 + n} < 1$$

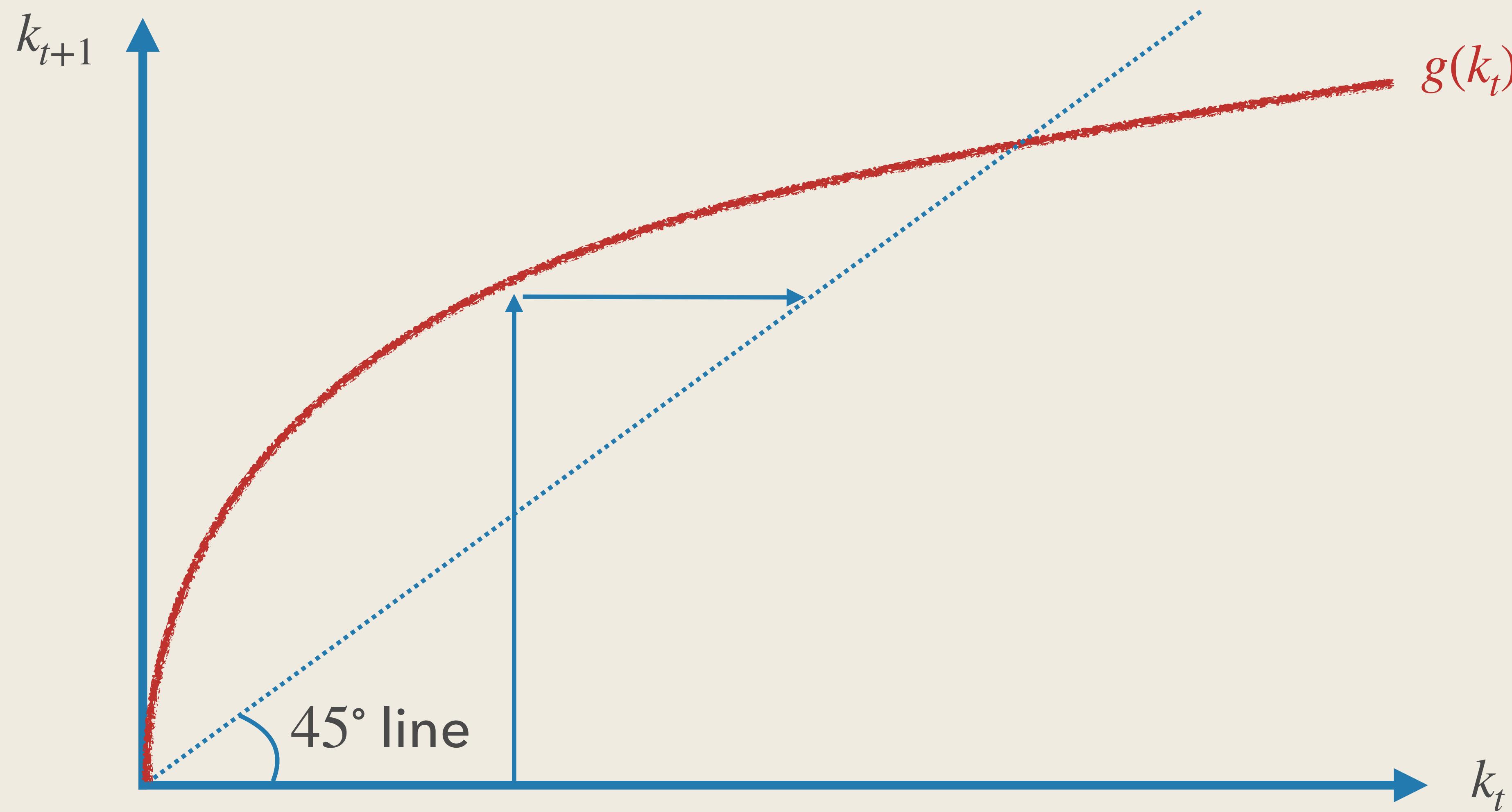
Evolution of Capital Stock



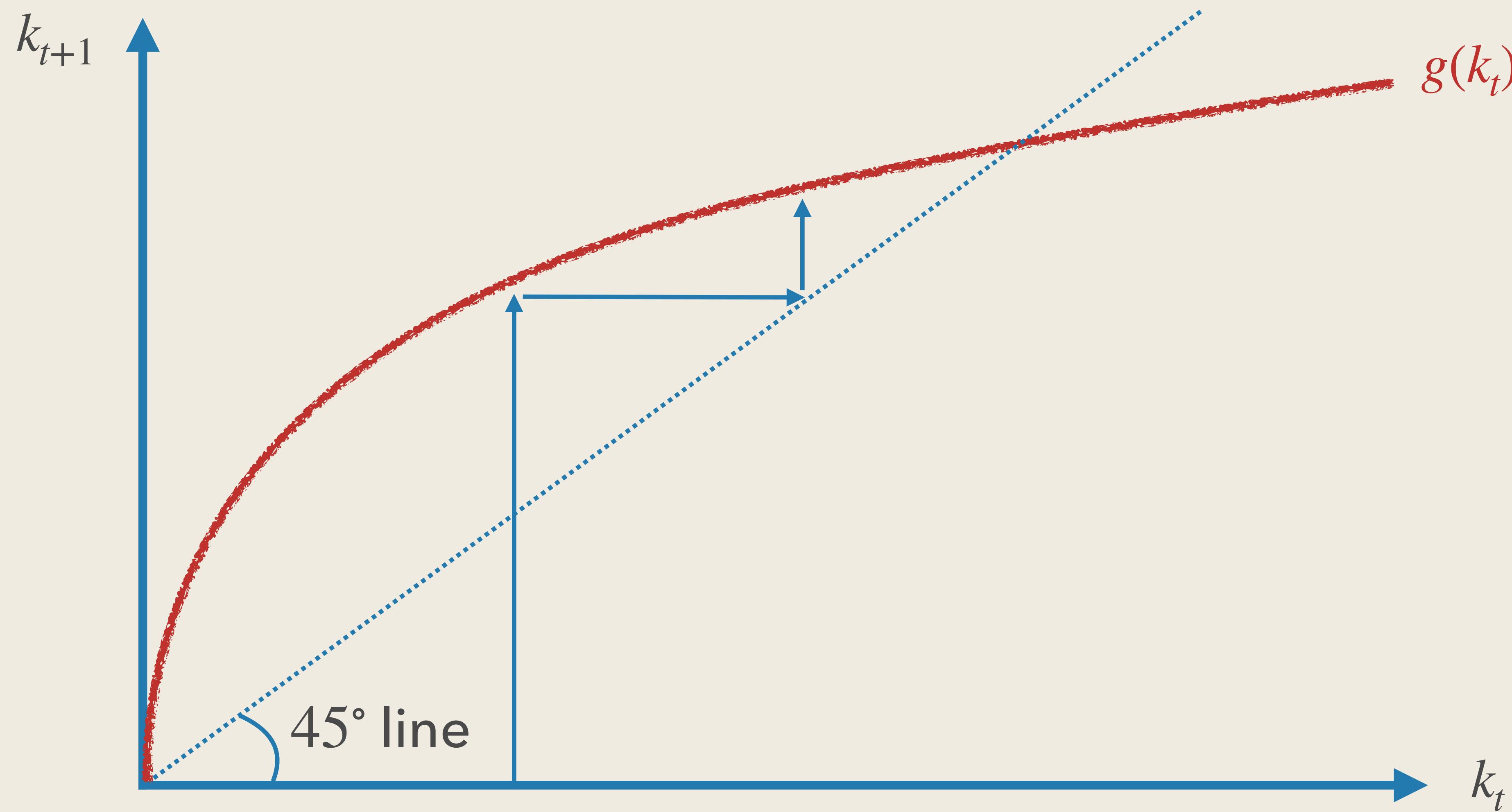
Evolution of Capital Stock



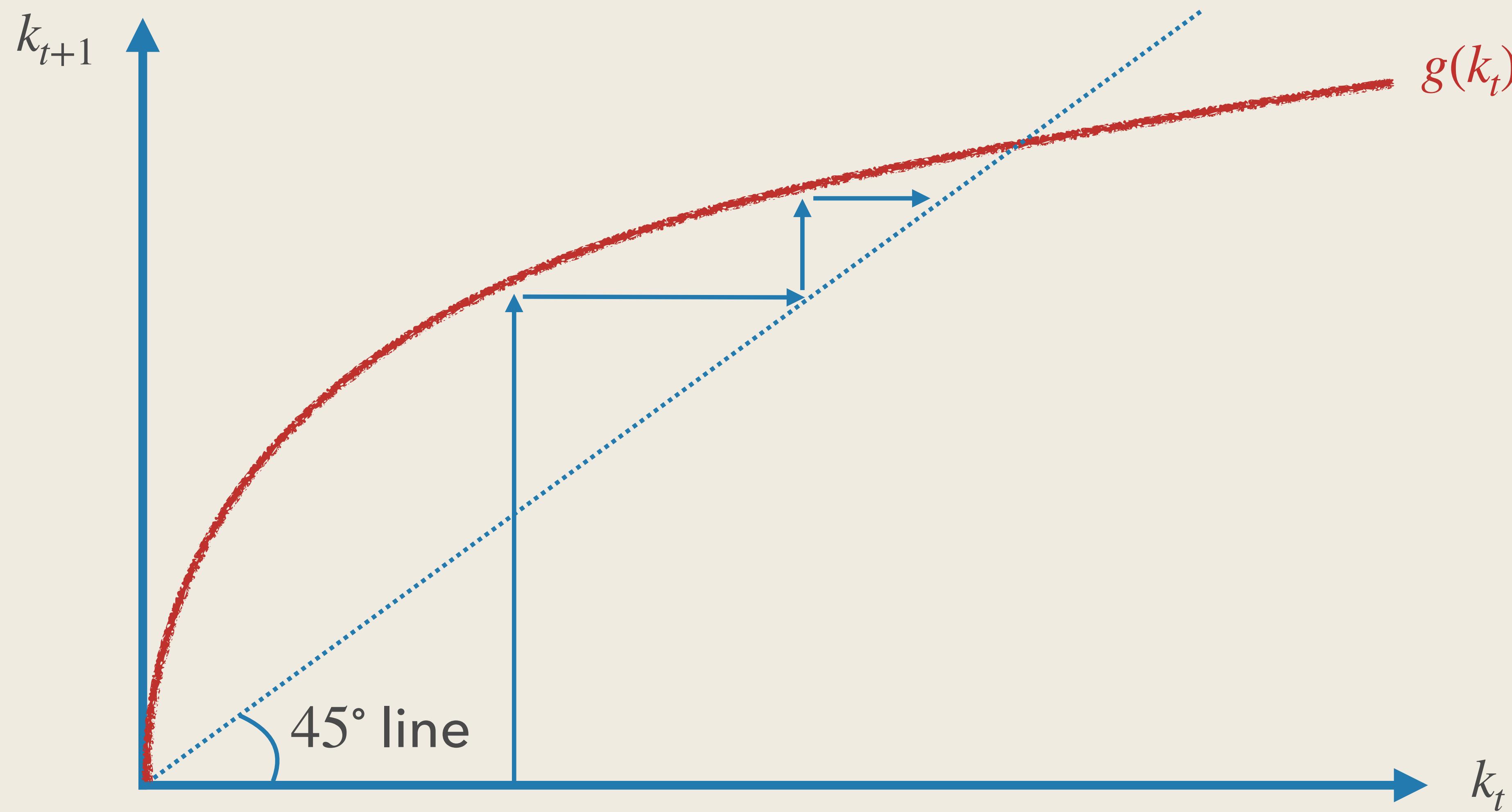
Evolution of Capital Stock



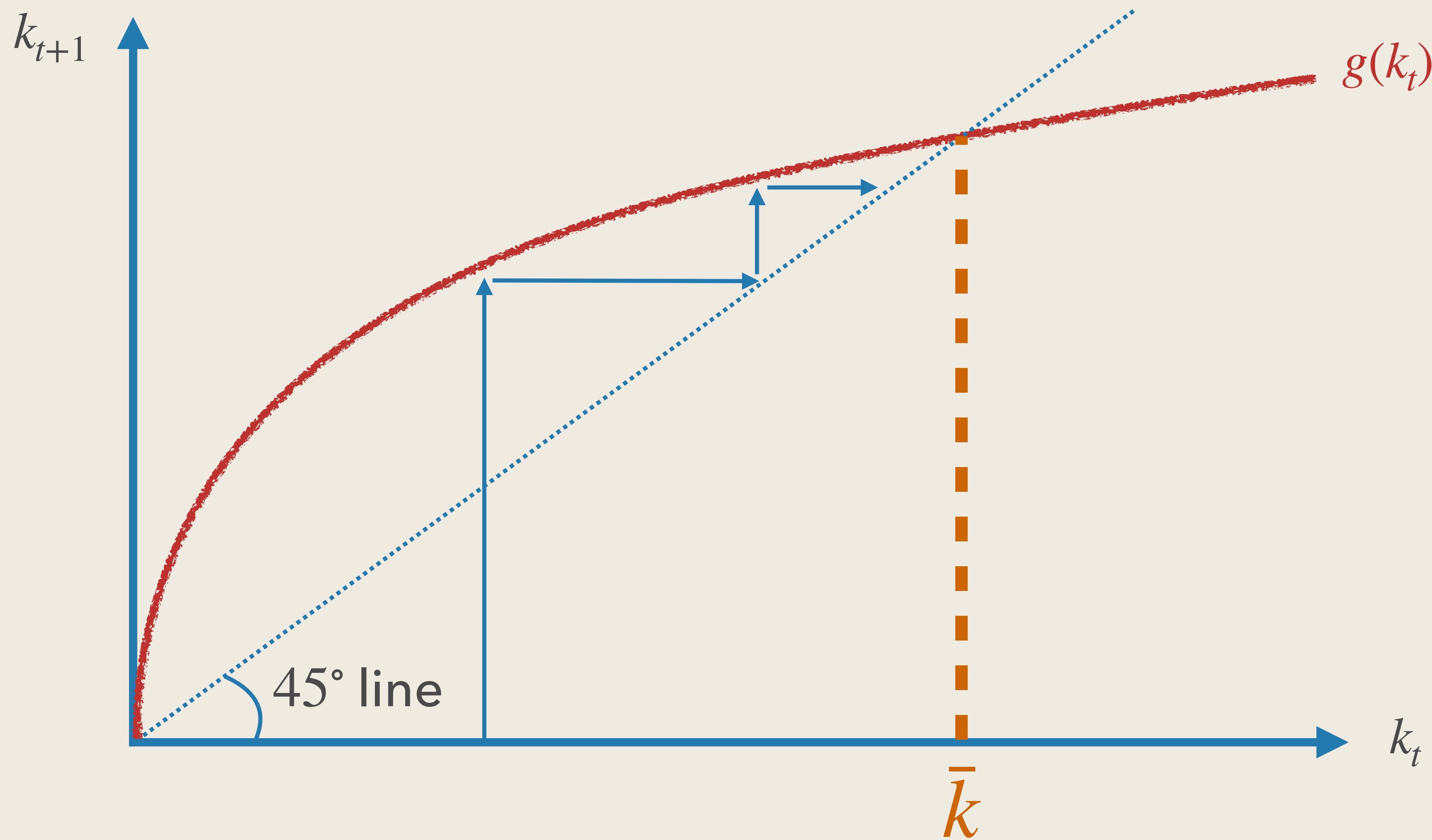
Evolution of Capital Stock



Evolution of Capital Stock



Evolution of Capital Stock



Steady State

- In the long-run (**steady state**), the capital stock converges to \bar{k} that satisfies

$$\bar{k} = \frac{1}{1+n} \left[(1 - \delta) \bar{k} + s \underbrace{A \bar{k}^\alpha}_{\bar{y}} \right]$$

- Dividing both sides by y and rearranging, we get

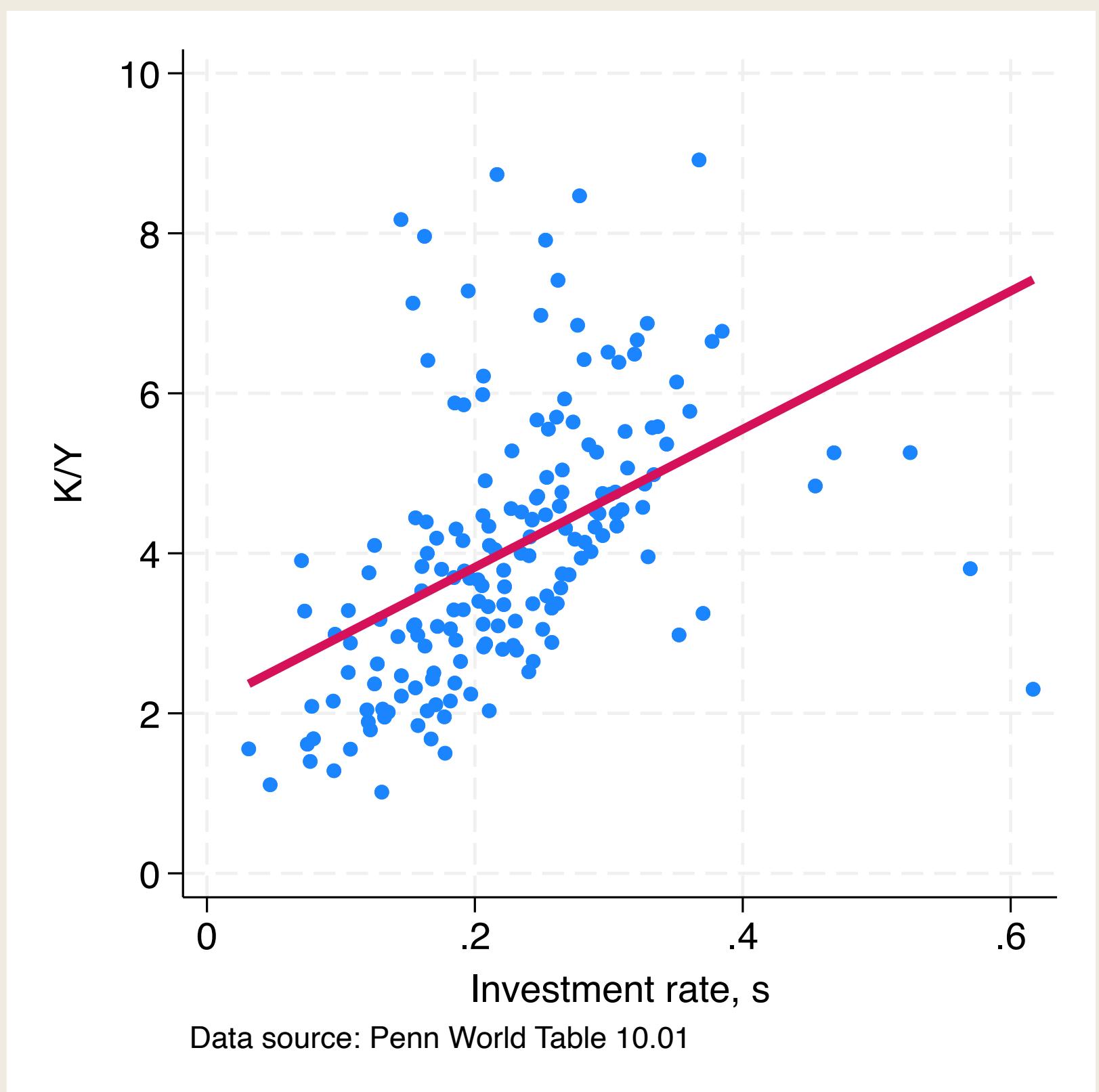
$$\frac{\bar{k}}{\bar{y}} = \frac{s}{n + \delta} \quad \text{or} \quad \bar{k} = \left(\frac{As}{n + \delta} \right)^{\frac{1}{1-\alpha}}$$

Long-run capital-to-GDP ratio (capital intensity) is high if

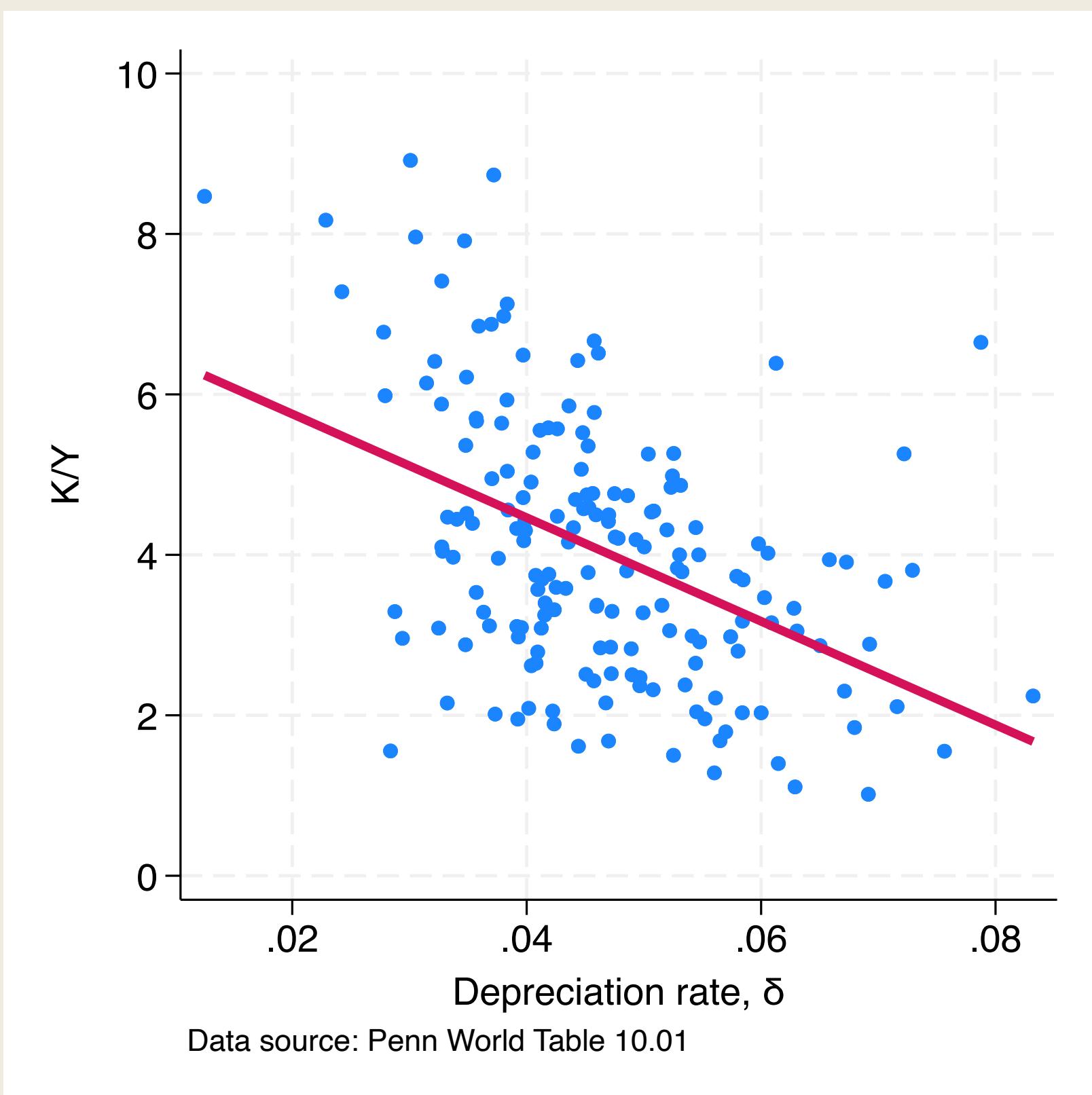
- investment rate (s) is high
- depreciation rate (δ) is low
- population growth (n) is low

Testing Solow Model

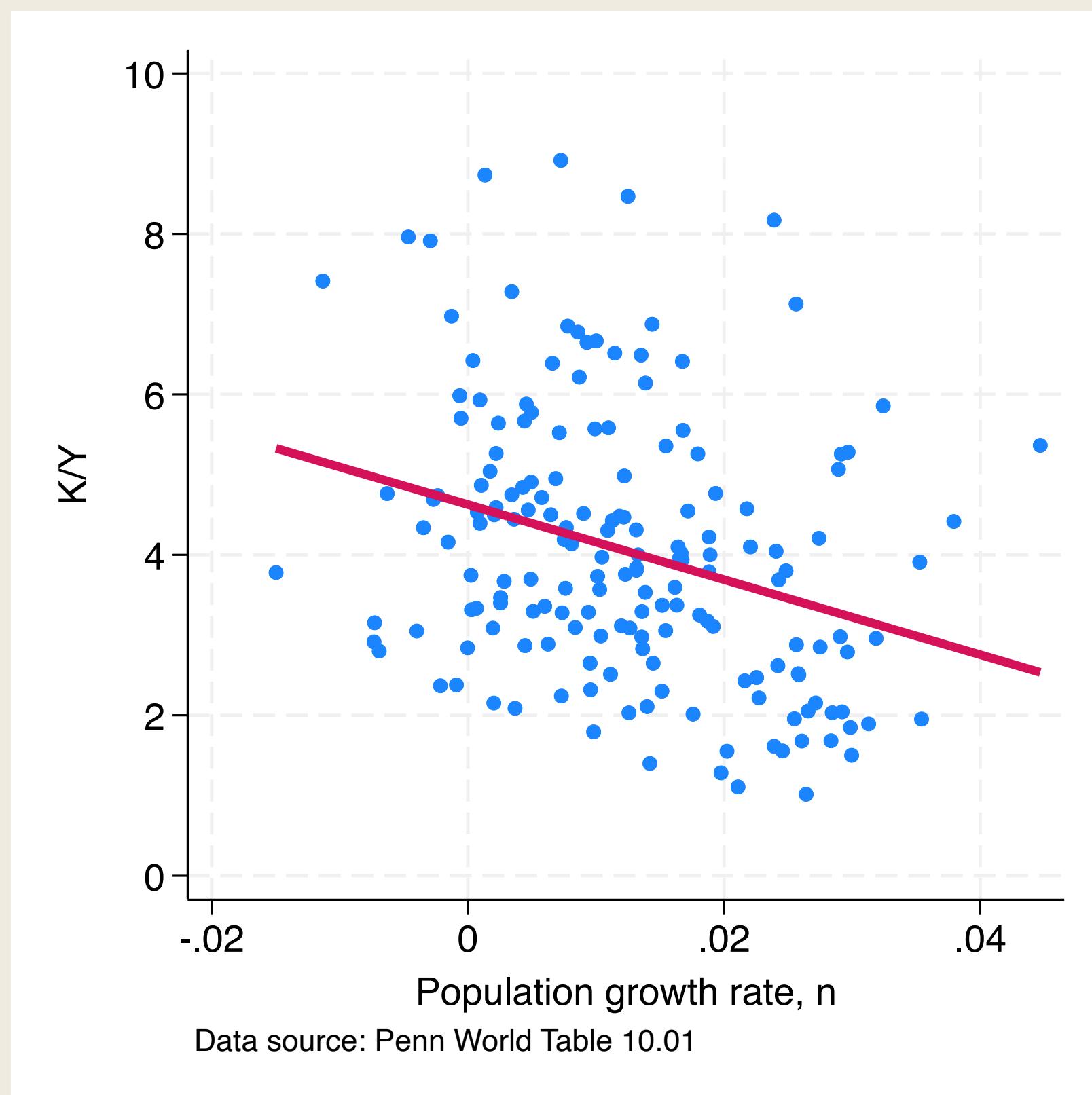
K/Y and s



K/Y and δ

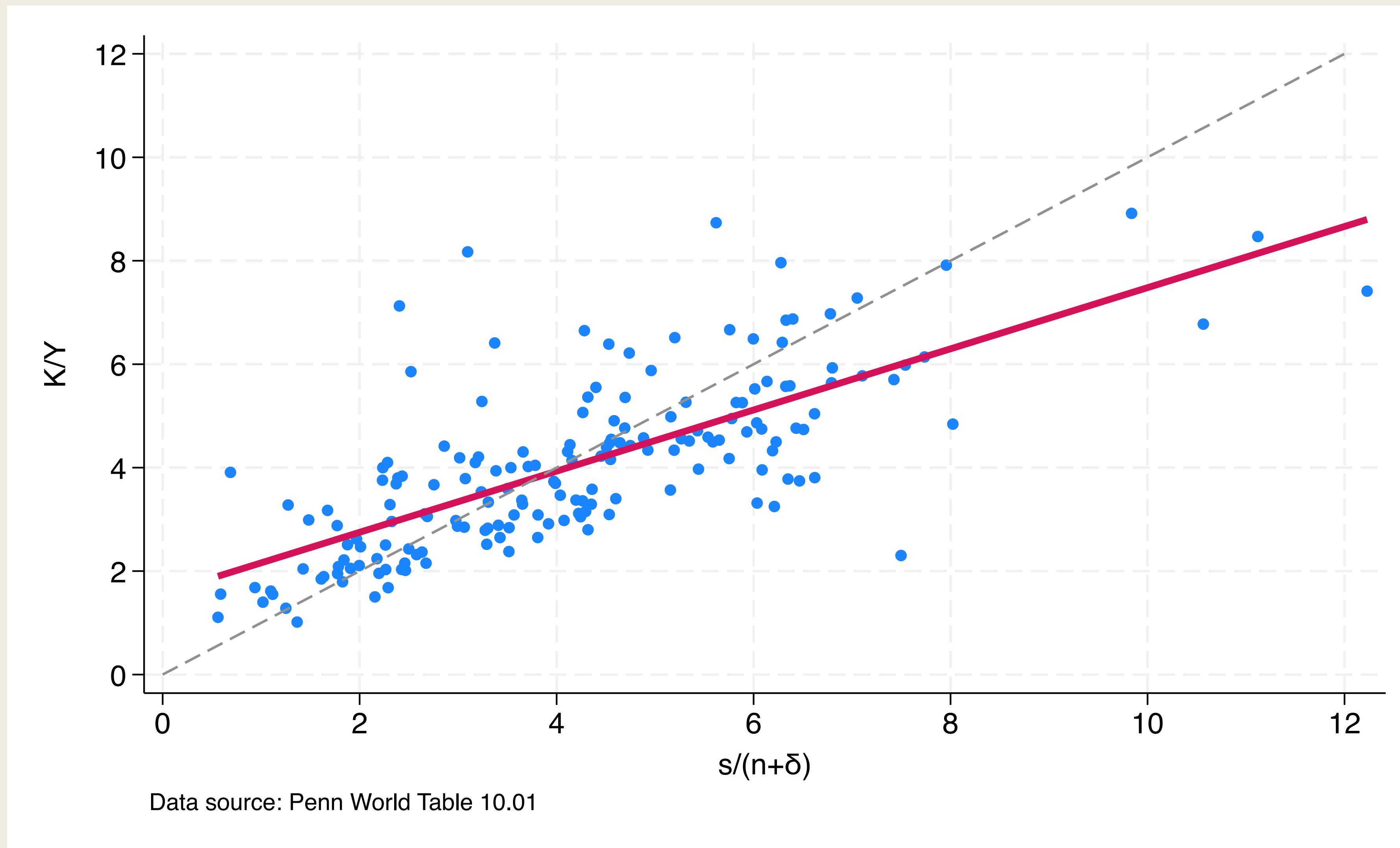


K/Y and n



- Assuming all countries are in steady-states in 2019, we confront the model with data

K/Y in the Model and in the Data



Economic Growth in Solow Model

Long-Run Growth in Solow Model

- What is the long-run growth rate of the economy according to the Solow model?

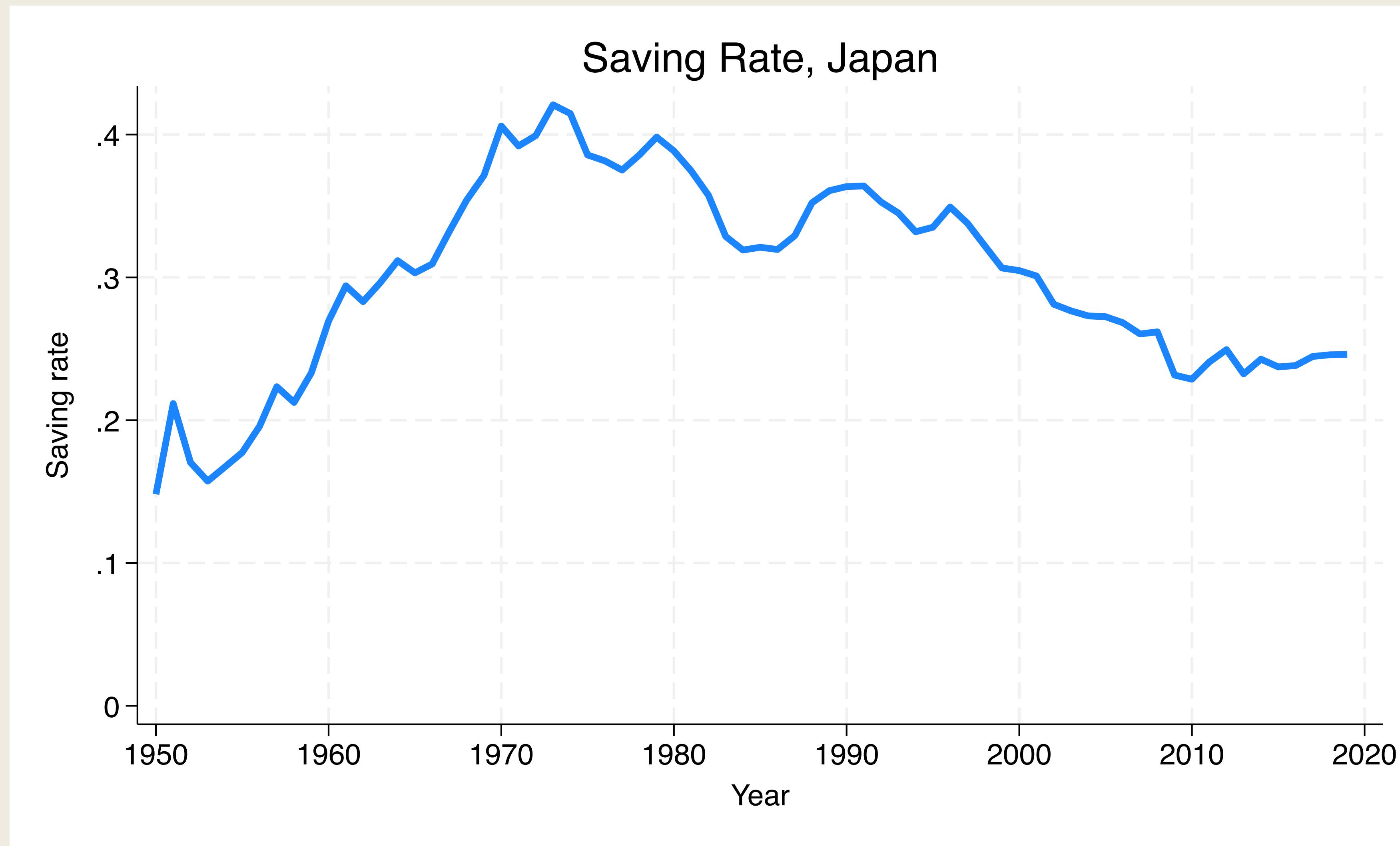
Zero! There is no long-run growth in Solow!

- Capital stock per capita, k , is constant in the steady state, and so is output, $y = Ak^\alpha$
- This is because of decreasing returns to scale
 - As we accumulate more and more k , y rises by a smaller and smaller amount
 - But capital depreciate at a constant rate
- Diminishing returns to capital is at the heart of why growth eventually ceases
- A huge, disappointing failure.

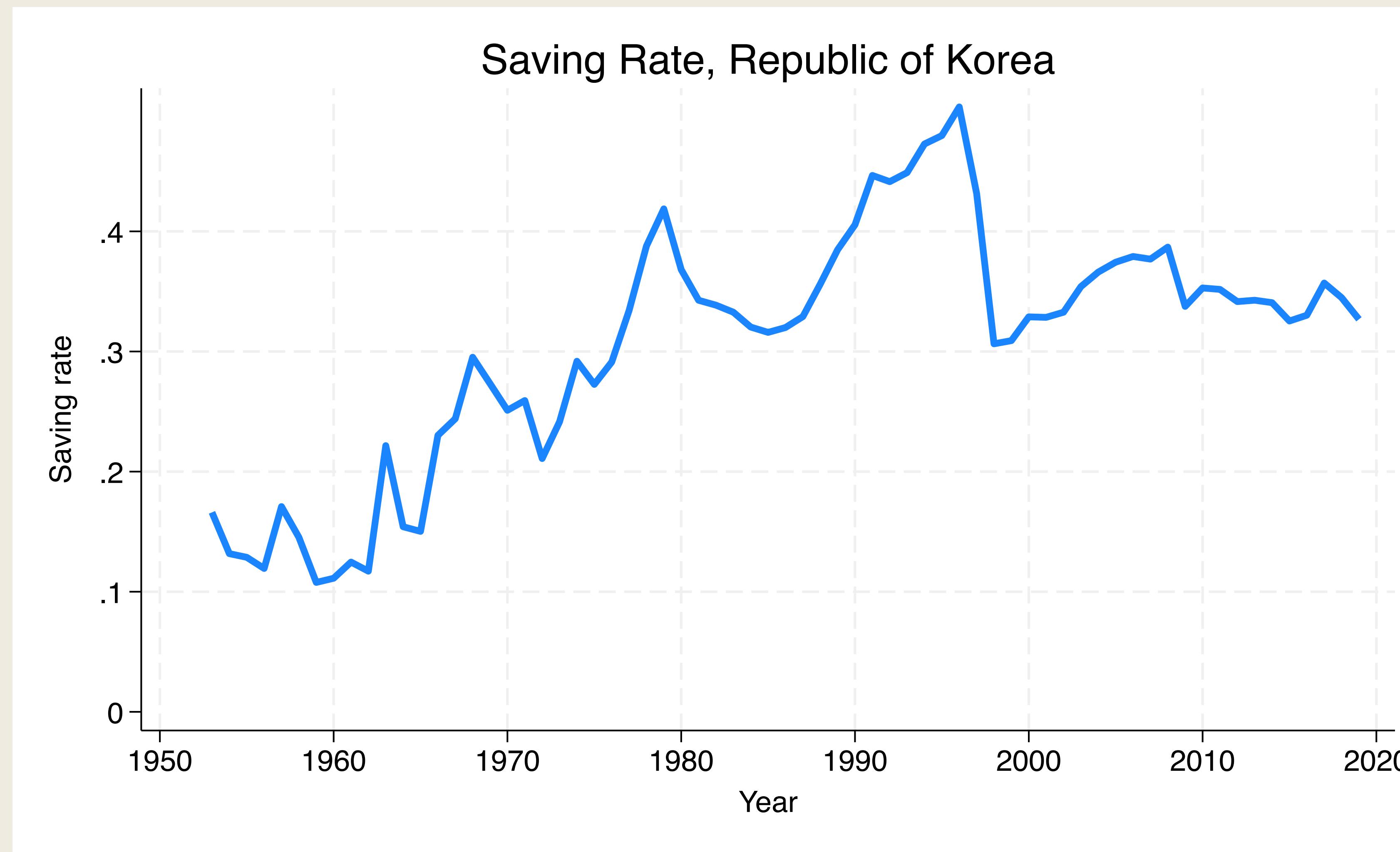
Transition Dynamics

- Despite this negative result on long-run growth, the Solow framework is useful
- Solow model does predict growth along the transition dynamics
- Suppose a country begins in a steady state
- What happens if this country suddenly starts to invest more (a rise in s)?
- This has happened in many East Asian growth miracle countries

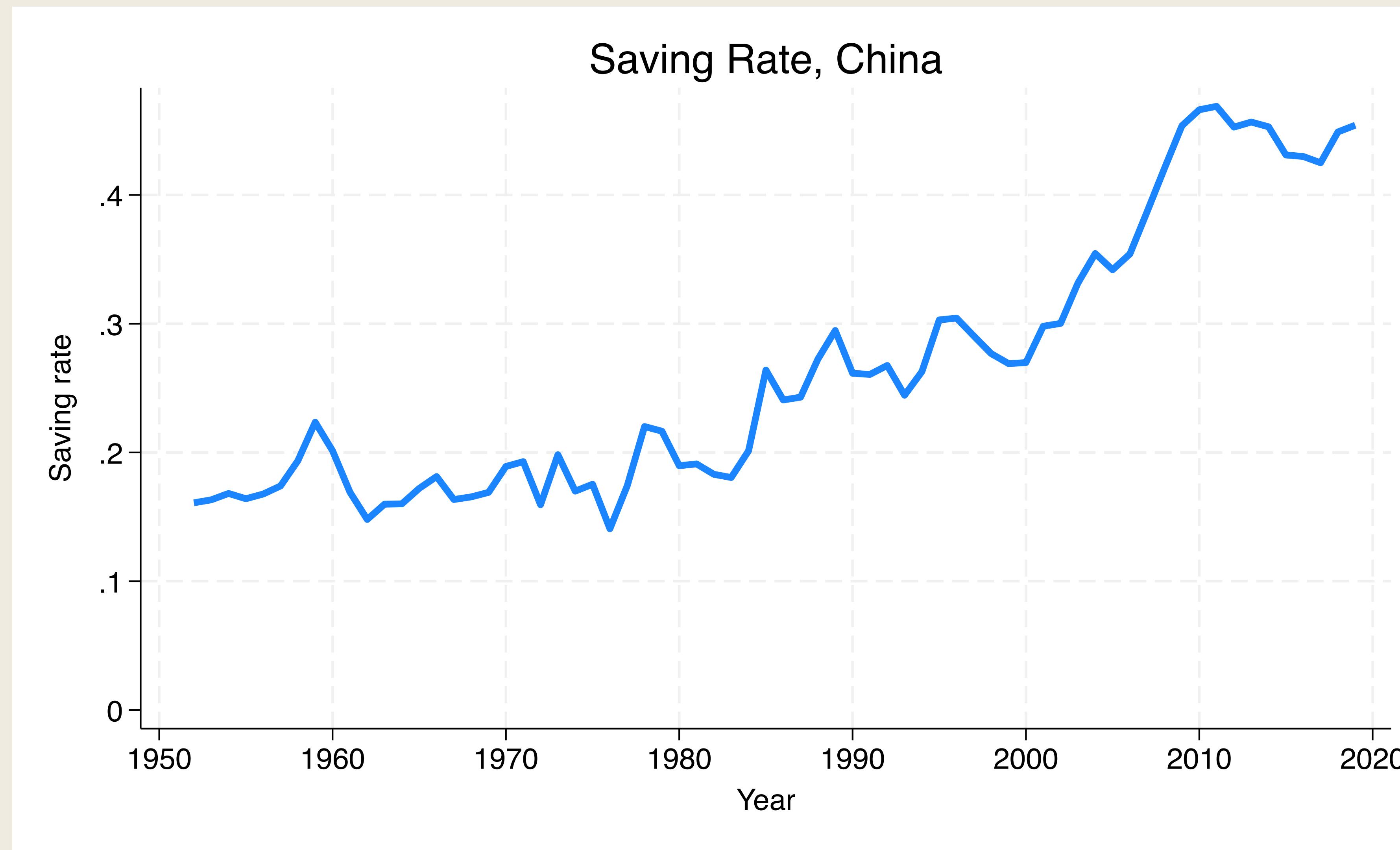
Saving Rate: Japan



Saving Rate: South Korea

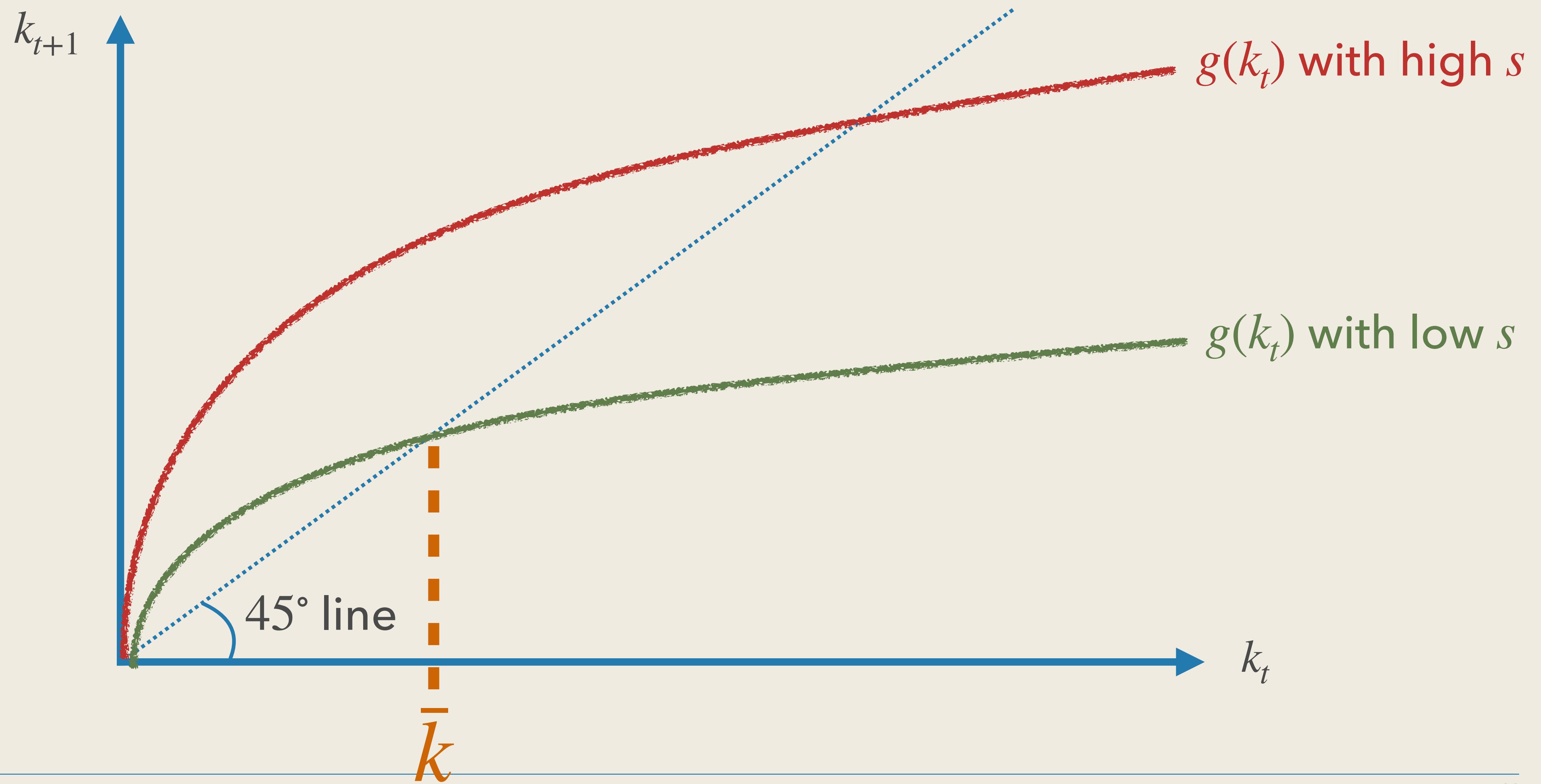


Saving Rate: China



Evolution of Capital Stock

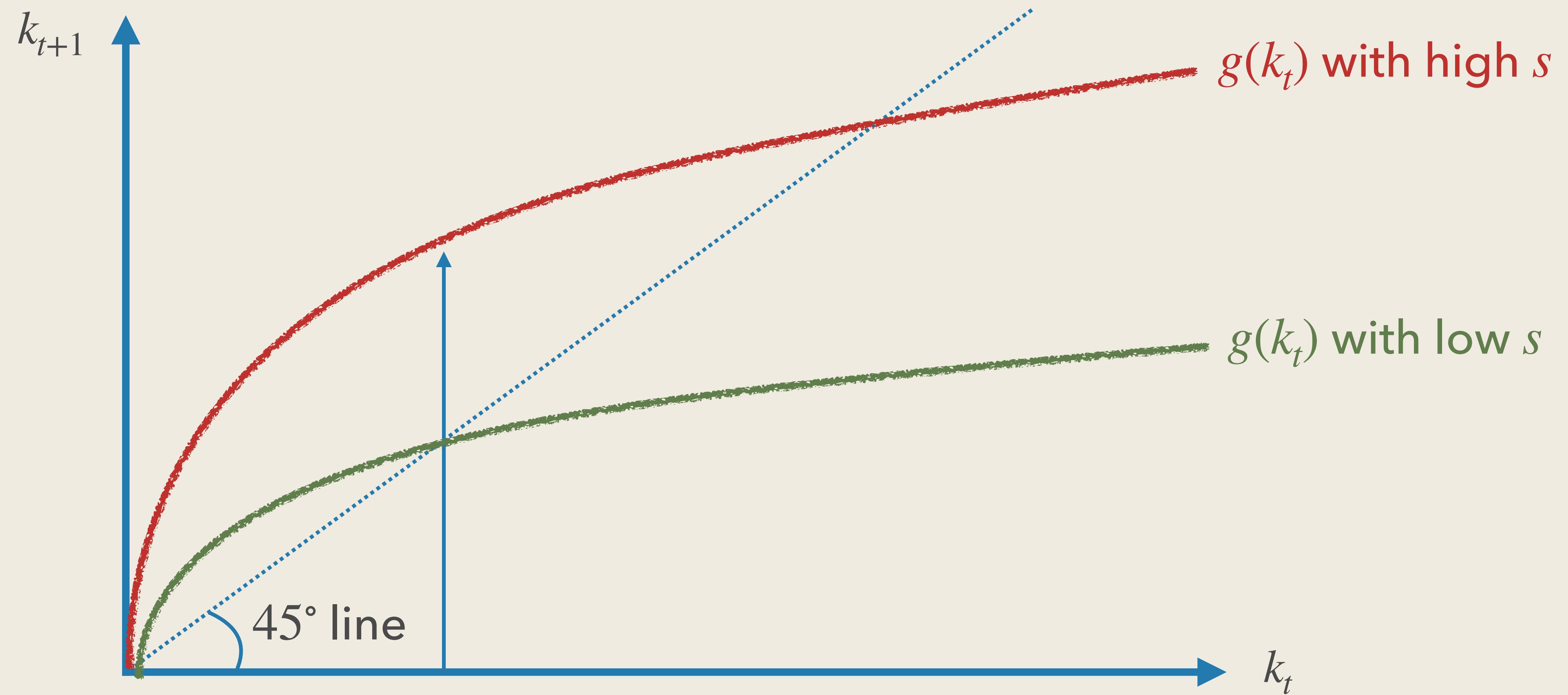
Evolution of Capital Stock



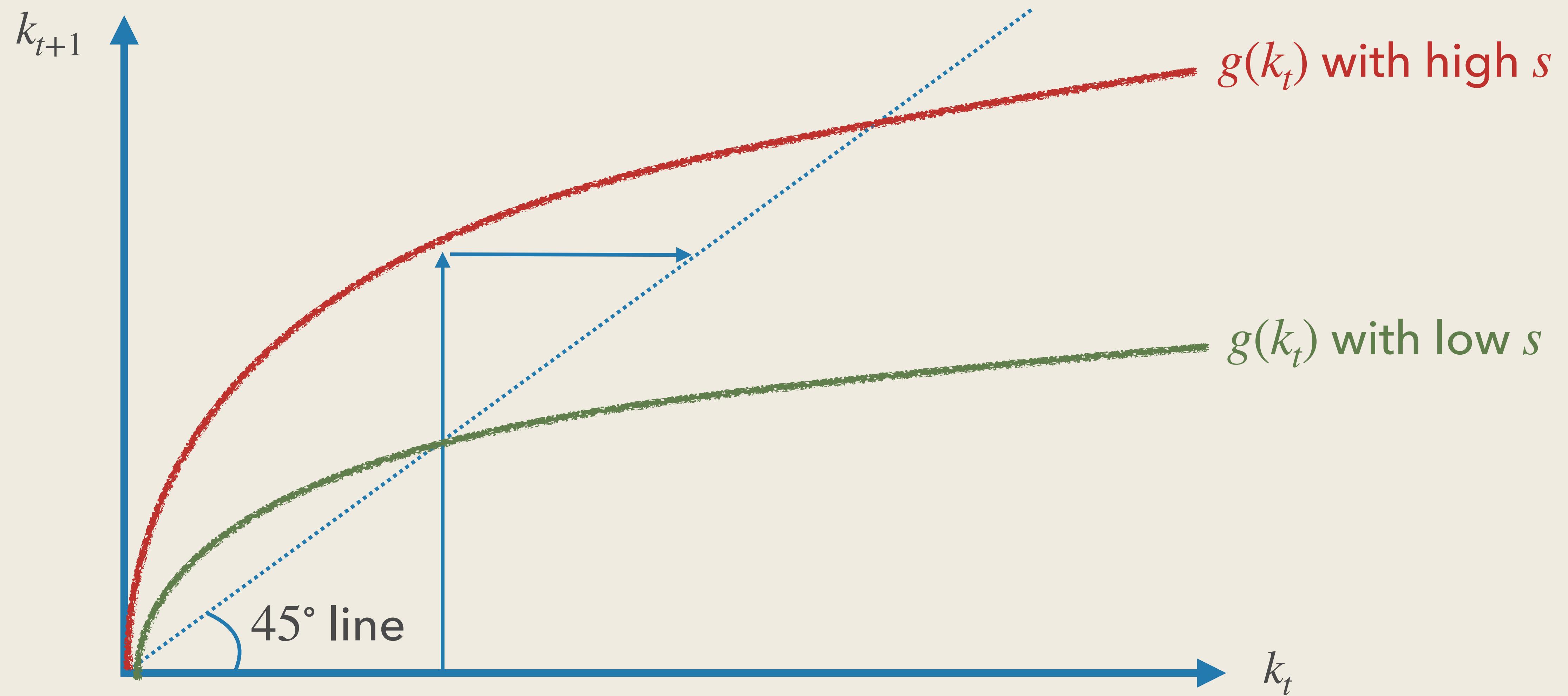
Evolution of Capital Stock



Evolution of Capital Stock



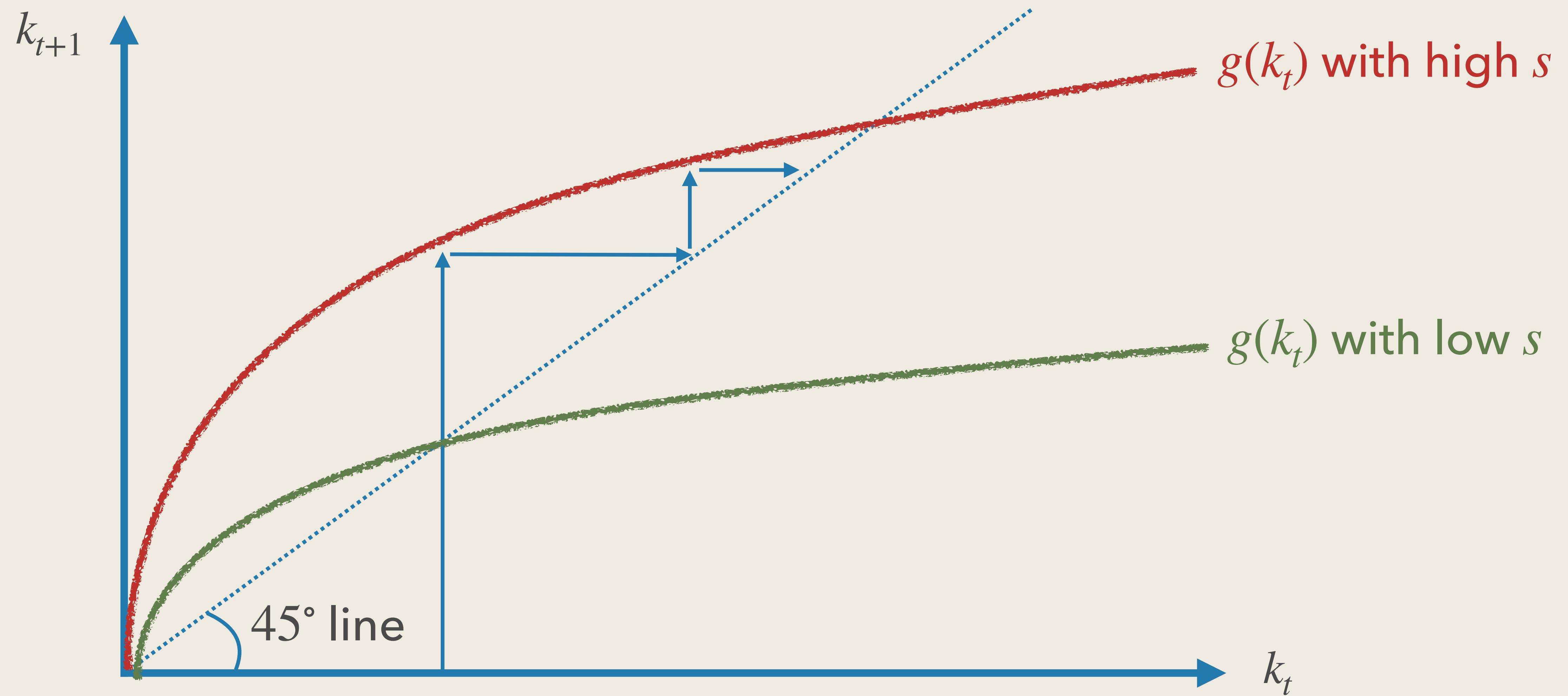
Evolution of Capital Stock



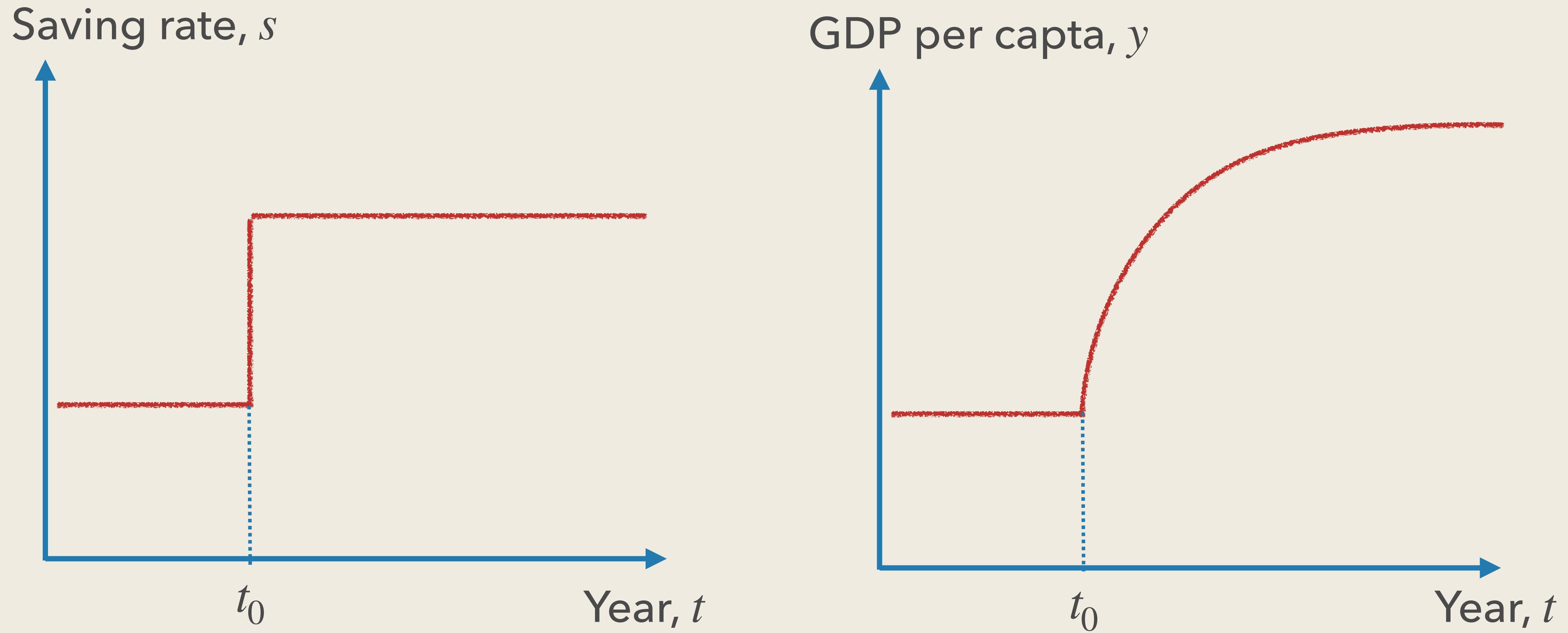
Evolution of Capital Stock



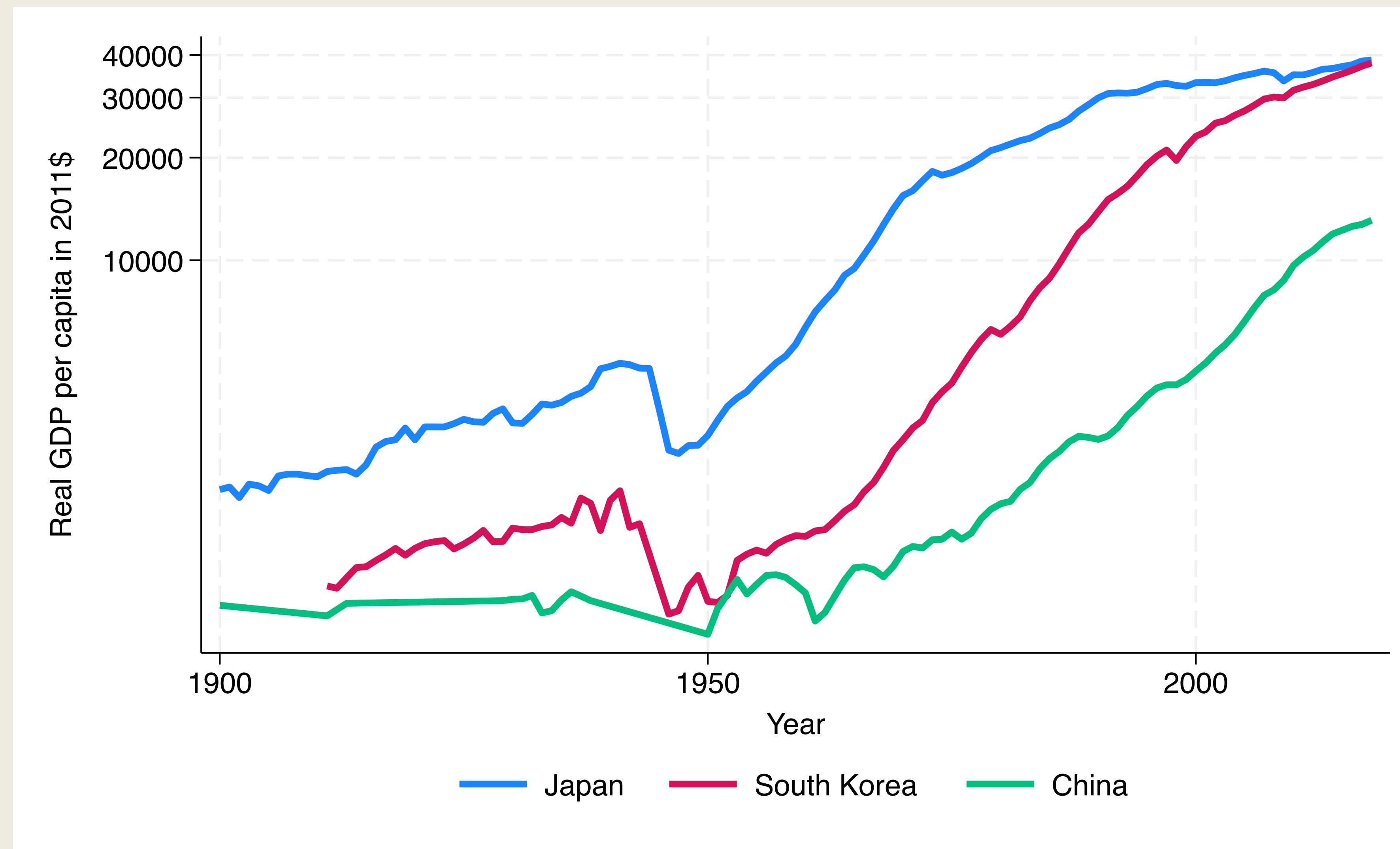
Evolution of Capital Stock



Growth Miracle?



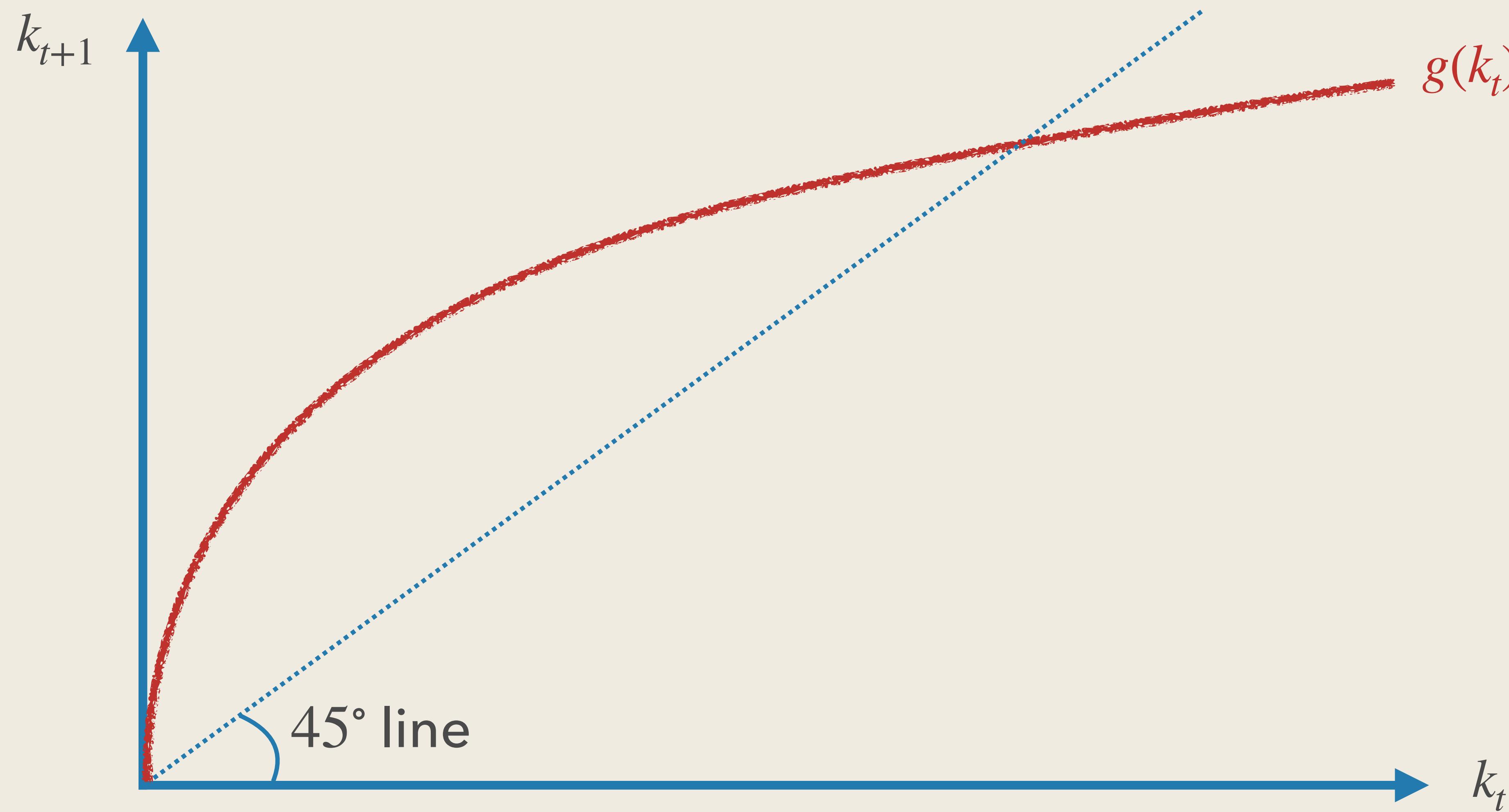
Asian Growth Miracle



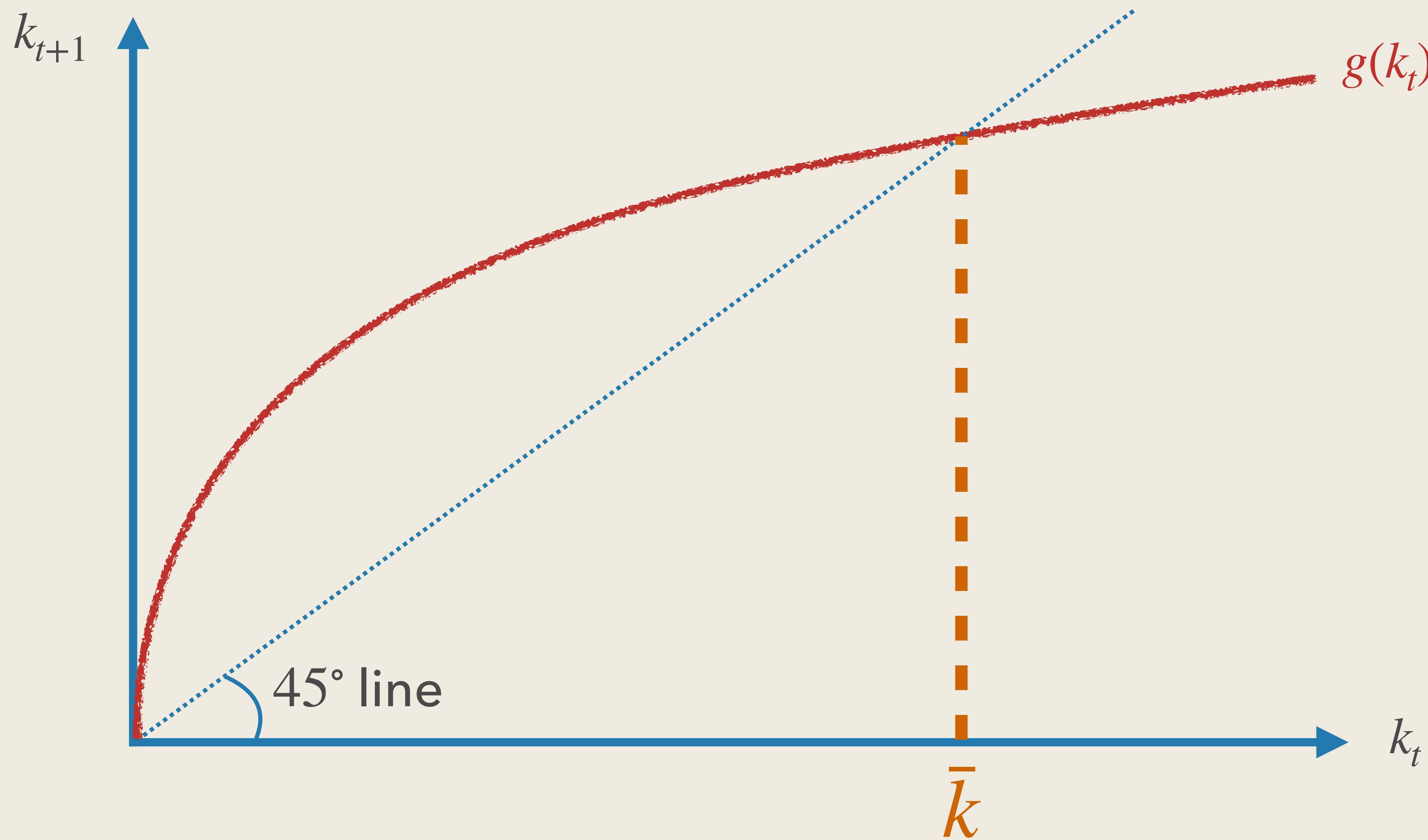
Capital Destruction

- Another interesting prediction of Solow model is capital destruction
- Suppose a country begins in a steady state
- What happens if some of its capital stock is suddenly destroyed?
 - due to wars or disasters

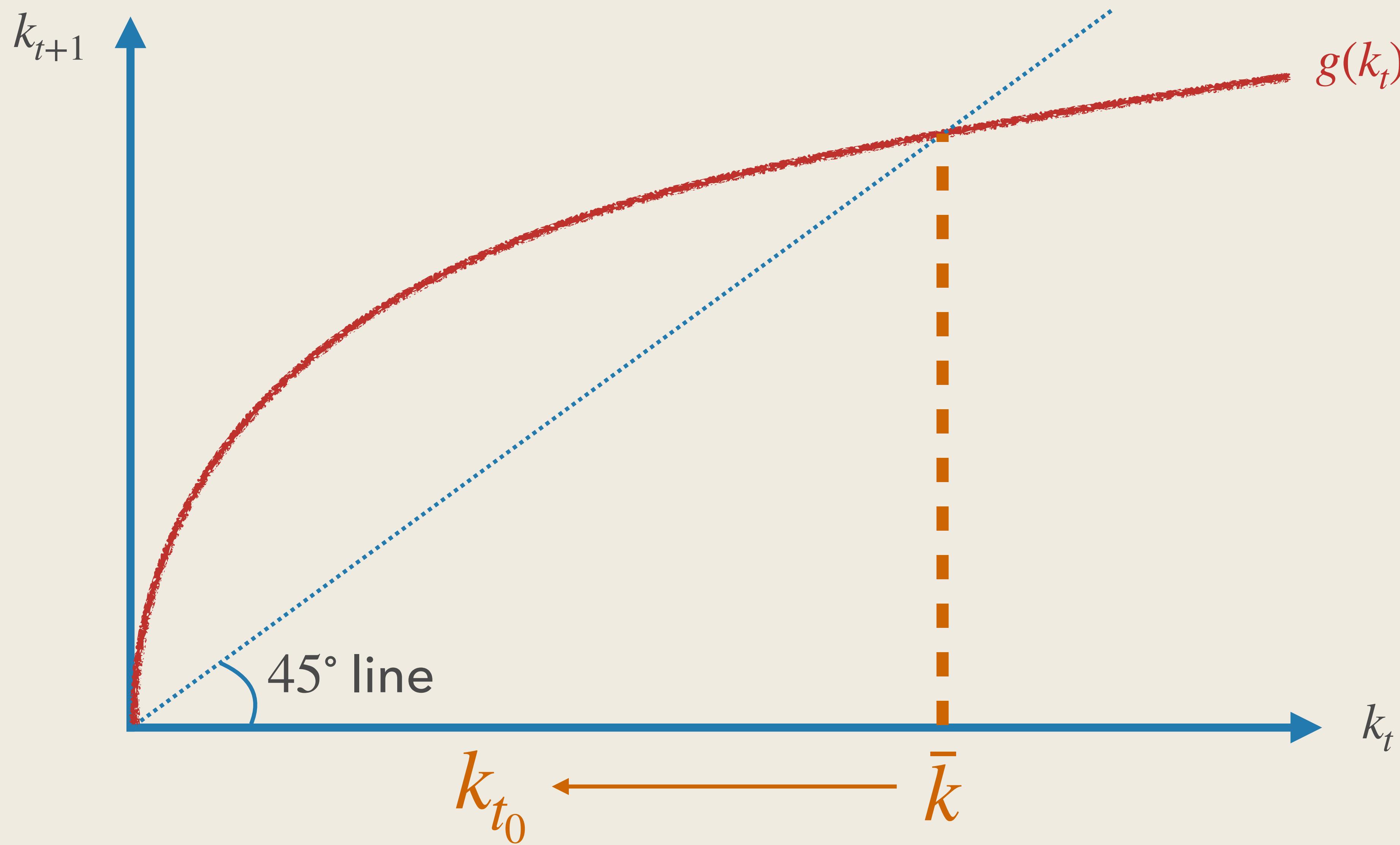
Evolution of Capital Stock



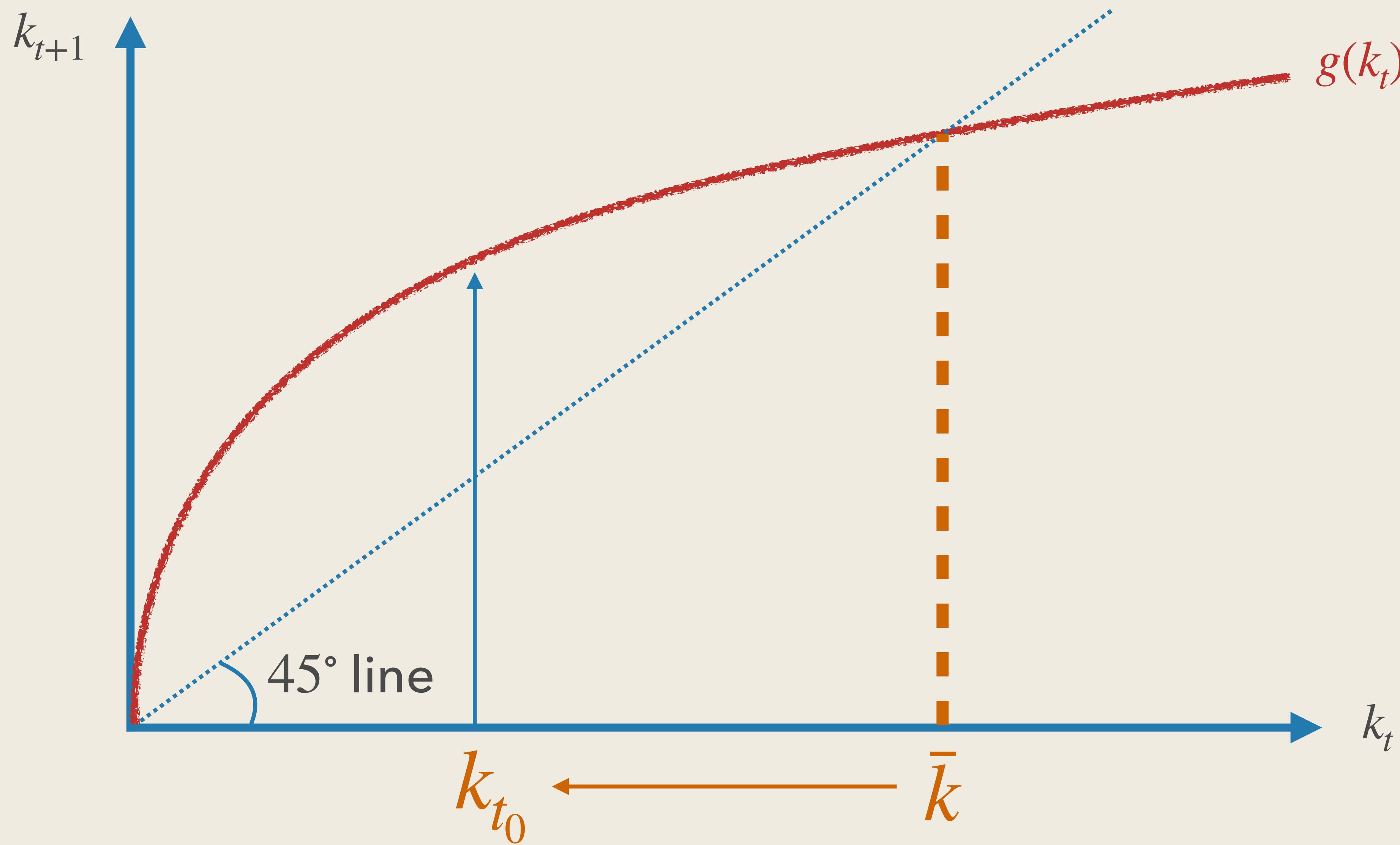
Evolution of Capital Stock



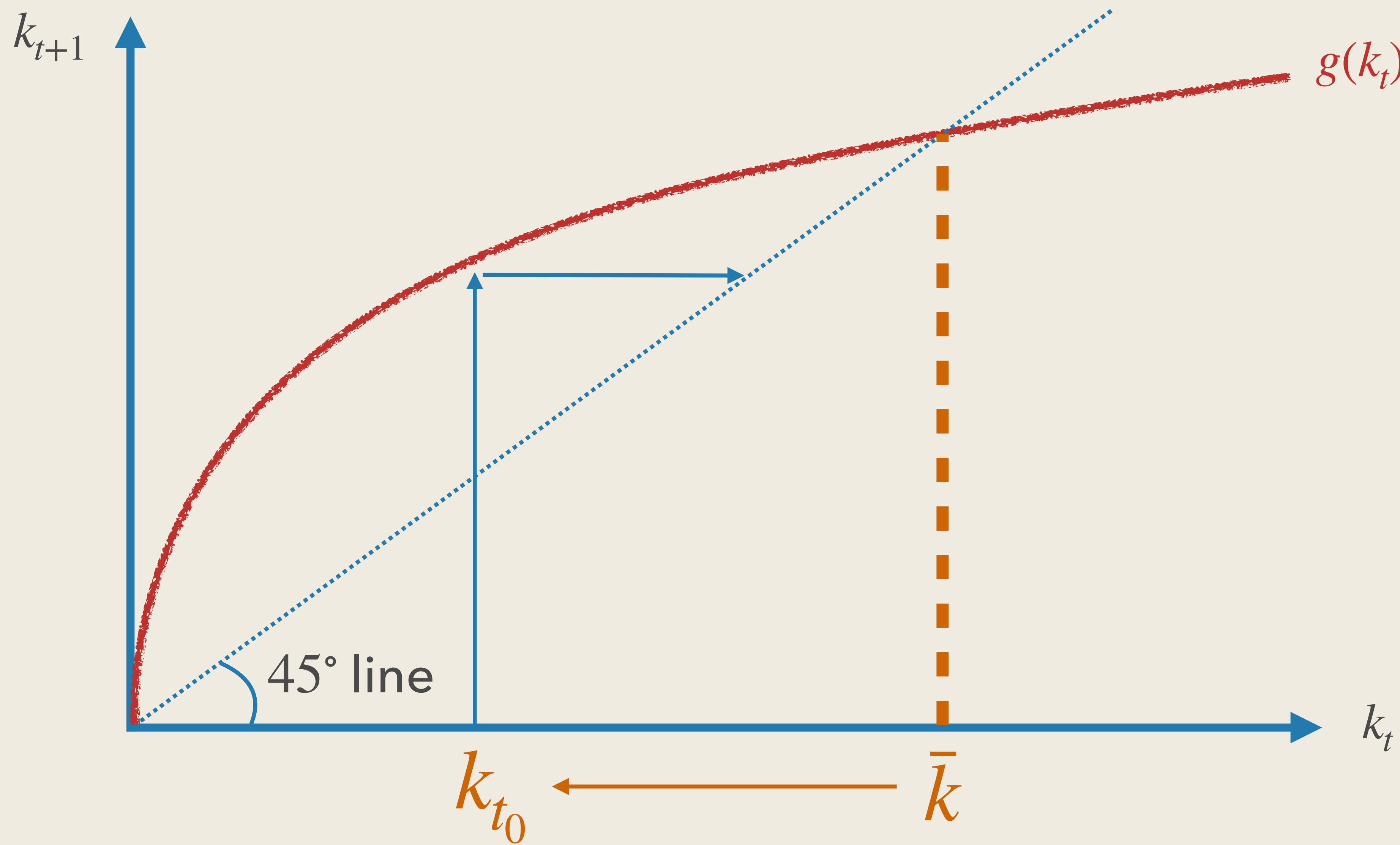
Evolution of Capital Stock



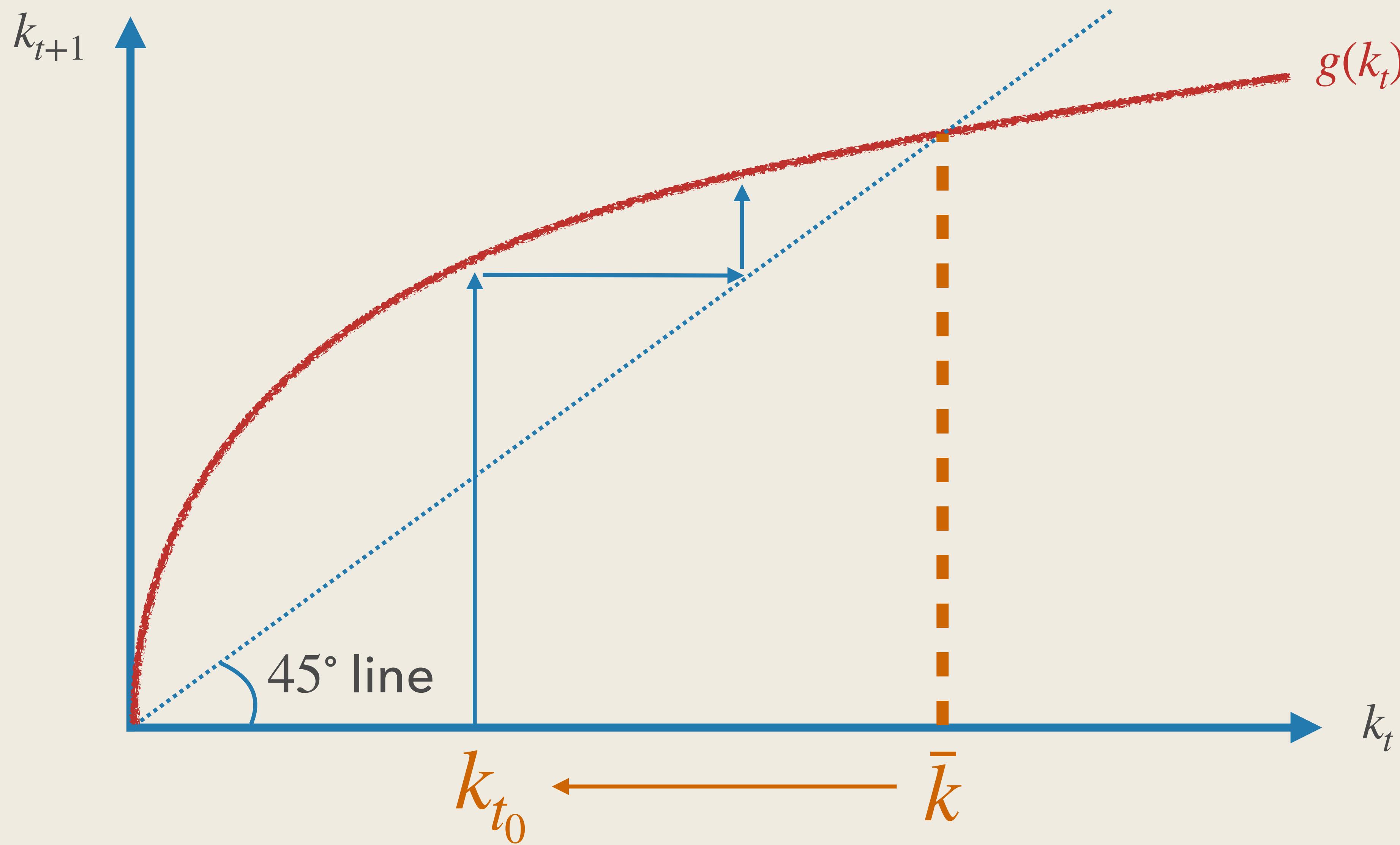
Evolution of Capital Stock



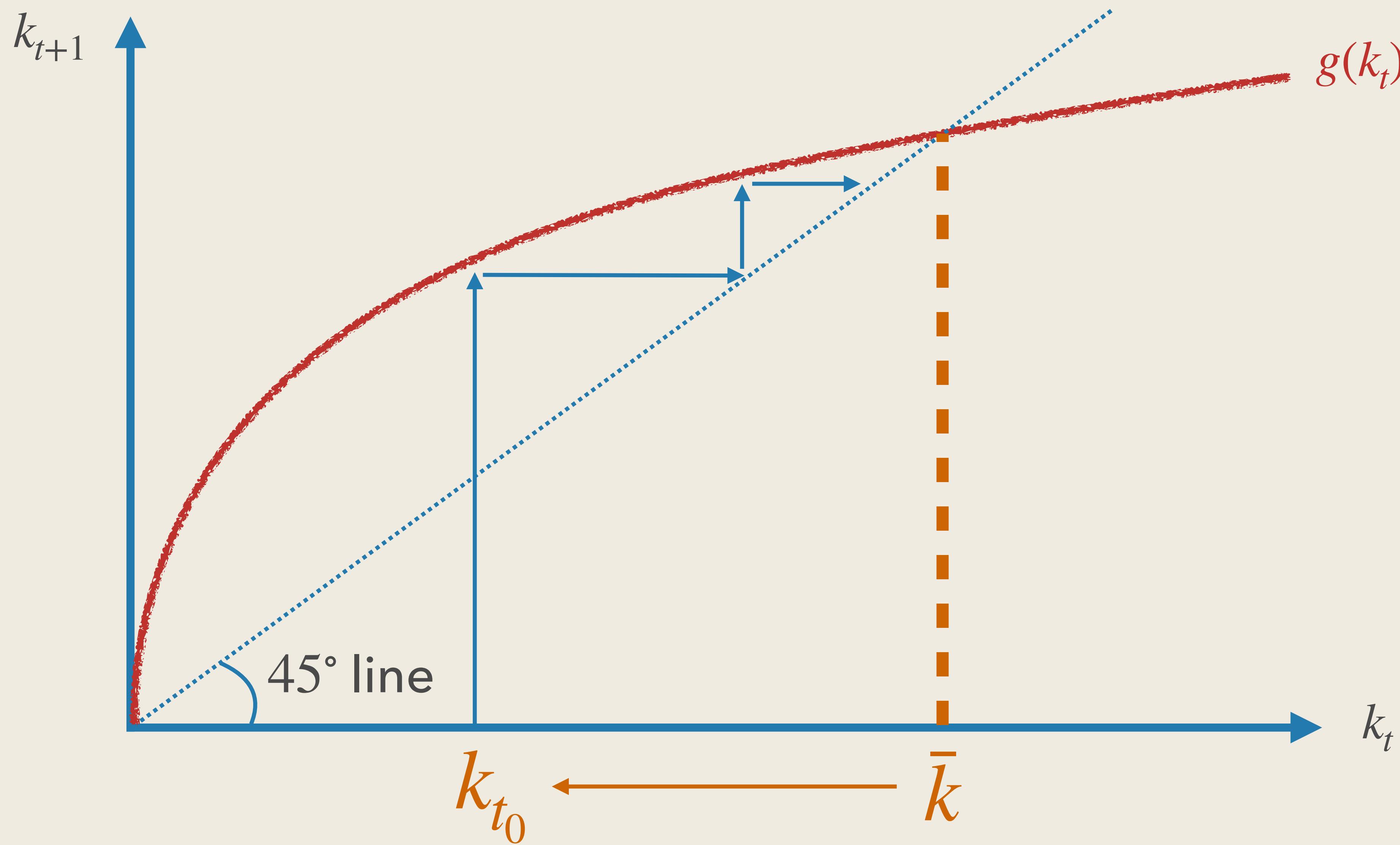
Evolution of Capital Stock



Evolution of Capital Stock



Evolution of Capital Stock

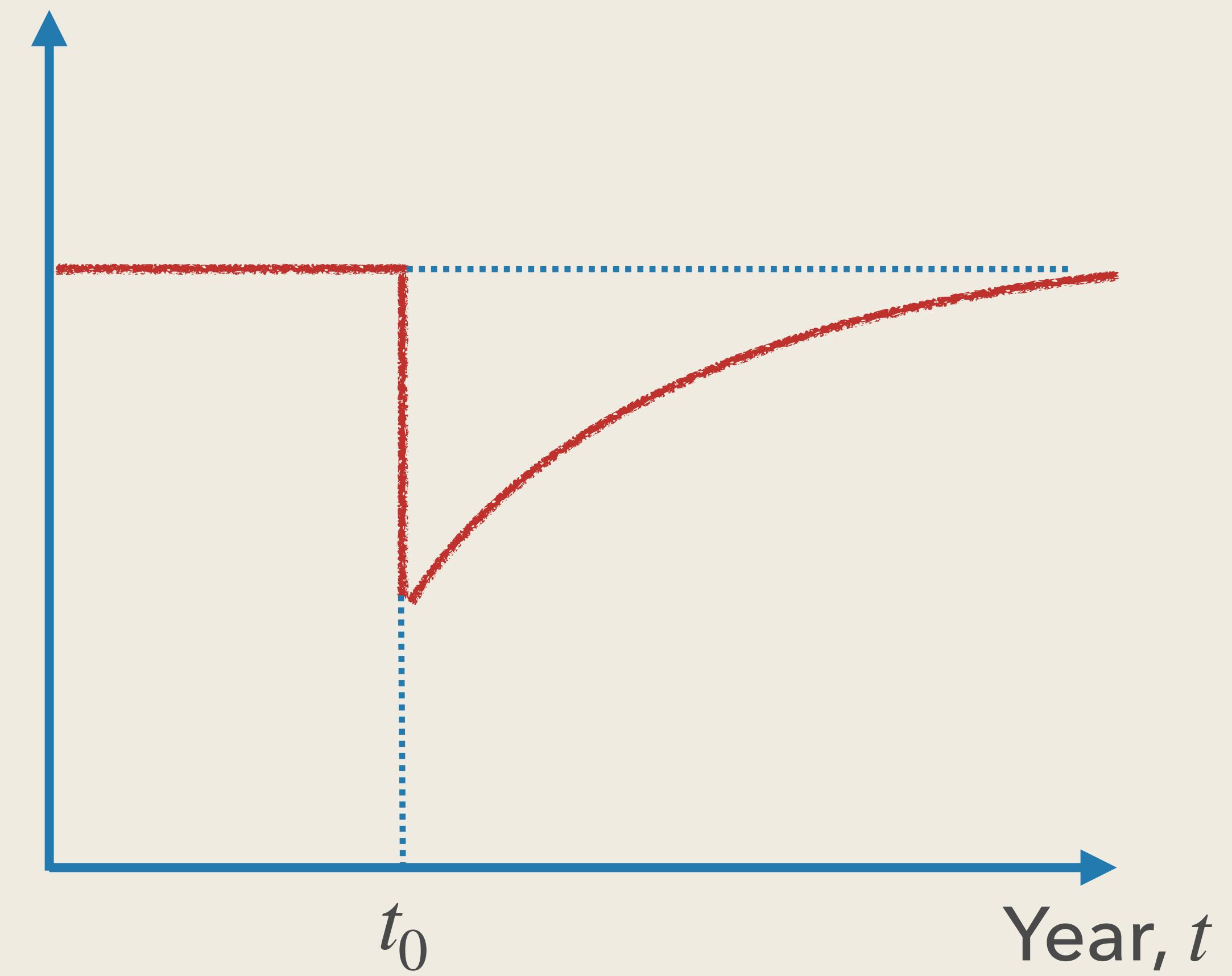


Capital Destruction Shock

Capital stock, k



GDP, y

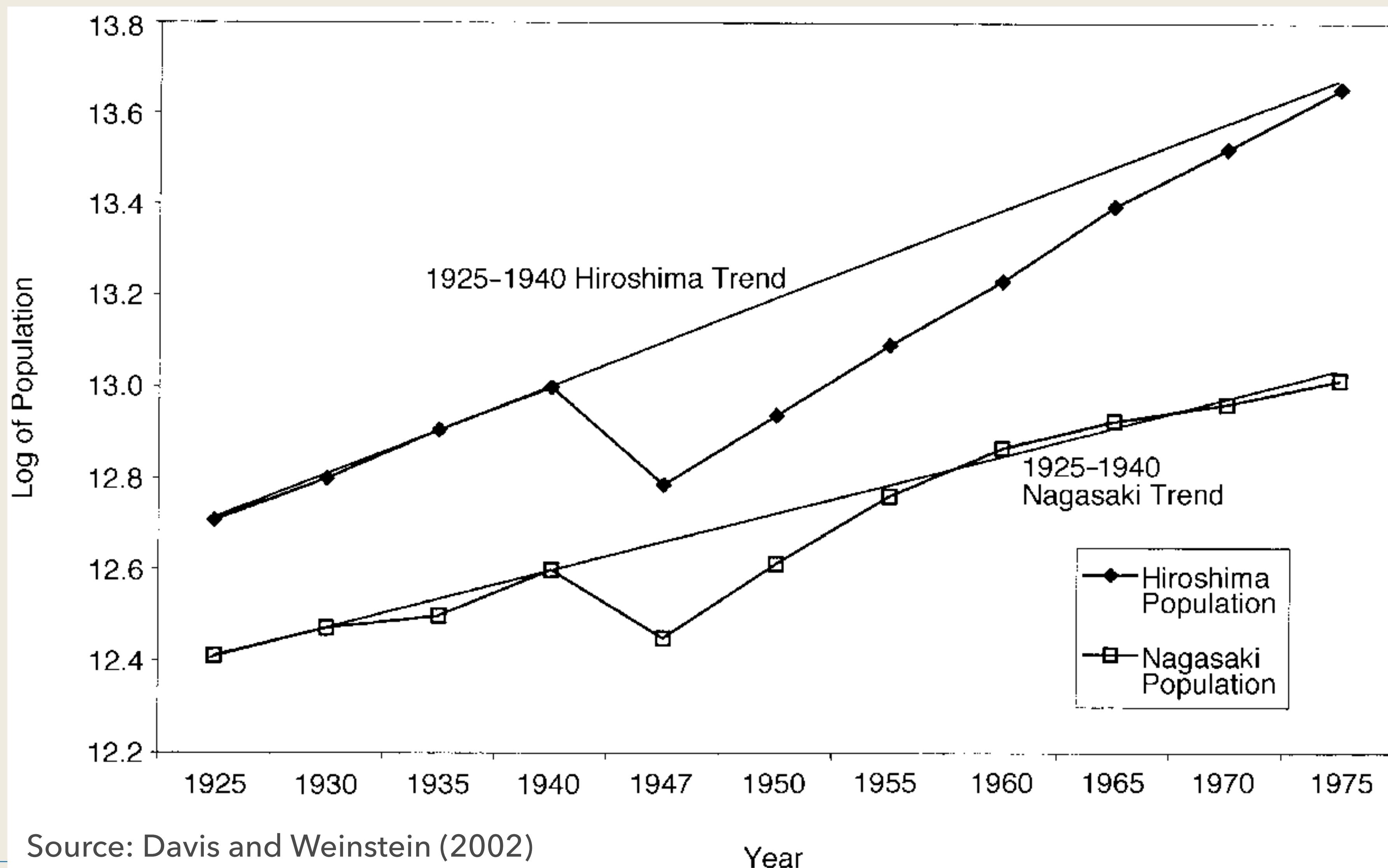


Davis and Weinstein (2002)

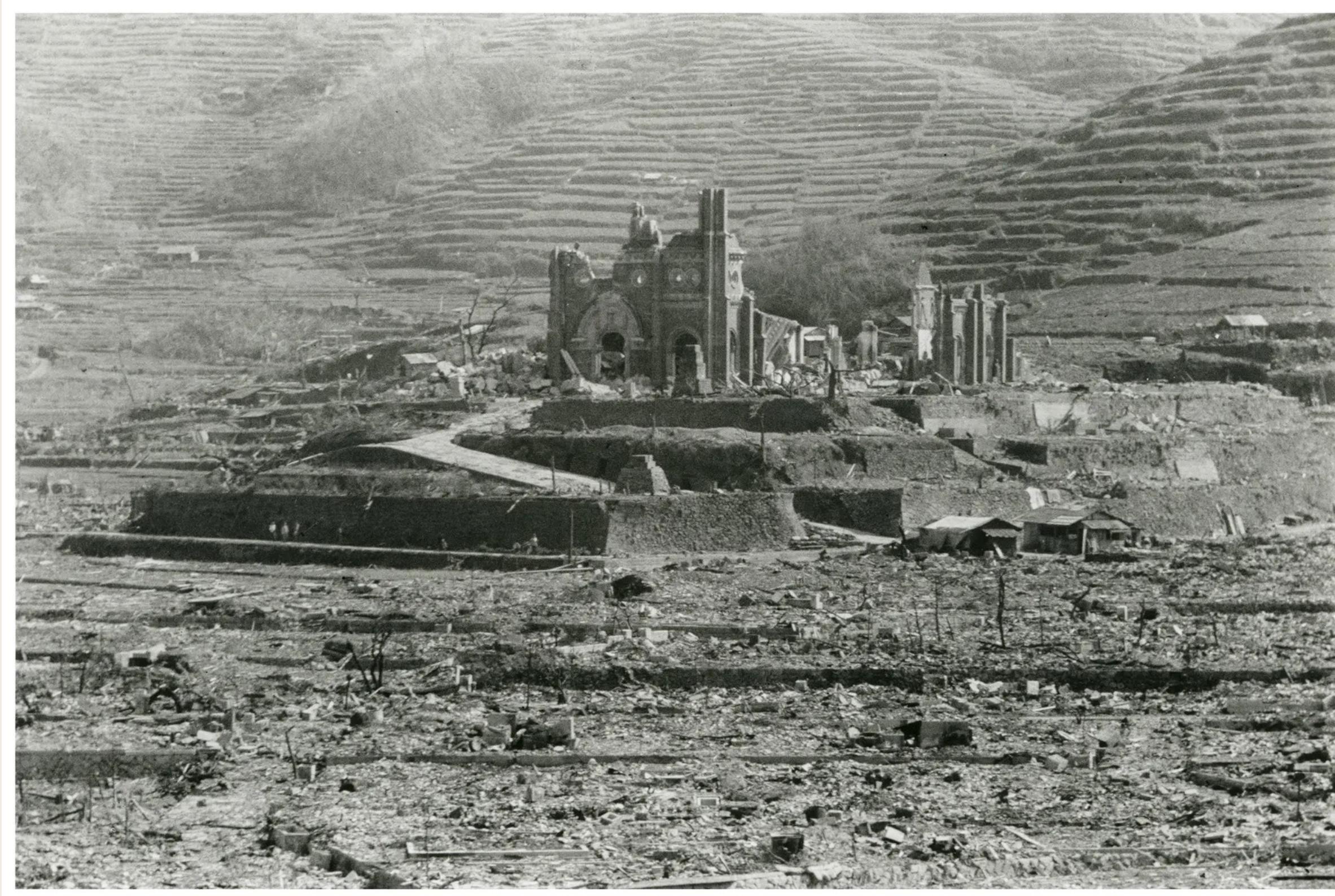
- Davis and Weinstein (2002):
test this prediction using atomic bombing of Hiroshima and Nagasaki as a laboratory



Rapid Recovery after Bombing



Nagasaki 1945 and Today



Source: <https://www.theguardian.com/artanddesign/gallery/2015/aug/06/after-the-atomic-bomb-hiroshima-and-nagasaki-then-and-now-in-pictures>

Can Investment be Too High?

Investment Too High or Too Low?

- High saving (investment) rates are the source of capital accumulation
- Should the investment rates be high? Can it be too high?
- Think of an extreme example with $s = 1$
 ⇒ You consume nothing because $c = (1 - s)y = 0$
- Then, should the investment rate be low?
- Think of an extreme example with $s = 0$ and recall $\bar{k} = (As/(n + \delta))^{\frac{1}{1-\alpha}}$ in the long-run
 ⇒ Again, you consume nothing in the long-run because $c = (1 - s)\bar{y} = (1 - s)A\bar{k}^\alpha = 0$

Golden Rule of Saving Rate

- So what is the investment rate that maximizes long-run per-capita consumption?
- Steady-state (long-run) consumption is given by

$$c(s) \equiv (1 - s)A \left(\frac{As}{n + \delta} \right)^{\frac{\alpha}{1 - \alpha}}$$

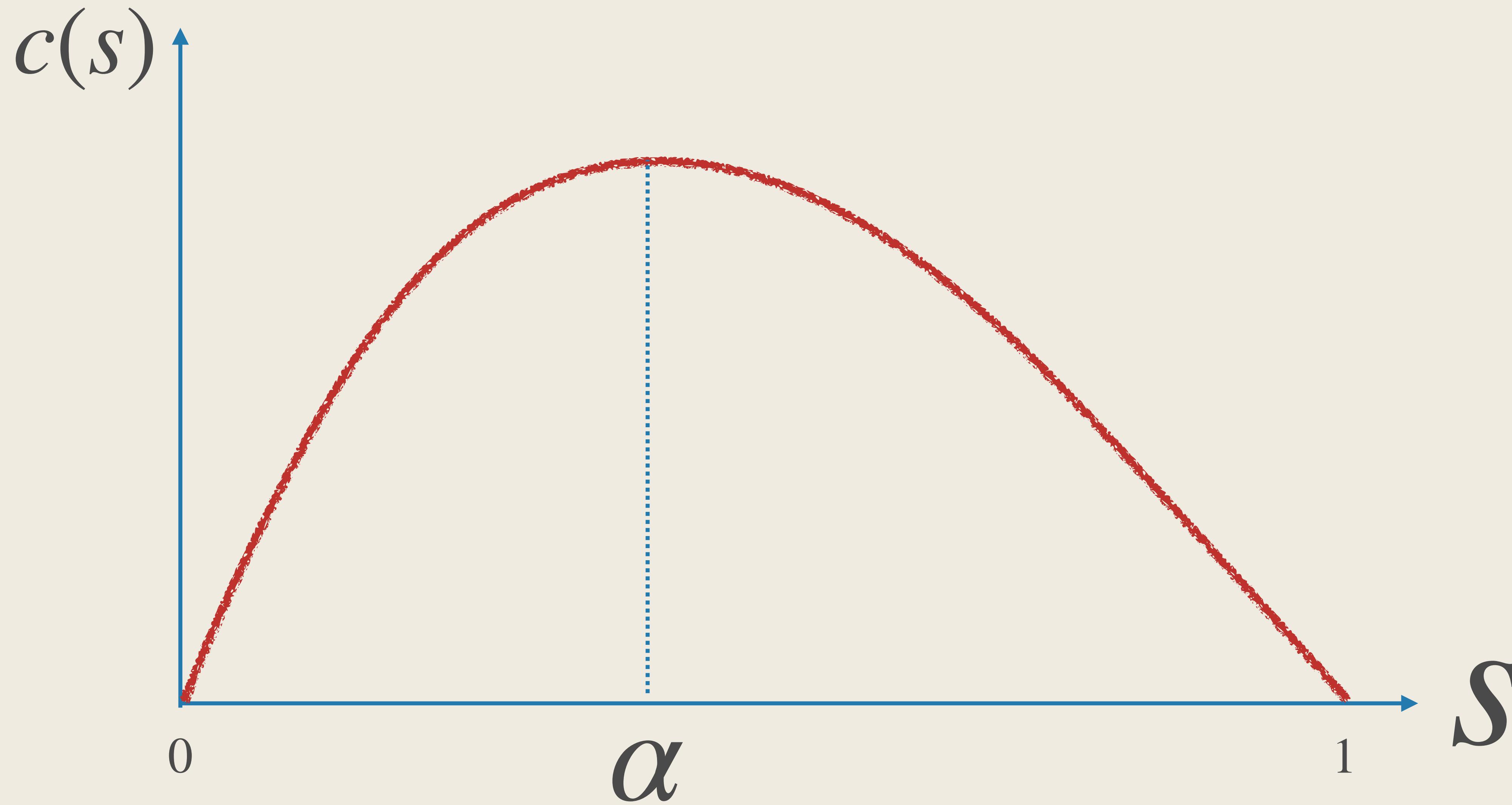
- The saving rate that maximizes the steady-state consumption, s^* , solves

$$\max_s c(s)$$

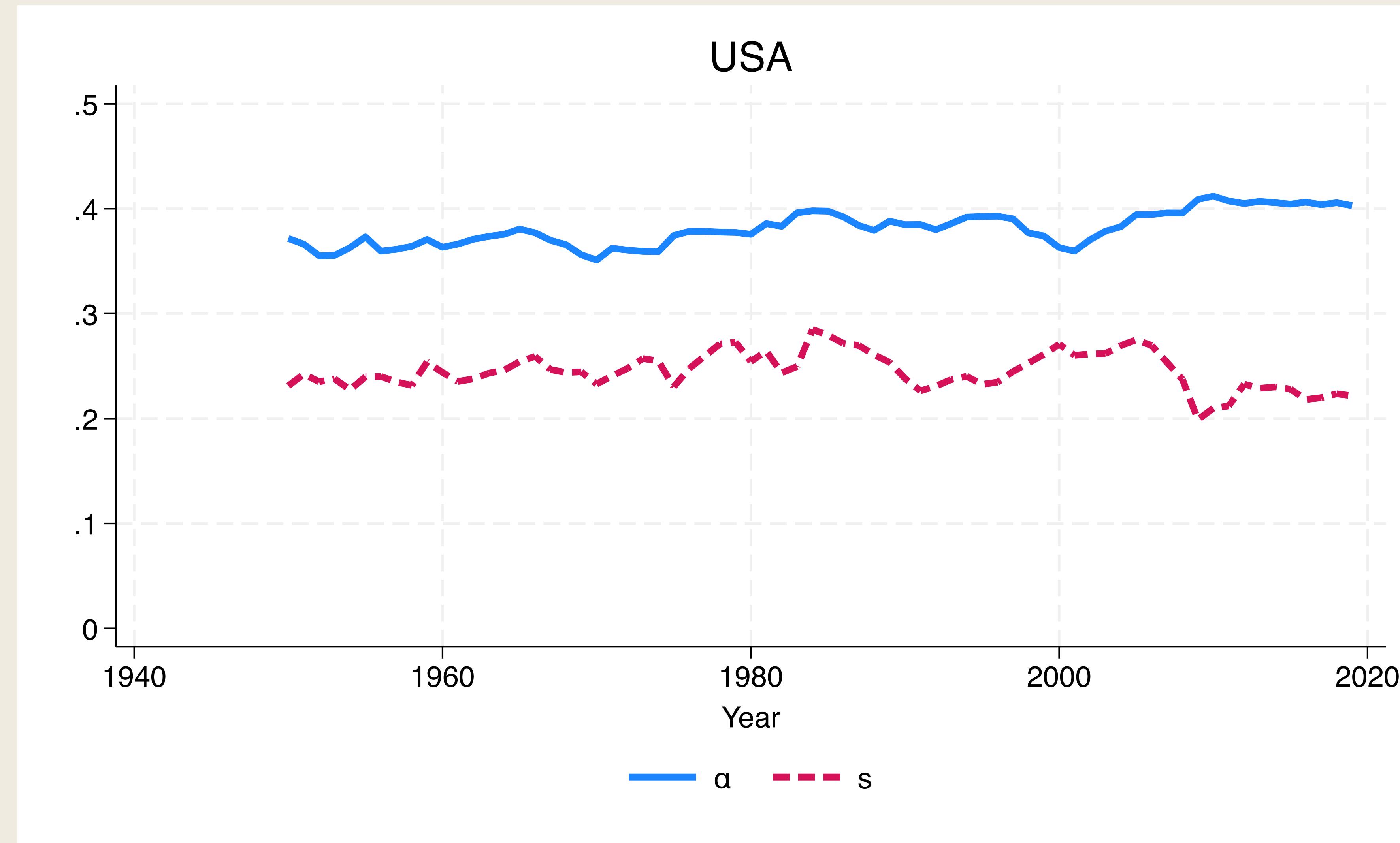
- Taking the first-order condition,

$$\frac{dc(s)}{ds} = \frac{\alpha - s}{(1 - \alpha)s} A \left(\frac{sA}{n + \delta} \right)^{\frac{\alpha}{1 - \alpha}}$$

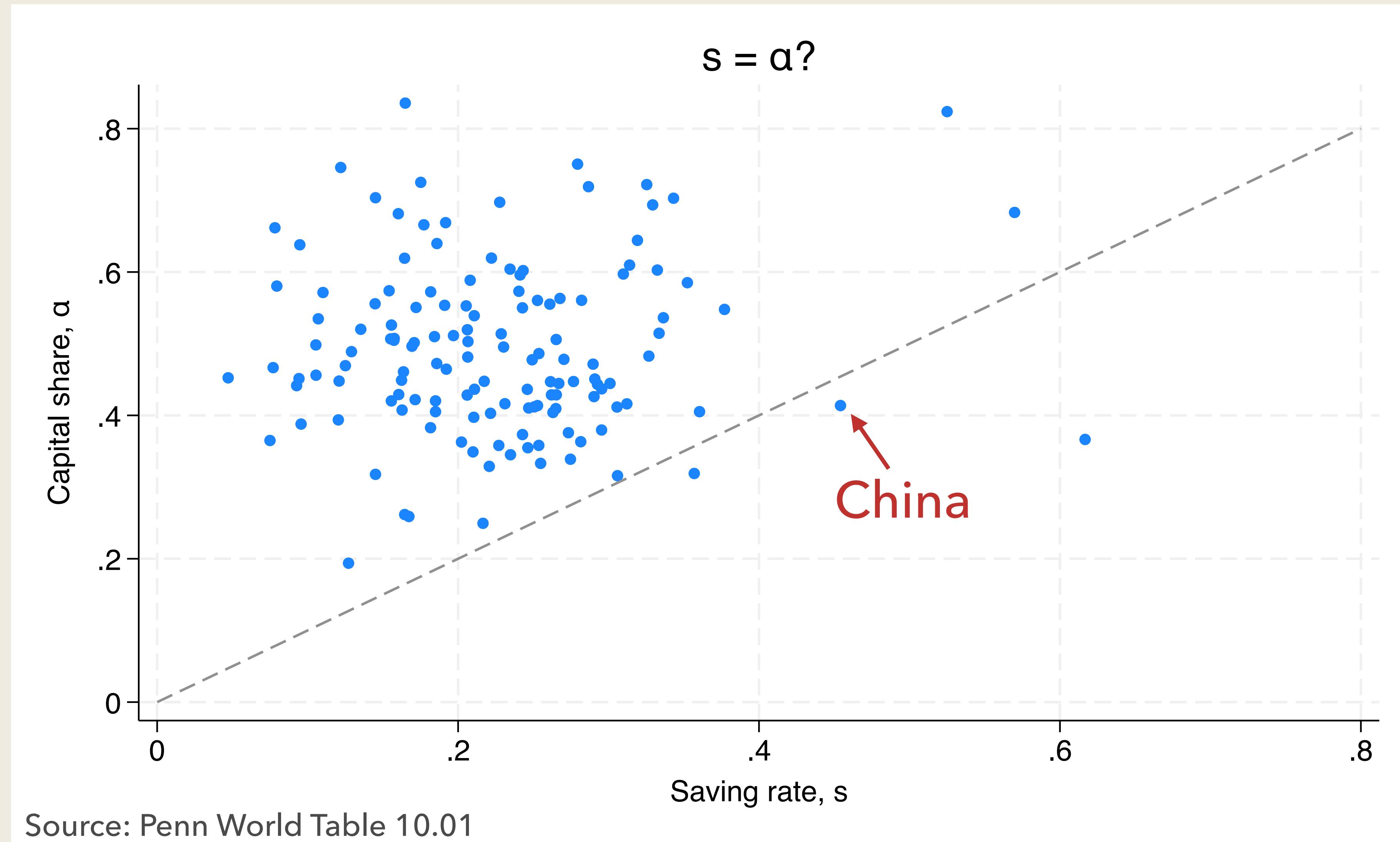
What Saving Rate Maximizes SS Consumption?



$s = \alpha?$



Cross-Country Data



Caveat

- The golden rule of saving rate only concerns the steady state consumption
- It is not necessarily optimal from a welfare perspective
- Households may not care about steady state
- Remember, “in the long run, we are all dead”

Strength and Weakness of the Solow Model

What Have We Learned?

Strength

- Provide a theory that determines the long-run level of k and y
 - based on primitive parameters: $(A, s, \delta, \alpha, n)$
- Its transition dynamics help us understand differences/changes in growth rates
 - The farther a country is below its steady state, the faster it will grow

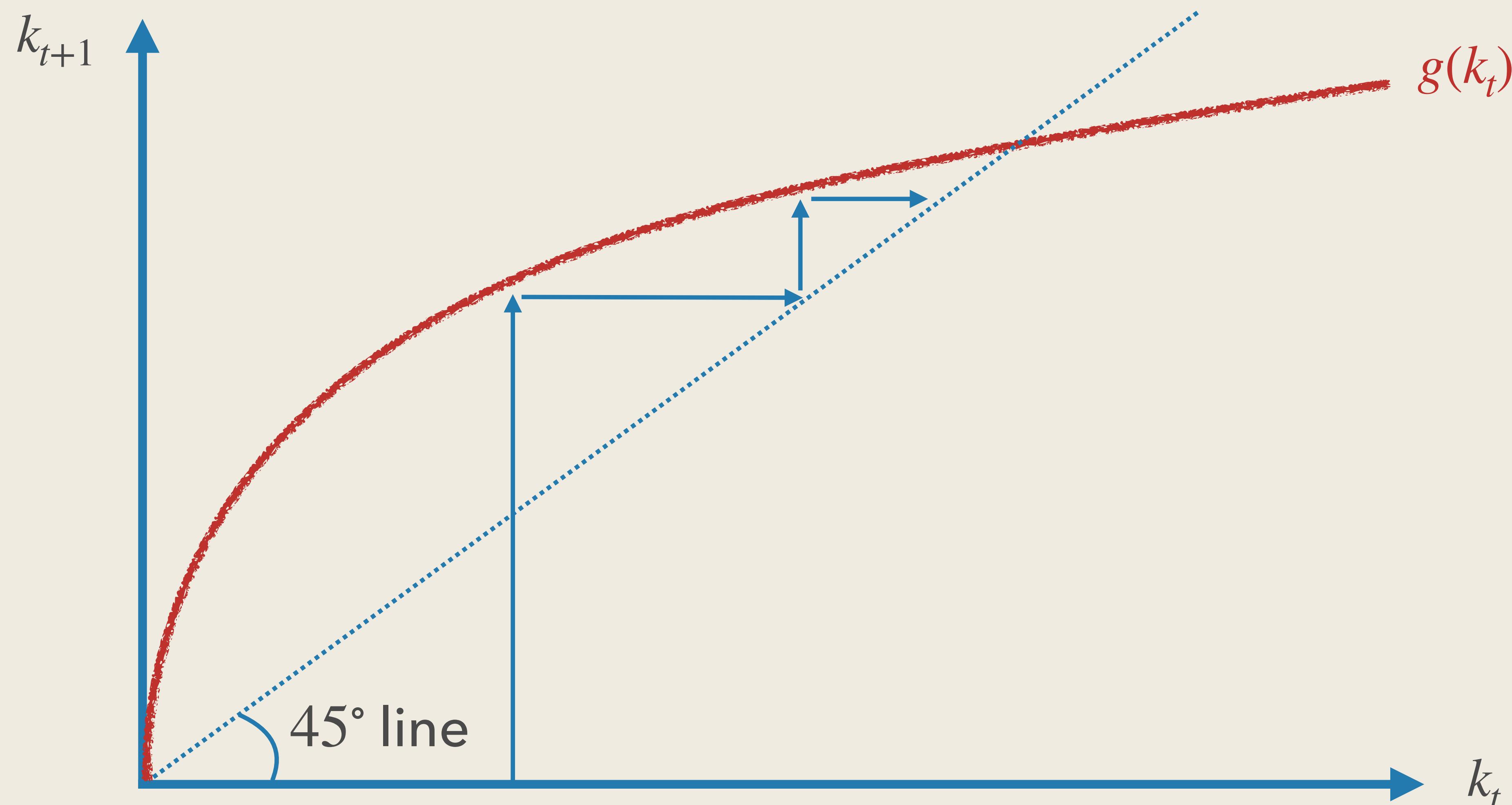
Weakness

- Only provides a theory of k , not A
- Nothing to say about why countries differ in $(A, s, \delta, \alpha, n)$
- The model predicts no long-run growth

Appendix: Cross-Country Convergence?

Implication of the Solow Model

- Countries with lower capital grow faster... **holding everything else equal**



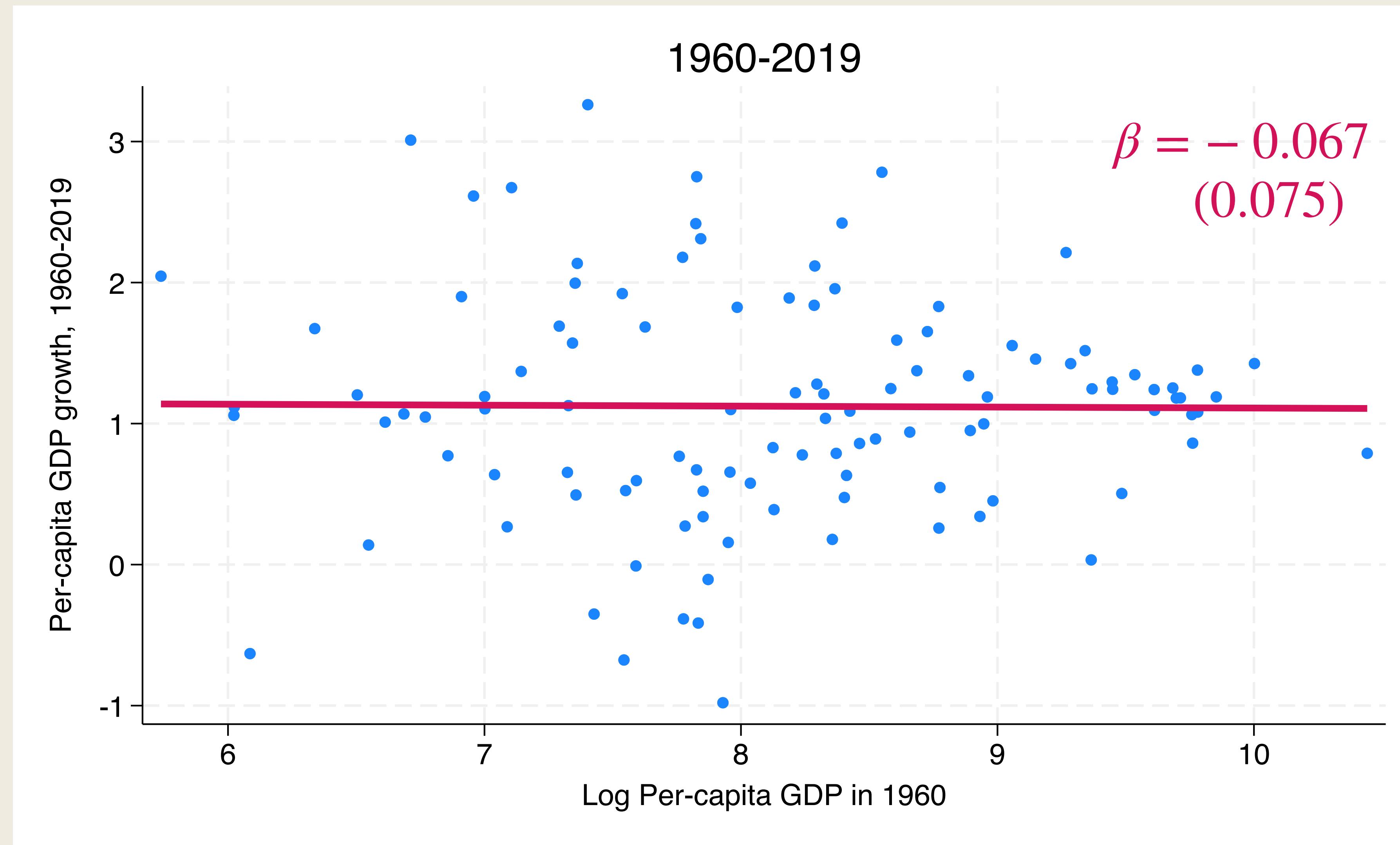
Testing Convergence

- Do initially poor countries grow faster subsequently in the data?
- Often called “unconditional convergence”
- Consider the following regression:

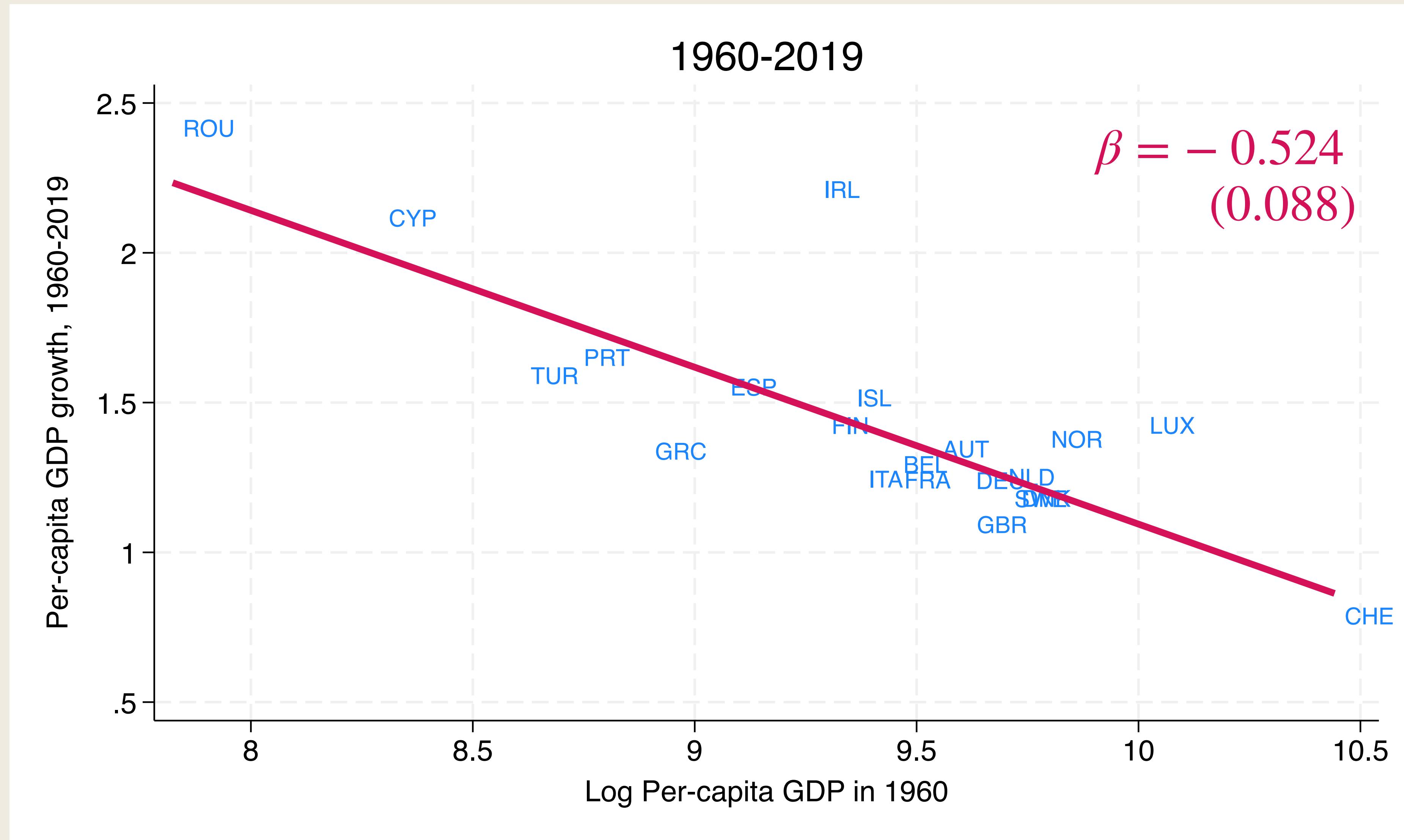
$$\log y_{i,t+T} - \log y_{i,t} = \gamma + \beta \log y_{i,t} + \epsilon_{i,t}$$

- $\beta < 0$ implies that initially poor countries tend to grow faster

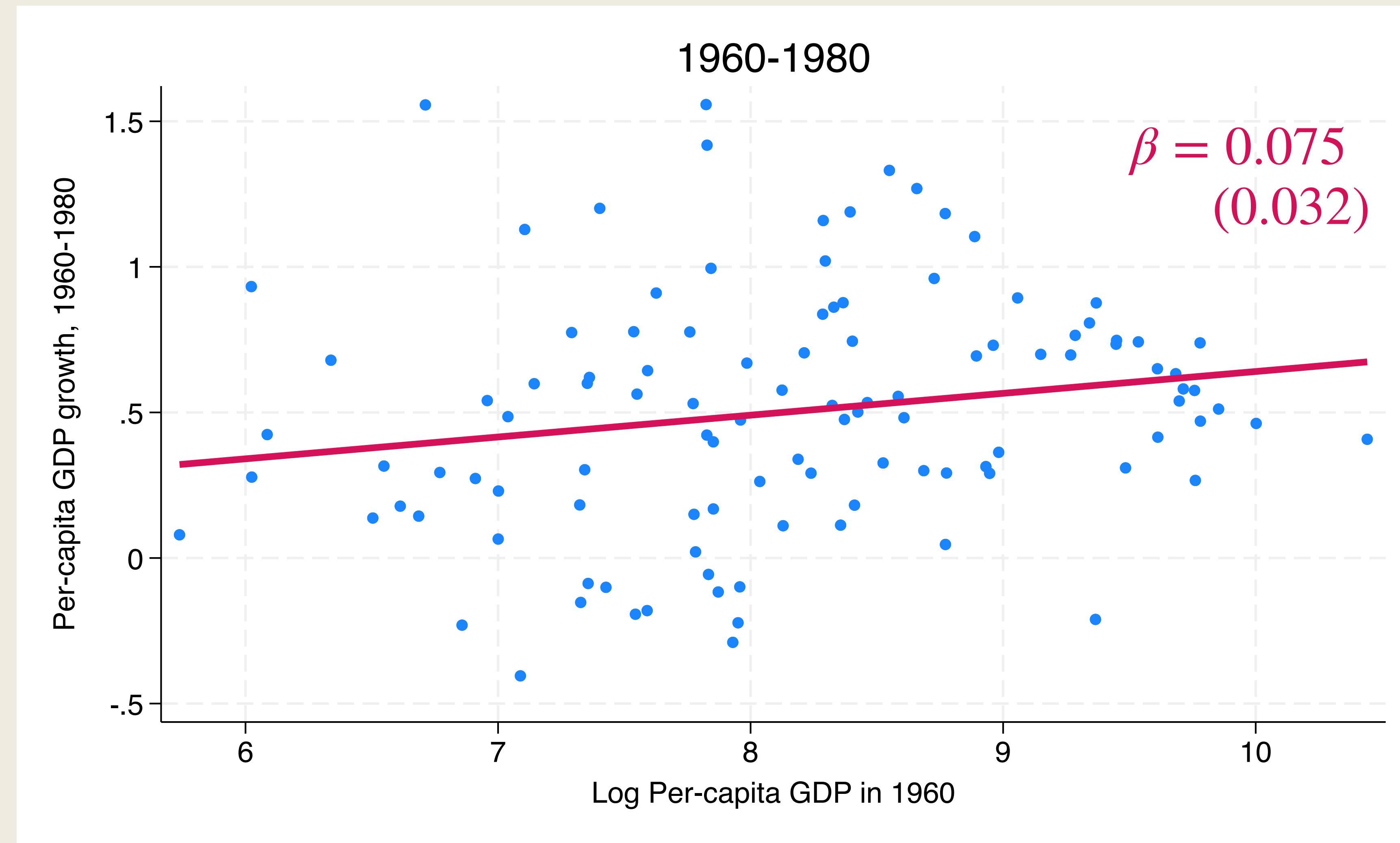
Convergence Regression



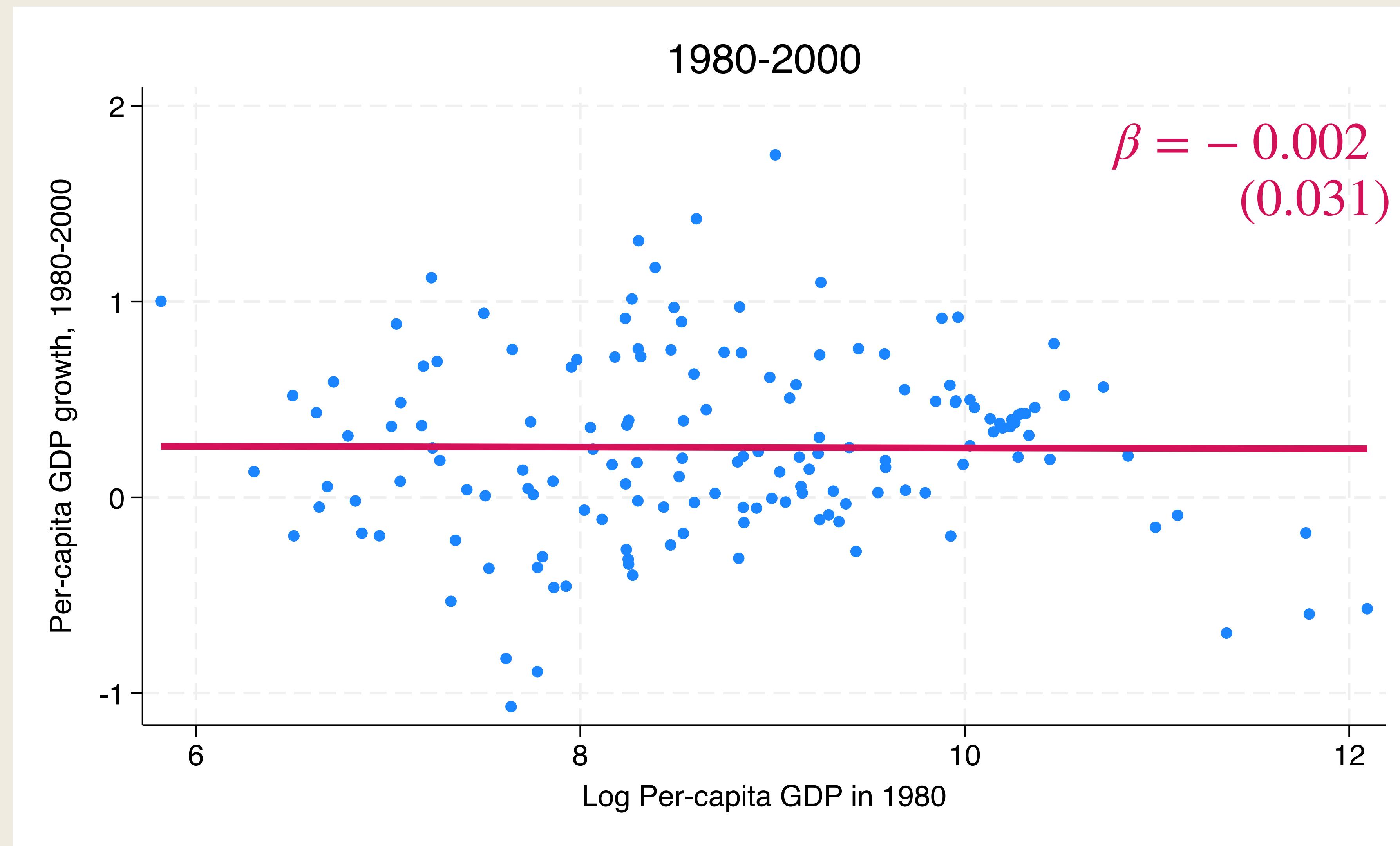
Only Europe



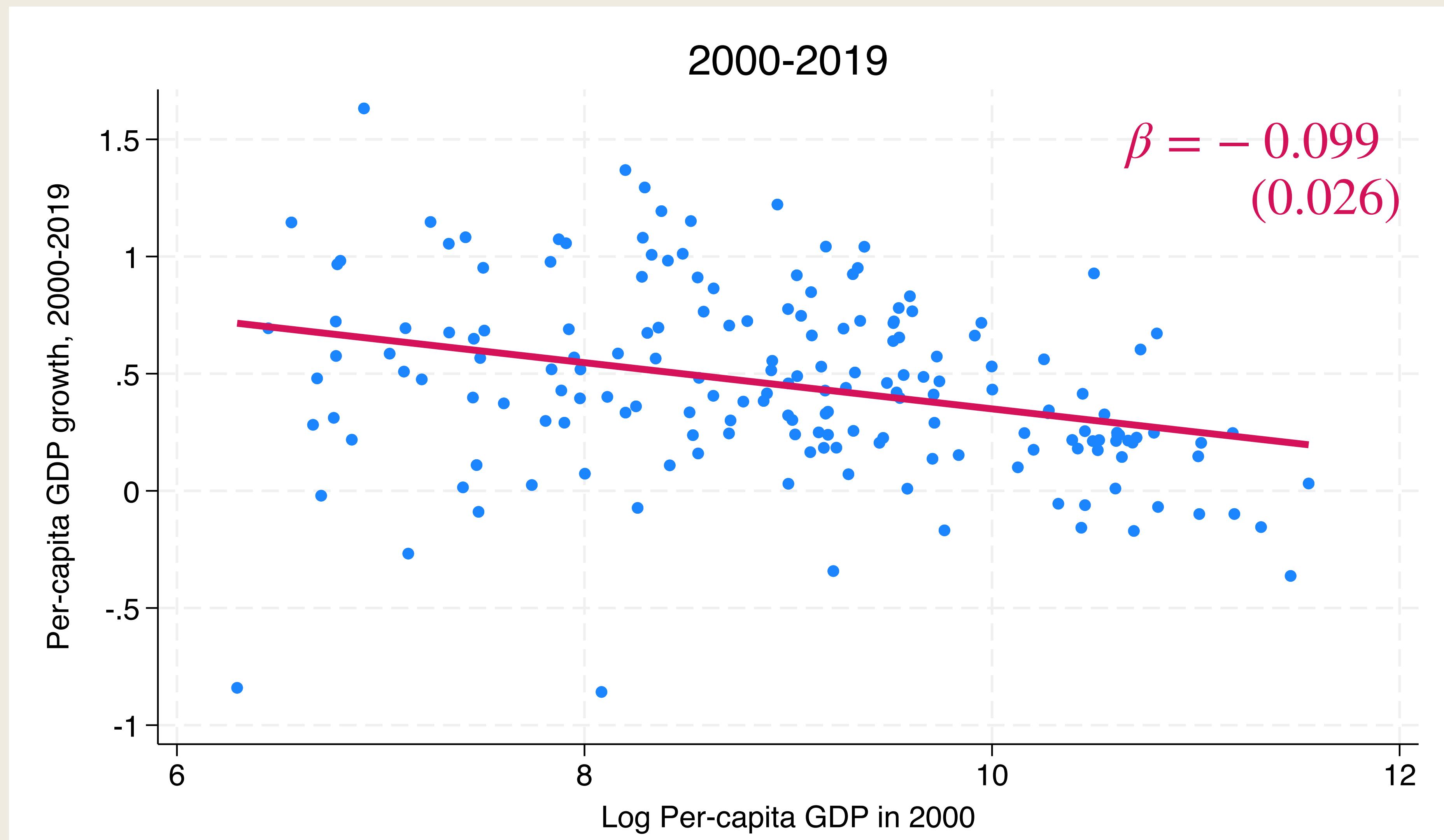
1960-1980



1980-2000



2000-2019



Interpretation

- Overall, there is no tendency of convergence
- We do see convergence
 1. if we focus on subsamples that look similar to each other
 2. if we only focus on recent periods
- Similar countries have similar $(A, s, \delta, \alpha, n)$, so the only difference is likely to be k_0
- Due to globalization, countries now have more similar fundamentals than before