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What Sustains Long-run Growth?

■ How do countries sustain long-run growth? Why is the US constantly growing at 2%? 

■ Solow model: capital accumulation cannot sustain growth in the long run 

■ Two reasons: 
1. Decreasing returns to scale in capital 

 countries accumulate less and less capital as they grow 
2. Constant returns to scale in overall production 

 more population do not lead to higher per capita income 

■ We will attack 2

⇒

⇒
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Romer Model
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Investment in New Ideas

■ Restaurants can use their labor (and capital) to produce a meal 

■ … Or to invent a new recipe to increase its revenue 
 

• More generally, investment in new ideas  higher productivity 

■ With investment in new ideas,  feratures increasing returns to scale (IRS): 
 
 
even though  is contant returns to scale in 

⇒

F

F (K, L)
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Y = F(A, L, K) = AβL1−αKα

F(2A,2L,2K) > 2F(A, L, K)



Physical Inputs vs. Ideas
■ Replication argument: 

• Doubling physical inputs  should double the output 

■ Put differently, we really need to double physical inputs in order to double output 

■ But…, we don’t need to double ideas ( ) 

■ What’s the difference? 
• Physical inputs are rival 
• Ideas are non-rival 

■ Non-rivalry of  provides a natural foundation for IRS in  

■ Romer’s favorite example: oral rehydration therapy

(K, L)

A

A (A, K, L)
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Oral Rehydration Therapy
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Romer Model
■ For simplicity, suppose there is no capital  

 

■ Total population grows at rate : 
 

■ Fraction  of population engages in the production of goods: 

■ Fraction  of population engages in the production of ideas (R&D):

(α = 0)

n

1 − sR

sR
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Yt = Aβ
t Lt

Nt+1 = (1 + n)Nt, n > 0

Lt = (1 − sR)Nt

At+1 = At + sRNt



Increasing Returns to Scale of Ideas

■ The key assumption is, again, increasing returns to scale 

■ Per-capita output: 
 
 

• Per-capita output is increasing in the total stock of knowledge 
• Not on knowledge per capita.  
• Reflects the fact that knowledge is non-rival

8

Yt

Nt
= (1 − sR)Aβ

t



Knowledge Accumulation Process

■ Define knowledge per capita:  

■ Divide the knowledge accumulation equation by  to rewrite it as 
 
 
 
 

■ Given , the above equation determines  

at = At /Nt

Nt

a0 a1, a2, …,
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at+1 =
1

1 + n
(at + sR)



Evolution of Knowledge Stock
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Long-run Growth in Knowledge
■ In the long-run (steady state), the knowledge per capita converges to  that satisfies 

 

■ Solving for  gives . 

■ More importantly,  constant      keeps growing at the speed  grows 
 
 

■ Growth rate of knowledge = growth rate of researchers = population growth

ā

ā ā = sR/n

ā ⇒ At = āNt ⇒ At Nt
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1 + gA =
At+1

At
=

Nt+1

Nt
= 1 + n

ā =
1

1 + n
(ā + sR)



Long-run Growth in GDP per capita!

■ Recall per-capita output is  

■ The growth rate of per-capita output is 
 
 

■ When  is small, 

■ Per-capita GDP growth = importance of knowledge   population growth  

■ A country sustains long-run growth in GDP per capita!

Yt /Nt = (1 − sR)Aβ
t

n

(β) × (n)
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gY/N ≈ βn

gY/N ≈ log(Yt+1/Nt+1) − log(Yt /Nt) = log Aβ
t+1 − log Aβ

t = β log(1 + n)



Where We are Going

■ Appendix combines the Romer and Solow models 

• Key insight: growth in   growth in  even in the long-run 

■ Now we confront the predictions from Romer model with data: 
1. Is the process of idea creation consistent with data? 
2. Does a larger population size lead to economic growth? 
3. What happens if population growth is negative?

A ⇒ k
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1. Are Ideas Getting Harder to Find? 
— Bloom, Jones, Van Reenen, Webb (2020)
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Are Ideas Getting Harder to Find?

■ The Romer model strongly ties TFP growth to the growth of researchers 
• If the number of researchers does not grow, no economic growth 

■ In order to sustain TFP growth, we need more and more researchers 
• Research productivity keeps falling over time 

■ This means ideas get harder and harder to find as a country grows
15
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Original Romer Model
■ Romer (1990) originally developed a slightly different version of the model 

 

■ This captures the notion of “standing on the shoulders of giants” 

■ In this case,  
 
 

■ Research productivity remains constant with economic growth 
 ideas don’t get harder to find 

■ Who’s right?

⇒
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At+1 = At + sRNt × At

At+1 − At

At
= sRNt



Researchers and TFP Growth: Aggregate Data
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elsewhere. It is for this reason that the literature, and this paper, turns to the micro 
side of economic growth.

II. Re!ning the Conceptual Framework

In this section, we further develop the conceptual framework. First, we explain 
why the aggregate evidence just presented can be misleading, motivating our focus 
on microdata. Second, we consider the measurement of research productivity when 

Figure 1. Aggregate Data on Growth and Research Effort

Notes: The idea output measure is TFP growth, by decade (and for  2000–2014 for the latest observation). For the 
years since 1950, this measure is the Bureau of Labor Statistics (2017) Private Business Sector multifactor produc-
tivity growth series,  adding back in the contributions from R&D and IPP. For the 1930s and 1940s, we use the mea-
sure from Gordon (2016). The idea input measure, Effective number of researchers, is gross domestic investment 
in intellectual  property products from the National Income and Product Accounts (Bureau of Economic Analysis 
2017), de1ated by a measure of the nominal wage for  high-skilled workers.

Figure 2. Aggregate Evidence on Research Productivity

Notes: Research productivity is the ratio of idea output, measured as TFP growth, to the effective number of 
researchers. See Notes to Figure 1 and the online Appendix. Both research productivity and research effort are 
 normalized to the value of 1 in the 1930s.
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Moore's Law
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Researchers and TFP Growth: Moore’s Law
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science may lead to a new idea that improves computer chips. Such positive spill-
overs are not a problem for our analysis; instead, they are one possible factor that 
our research productivity measure captures. Of course, other things equal, positive 
spillovers would show up as an increase in research productivity rather than as the 
declines that we document in this paper. Alternatively, if such spillovers were larger 
at the start of our time period than at the end, then this would be one possible story 
for why research productivity has declined.13

A type of measurement error that could cause our !ndings to be misleading is if 
we systematically understate R&D in early years and this bias gets corrected over 
time. In the case of Moore’s Law, we are careful to include research spending by 
!rms that are no longer household names, like Fairchild Camera and Instrument 
(later Fairchild Semiconductor) and National Semiconductor so as to minimize this 
bias: for example, in 1971, Intel’s R&D was just 0.4 percent of our estimate for total 
semiconductor R&D in that year. Throughout the paper, we try to be as careful as 
we can with measurement issues, but this type of problem must be acknowledged.

IV. Agricultural Crop Yields

Our next application for measuring research productivity is agriculture. Due partly 
to the sector’s historical importance, crop yields and agricultural R&D spending are 
relatively  well measured. We begin in Figure 5 by showing research  productivity for 
the agriculture sector as a whole. As our “idea output” measure, we use (a smoothed 

13 Lucking, Bloom, and Van Reenen (2017) provides an analysis of R&D spillovers using US  !rm-level data 
over the last three decades. They !nd evidence that knowledge spillovers are substantial, but have been broadly 
stable over time.

Figure 4. Data on Moore’s Law

Notes: The effective number of researchers is measured by de.ating the nominal semiconductor R&D expenditures 
of key !rms by the average wage of  high-skilled workers and is normalized to 1 in 1970. The R&D data include 
research by Intel, Fairchild, National Semiconductor, Texas Instruments, Motorola, and more than two dozen other 
semiconductor !rms and equipment manufacturers; see Table 1 for more details.
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2. Does a Larger Population Size Raise  
Per-capita Income?  
— Peters (2022)
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Population and Productivity

■ Romer model strongly ties GDP to population 

• GDP grows faster if the population grows faster,  

• GDP level is higher if the population is larger,  and  

■ An increase in population raises productivity and income per capita 
… holding everything else constant 

■ Do we have any evidence?

gY/N = βn

Yt /Nt = Aβ
t (1 − sR) At = sRNt /n
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Naive Idea
■ What if we see the relationship between  and  using cross-country data? 

 
 
 
 
 
 
 
 
 
 

Y/N N
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How Do We Isolate Population Size?

■ The ideal thought experiment is that we only change the population size 

■ Countries differ not only in population size but a lot of other things… 

■ Peters (2022): 

Population expulsions in Germany after WW2 provide an ideal experiment

23



Germany in 1939
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Market Size and Spatial GrowthMichael Peters (Yale) 5

Germany in 1939

Source: Peters (2022, slide)



Distribution of German Ethnicity
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Germany in 1939

Eastern Territories of the 
German Reich (9.5m)

Sudetenland (3m)

West Germany 
(38m)

Other countries in 
Eastern Europe: 3.5mSource: Peters (2022, slide)



The Expulsions: 1945 - 1949 
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The Expulsions: 1945 - 1949 

■ Phase 1 (Nov 44 - Oct 45): 2m 
• Expulsions / flight during the war 
• “Wild expulsions” after armistice 

■ Phase 2 (Jan 46 - July 1949): 6m 
• Organized population transfers (Potsdam conference) 

■ West German population increased by 20% between 1939 and 1950
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Heterogeneity and Persistence of Settlement

■ The allocation of initial settlement of refugees  
1. varied dramatically across counties 
2. had a persistent effect

28

2364 MICHAEL PETERS

FIGURE 2.—The Heterogeneity and Persistence of Refugee Inflows. Note: The left panel shows the distribu-
tion of the share of refugees in 1950 across counties. The right panel shows the correlation between the share
of refugees in 1950 and 1955 (blue) and 1961 (orange) as binned scatter plots for 100 percentiles of the refugee
share in 1950.

To appreciate the unequal initial spatial distribution, remember that an orderly settle-
ment was an almost impossible task in war-torn Germany. A particular concern was the
availability of housing amid the rising population and a sharply diminished housing stock,
which was heavily destroyed during the Allied bombing campaign.6 Werner Nellner, one
of the leading post-war economic historians, described the situation as follows: “In the
midst of the chaotic post-war circumstances arrived the refugee transports. The entirely
confusing political and economic situation paired with the abruptness of this pouring-in
simply did not allow a sensible distribution of the expellees into areas where they could
find work. The ultimate goal was to find shelter for those displaced persons” (Nellner
(1959, p. 73)).

This uncoordinated settlement was already considered a challenge by contemporaries.
As early as 1946, P.M. Raup, Acting Chief of the Food and Agricultural Division of OM-
GUS, complained that “both the planning and the execution of the support measures
for German expellees was conducted entirely under welfare perspectives. The people in
charge at the Military Government are social service officials. . . . Entire communities are
moved so that the population of some counties is increased by 25–30% and the agency in
charge was founded to support the elderly, disabled people and the poor. . . . The whole
problem has not been handled as one of settlements of entire communities but as an
emergency problem supporting the poor” (Grosser and Schraut (2001, p. 85)).

These descriptions of the refugee settlement are also visible in the data. In Table V, I
report the results of a set of bivariate regressions of the share of refugees in 1950 on dif-
ferent pre-war county characteristics and state fixed effects and report the coefficients on
the respective characteristics. In column 1, I show that the share of refugees is negatively
correlated with the population-weighted distance to the expulsion region (the “expulsion
distance” EDc), which I calculate as

EDc = ln
(∑

r∈ER
dcr × pop1939

r

)
! (1)

6About 23% of the aggregate housing stock was damaged. Moreover, there is considerable heterogeneity
and a large share of urban counties saw more than 70% of their housing stock damaged during the war (see
Section SM-2.1 in the Supplemental Material).

Source: Peters (2022)



Question

■ Allocation of refugees is mostly based on housing and food availability 

■ Ask: 
Did a county receiving a lot of refugees grow more 
 … compared to a country receiving no (or few) refugees?
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GDP Per Capita Increases with More Refugees
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3. End of Economic Growth?  
— Jones (2022)
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Negative Population Growth
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Future of Economic Growth

■ Romer model predicts population growth is the engine of long-run growth 

■ Many countries already have negative population growth 
… and many others are predicted to be so in the next decades 

■ What do they mean for economic growth?
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Negative Population Growth in Romer Model
■ Let us go back to Romer model in the very beginning 

 

■ Population has a negative growth rate: 
 

■ Iterating , 

■ Plugging  into , 

(b)

(b) (c)

34

At+1 = At + sRNt

Nt+1 = (1 − η)Nt, η > 0

Nt = (1 − η)tN0

(a)

(c)

(b)

At+1 = At + sR(1 − η)tN0 (d)



What Happens in the Long-run?
■ Iterating , 

 
 

■ In the long-run (as ), 
 
 

■ Since  and , GDP per capita is 

(d)

t → ∞

Yt = Aβ
t Lt Lt = (1 − sR)Nt

35

At+1 = A0 + sRN0

t

∑
s=0

(1 − η)s

At → A = A0 +
sR

η
N0

Yt /Nt = Aβ
t (1 − sR) → Aβ(1 − sR) as t → ∞



Empty Planet?

With negative population growth… 

1. Knowledge stock converges to a constant 

2. GDP per capita converges to a constant as well 
 no economic growth 

3. Population keeps declining, so total GDP keeps declining and converges to zero

⇒
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Appendix: 
Combining Romer and Solow Model
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Solow + Romer
■ Now we put back capital
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Yt = Aβ
t L1−α

t Kα
t

Nt+1 = (1 + n)Nt

Lt = (1 − sR)Nt

At+1 = At + sRNt

Kt+1 = Kt(1 − δ) + sYt



Solow + Romer
■ Now we put back capital
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Yt = Aβ
t L1−α

t Kα
t
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Convenient Normalization
■ Educated trick: we normalize all variables with   

• This makes all variables stationary, as we will see 

■ Define  and . Then 
 
 
 
 
 
 
 
 
where 

A
β

1 − α
t Nt

yt = Yt /(A
β

1 − α
t Nt) kt = Kt /(A

β
1 − α
t Nt)

1 + gAt = At+1/At
40

yt = (1 − sR)1−αkα
t

kt+1 =
1

(1 + gAt)
β

1 − α

1
(1 + n) [kt(1 − δ) + s(1 − sR)1−αkα

t ]

At+1/Nt+1 =
1

1 + n [At /Nt + sR]

(1)

(2)

(3)



Derivations of (1)
■ Production function: 

■ Divide both sides by :A
β

1 − α
t Nt
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Yt = Aβ
t L1−α

t Kα
t

Yt

A
β

1 − α
t Nt

=
Aβ

t

A
β

1 − α
t

( Lt
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( Kt

Nt )
α
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βα

1 − α
t

(1 − sR)1−α ( Kt

Nt )
α
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A
β

1 − α
t Nt

α
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Derivations of (1)
■ Production function: 

■ Divide both sides by :A
β
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Derivation of (2)

■ Divide both sides by : 
 

■ Multiply and divide the left-hand side by 

A
β

1 − α
t Nt

A
β

1 − α
t+1 Nt+1
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Derivation of (2)

■ Divide both sides by : 
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Solow + Romer in the Long-run
■ The previous equations dictate the dynamics of  and  

■ Let us focus on the long-run 

■ In the long-run, as we have seen already,  implies  is a constant, and  

■ Putting  into , we now obtain a nearly identical equation as in Solow model: 
 

■ In the long-run with , 
 

at = At /Nt kt

(3) at = At /Nt

gA = n (2)

kt = k

43

kt+1 =
1

(1 + n)1+β/(1−α) [kt(1 − δ) + s(1 − sR)1−αkα
t ]

k = ( s(1 − sR)1−α

(1 + n)1+β/(1−α) − (1 − δ) )
1

1 − α

, y = (1 − sR)1−αkα

gAt = gA = n



Evolution of Knowledge Stock
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Evolution of Knowledge Stock
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Evolution of Capital Stock
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Long-run Growth
■ What is the long-run growth in this economy? 

■ Does the fact that  is a constant mean per-capita income is also a constant? 

• No, recall per capita income is  
… which grows at a rate  (when  small) 

■ The economy grows faster than the previous model (which was ). Why? 
 

•  grow at rate  and contribute to GDP growth by  

•  grow at rate  and contribute to GDP growth by  

• Technology growth leads to capital accumulation and even faster growth

y

Yt /Nt = A
β

1 − α
t yt

gY/N ≈ β
1 − α n n

βn

At gA = n βgA

Kt /Nt
β

1 − α gA
αβ

1 − α gA

46

Yt /Nt = (1 − sR)1−αAβ
t (Kt /Nt)α



Growth Accounting Revisided
■ In this model, 

 
 
 
 
 

■ If ,  should be twice as important as capital in growth accounting 

■ Let us go back to the data and test it

α = 1/3 A
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gY/N = βgA⏟
growth due to A

+
α

1 − α
βgA

growth due to K



Validating Solow + Romer Model
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Putting a Number

■ Per-capita GDP in the US has been growing at 2% every year,  

■ The US population has been growing roughly at 1%,  

■ Labor share implies  

■ Jointly, this implies 

gY/N = 0.02

n = 0.01

α = 1/3

β ≈ 1.33
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gY/N =
β

1 − α
n


