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Abstract

This paper examines the efficiency of a decentralized equilibrium in a broad

class of random-search job-ladder models. We decompose the source of ineffi-

ciency into two margins: (i) investment margin, that is, the difference between

the private and social benefit of job creation given the surplus of a match, and

(ii) valuation margin, that is, the difference between the private valuation and

the social valuation of a match surplus. In the presence of on-the-job searches,

the well-known Hosios condition no longer guarantees these two margins

align. Instead, the decentralized equilibrium with the Hosios condition fea-

tures the excess creation of vacancies in the steady state and the excess volatil-

ity in unemployment in response to productivity shocks. Quantitatively, we

find a significant difference between the equilibrium and the efficient alloca-

tion under standard calibration. Positive, regressive, and pro-cyclical taxes on

jobs restore the efficiency of the equilibrium.
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1 Introduction

In designing and evaluating macroeconomic policies under frictional labor mar-

kets, understanding the normative properties of the equilibrium outcome is essen-

tial. In a frictional environment, evaluating the efficiency of decentralized equi-

librium is nontrivial. For example, the mere presence of unemployment is not

necessarily a sign of inefficiency, because matching workers and firms is costly.

Many recent studies highlight the importance of job-to-job transitions in un-

derstanding the positive aspects of the labor market at both the micro and the

macro level. The commonly employed approach in modeling the job-to-job transi-

tion considers the job ladder. That is, workers move up to better and better jobs by

conducting on-the-job searches and accepting better job offers. At the micro level,

job ladders are important determinants of earnings growth and workers’ career

development.1 At the macro level, job ladders shape the dynamics of aggregate

productivity, wages, inflation, and unemployment.2

Despite their popularity, the normative properties of the job-ladder models are

not well understood. In this paper, we examine the efficiency of a broad class of

job-ladder models with random search. As in the standard Diamond-Mortensen-

Pissarides (DMP) model, firms match with workers by posting vacancies. The

probability of a match is governed by the matching function, which produces

matches from the inputs of vacancies and searching workers. Jobs differ in match

quality, and workers can engage in on-the-job searches. Consequently, employed

workers gradually find a better job and move up the job ladder.

Our starting point is the well-known result by Hosios (1990). Hosios shows

that in the standard DMP model without on-the-job search, an efficient outcome

is achieved by the market equilibrium with Nash bargaining if the elasticity of the

1For example, Topel and Ward (1992) attribute about one-third of earnings growth for young

workers to job-to-job transitions. More recently, Hahn et al. (2021) show workers (on average) gain

both wages and hours with job-to-job transitions.
2For example, reallocating workers across jobs and improving allocation (Barlevy, 2002), gener-

ating wage dispersion (Postel-Vinay and Robin, 2002; Hornstein et al., 2011), inflation (Moscarini

and Postel-Vinay, 2023; Faccini and Melosi, 2023; Birinci et al., 2024), wage rigidity (Fukui, 2020),

unemployment dynamics (Moscarini and Postel-Vinay, 2018; Faberman et al., 2022), and aggregate

productivity dynamics (Mukoyama, 2013).
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matching function coincides with the worker’s bargaining power (the Hosios con-

dition). As Hosios points out, several inefficiencies exist in the DMP-style search-

and-matching model. The Hosios condition ensures that these inefficiencies cancel

out to achieve efficiency.

Building on the insight of Hosios, we organize these inefficiencies into two mar-

gins and call them the investment margin and valuation margin. The DMP model

treats the job creation as a firm’s investment. Firms invest in vacancies by pay-

ing the vacancy-posting cost and receive returns in the form of profit. On the

investment margin, the question is whether the firm’s incentive to invest, given

the reward upon matching, is aligned with the social benefit of the investment ac-

tivity. A separate question, on what we call the valuation margin, is whether the

firm’s reward upon matching is aligned with the social value of creating a match,

that is, the value of moving a worker from unemployment to employment. In the

standard DMP model without on-the-job search (Pissarides, 1985), the Hosios con-

dition (coincidentally) ensures efficiency in both margins—killing two birds with

one stone.

We show the Hosios condition does not guarantee efficiency once on-the-job

search is taken into account. On the investment margin, the presence of on-the-job

search implies forming a new match comes at the social cost of losing the current

match. This cost is not necessarily internalized by firms when creating a vacancy,

leading to a “worker-stealing” externality, similar to the business-stealing external-

ity in the economic growth literature. We show imposing the sequential-auction

wage-setting protocol of Cahuc et al. (2006) together with the Hosios condition

ensures efficiency on the investment margin.

The same condition, however, does not ensure efficiency on the valuation mar-

gin. The social value of a job concerns how much searching on the job rather than

off the job changes the congestion in the matching market. By contrast, the private

value of a job concerns how much searching on the job rather than off the job cre-

ates the private surplus. For any value of the bargaining parameter, we have no

reason to expect these two to coincide. For example, near the top of the job ladder,

the private benefit of searching for another job is small (zero at the top), although

the social cost of congesting the labor market is as large as another person with the
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same search intensity.3

We build on the above observations to analytically show that, under the Hosios

condition, the decentralized equilibrium features the excessive creation of vacan-

cies in the steady state. We further find the discrepancy is quantitatively significant

under the standard calibration in the literature, which assumes both the Hosios

condition and sequential auction. The decentralized equilibrium allocation has an

unemployment rate that is about 1 percentage point lower than the efficient alloca-

tion. Furthermore, the excess creation of vacancies implies workers climb the job

ladders too quickly, and the decentralized equilibrium has too many good matches

compared with the efficient allocation. This finding is in contrast to a model with

ex-ante job heterogeneity à la Acemoglu (2001) that has too few good jobs in the

decentralized equilibrium.

We then show that, under the same calibration, the discrepancy between the

decentralized equilibrium and the efficient allocation is further exacerbated in re-

sponse to productivity shocks. The decentralized equilibrium features too much

volatility in unemployment compared with the efficient allocation. The reason is

that the decentralized equilibrium overvalues jobs more significantly during the

labor market booms.

These results are important for applied work because when a job-ladder model

is calibrated to satisfy the Hosios condition, which is a common practice in the lit-

erature, the model automatically favors a policy that suppresses vacancy creation

in the steady state, such as income taxes and unemployment insurance, and stabi-

lizes labor market fluctuations, such as monetary and fiscal policies, even without

any other frictions.

In the final part of the paper, we show a combination of output taxes and entry

taxes restore the efficiency of the equilibrium. The output tax corrects inefficiency

along the valuation margin, and the entry tax corrects the inefficiency along the

investment margin. Under standard calibration assuming the Hosios condition

and sequential auction, we find the output tax needs to be positive, regressive at

the top, and pro-cyclical. By contrast, the entry tax is zero.

3The search intensity is exogenous in our baseline model, but even when the search intensity is

endogenous, the social cost is not taken into account when workers make their search decision.
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Related literature

Our paper is related to several strands of the literature. The most directly related

strand includes the papers that examine efficiency in the models with on-the-job

search. An earlier paper by Gautier et al. (2010) is closely related. Gautier et al.

(2010) also analyze the efficiency of matching models with on-the-job searches and

costly vacancy creation. As we show, some of their intuitions carry over to our

model. However, they use a model with a structure (a “circular” heterogeneity)

that is not typically used in macroeconomics. They focus on a particular case

where on-the-job search and off-the-job search have the same efficiency and the

discount rate approaches zero. Our model has a structure that is more commonly

seen in the macroeconomic literature, and we consider wage-setting protocols that

are popularly used in applied quantitative literature. Cai (2020) mainly consid-

ers a discrete-time model where multiple firms can match with a worker within

a period. His focus is on deriving efficiency conditions (which generally involve

endogenous variables), and he also shows the traditional Hosios condition does

not necessarily guarantee efficiency in the presence of an on-the-job search. We

focus more on characterizing the source and nature of inefficiency, particularly in

the model close to the standard DMP model.

The second strand of literature is the analysis of the DMP model with heteroge-

neous jobs. Papers such as Acemoglu (2001), Davis (2001), and Mukoyama (2019)

explicitly consider efficiency in DMP models with heterogeneous jobs and no on-

the-job search. These papers do not deal with job-to-job transitions.

Finally, previous studies have examined the efficiency of equilibrium in directed-

search settings. For example, Menzio and Shi (2011) establish the efficiency of

directed-search equilibrium in a model with on-the-job search. Our paper consid-

ers random-search models, where different types of workers interact in the same

labor market.

This paper is organized as follows. Section 2 sets up the terminology we use in

our analysis by reviewing the intuition of the Hosios (1990) condition in a model

without on-the-job searches. Section 3 sets up our model and compares the effi-

cient allocation and the equilibrium outcome. In Section 4, we derive some an-

alytical results. Section 5 examines the model quantitatively. Section 6 analyzes
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how efficient allocation can be implemented as a market equilibrium with taxes.

Section 7 concludes.

2 Revisiting the basic intuition of the Hosios condi-

tion

Before considering our baseline model, to develop basic intuition, let us set up

the model without an on-the-job search. Consider the textbook Pissarides (1985)

model in continuous time. A continuum of infinitely-lived workers with popula-

tion 1 exists in the economy. The workers are risk neutral, and the discount rate

is r > 0. The workers are either employed or unemployed. For a worker to be

employed, she has to be matched with a firm. Production takes place with a one-

worker, one-firm match. The match produces z > 0 units of the consumption good.

An unemployed worker receives the flow value of h ∈ [0, z) from home produc-

tion. Firms post vacancies to fill their positions. The flow vacancy cost is κ > 0. We

assume free entry: any firm can post a vacancy and start producing once matched

with a worker.

In this section, on-the-job search does not exist; only unemployed workers look

for jobs. We assume the matching is random, and therefore, all vacancies have the

same chance to match with a worker, and all unemployed workers have the same

chance to match with a vacancy. The matching process is governed by the match-

ing function: M(u, v) represents the number of matches created when v vacancies

and u unemployed workers exist. The matching function satisfies the following

conditions: (i) M(u, v) is strictly increasing and strictly concave in each of u and v

and satisfies Inada conditions; (ii) M(u, v) exhibits constant-returns to scale; and

(iii) M(u, v) ≤ min{u, v}. We assume the separation is random with the Poisson

probability σ > 0. In the market equilibrium, the wages are set following the gen-

eralized Nash bargaining solution. Nash bargaining is conducted on the expected

present value of surpluses, and the worker’s bargaining power is set at γ ∈ [0, 1).

Because of the random-matching assumption, the Poisson rate at which an unem-
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ployed worker finds a job and a vacancy finds a worker can be written as

p(θ) ≡ M(1, θ)

and

q(θ) ≡ M
(

1
θ

, 1
)

,

where θ ≡ v/u is the market tightness. Note p(θ) = θq(θ) holds.

The details of the social planner’s problem and the market equilibrium are an-

alyzed in Appendix A. It shows the Hosios condition (Hosios, 1990)

γ = η(θ), (1)

where η(θ) ≡ −θq′(θ)/q(θ) is the elasticity of the matching function, ensures the

constrained efficiency of the market outcome. That is, under condition (1), the

solution to the social planner’s problem coincides with the market equilibrium.

Intuitively, the Hosios condition can be understood as the condition where two

inefficiencies exactly cancel out each other.

Let us go over the intuition more closely. For the ease of exposition, we focus

on the steady state. First, consider the optimization problem for vacancy posting.

This exercise amounts to comparing between

κ = (1− η(θ))q(θ)µ (2)

for the social planner’s problem, where µ is the social value of moving one unem-

ployed worker into employment, and

κ = (1− γ)q(θ)S, (3)

where S is the surplus of a match between a worker and a firm. Here, suppose

µ = S holds. Even in that situation, two inefficiencies arise in comparing equations

(2) and (3). We call this margin the “investment margin,” because it relates to

the firm’s vacancy creation as an investment. The first inefficiency is the hold-up

problem. Matches are formed because of the firms’ active investment (vacancy

posting), and workers do not incur any costs. Thus, all returns from the match

should be paid to the firms to ensure an efficient level of investment. However, at

the time the worker and the firm engage in Nash bargaining, the investment costs
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are already sunk. As a result, the firm can collect only (1− γ) share of the surplus

(the hold-up problem) on the right-hand side of (3). This inefficiency, due to firms’

imperfect appropriation of surplus by firms, leads to too few vacancies compared

with the socially desirable level. When γ (the worker’s bargaining power) is large,

the inefficiency is large.

The second inefficiency is the matching externality. In general, a firm posting

a vacancy generates externalities to both workers and firms. On the worker side,

an increased vacancy raises the probability of an unemployed worker finding a

job. This externality does not lead to inefficient allocation here, because the work-

ers do not make a decision. On the firm side, the increase in vacancy by one firm

makes the matching of the other firms difficult due to congestion. The firm does

not take into account this congestion externality, and thus, the outcome is too many

vacancies. To see why this externality is related to η(θ) in equation (2), consider

the effect of a marginal increase in vacancies by one firm. From this firm’s (pri-

vate) perspective, the expected number of matches increases by q(θ) = M(u, v)/v.

From the social perspective, however, the increase in the match is M2(u, v), which

is lower than M(u, v)/v (recall that M is concave in each term). The difference

M2(u, v)−M(u, v)/v represents the externality. It is straightforward to show that

M2(u, v)− M(u, v)/v = −q(θ)η(θ), and thus, the term −q(θ)η(θ) represents the

(negative) externality each vacancy creation generates.

Now, consider how the inefficiency shows up in the calculation of the social

and private values of the match. We call this margin the “valuation margin.” This

exercise compares

(r + σ)µ = z− h− (p(θ)µ− κθ) (4)

and

(r + σ)S = z− h− p(θ)γS. (5)

In equation (4), the (flow) social value of the match is the sum of the current sur-

plus z − h and the opportunity cost of keeping a worker employed. The oppor-

tunity cost is that, by keeping the worker unemployed, she could have generated

a new match with probability p(θ). However, this calculation does not take into

account that increasing u changes θ if v is kept constant. To keep θ constant, v has

to be increased by θ units (because (v + θ)/(u + 1) = v/u). These additional va-
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cancies would cost κθ, which is subtracted from the gain from matching. Another

way of thinking about the second term is the match generated by the marginal

(unemployed) worker M1(u, v) times the value of the match µ. This fact can be

seen from p(θ)µ− κθ = p(θ)µ− θq(θ)(1− η(θ))µ = θq(θ)η(θ)µ, which is equal to

M1(u, v)µ. In the market equilibrium equation (5), the second term on the right-

hand side, p(θ)γS, represents the worker’s opportunity cost from working (not

searching). The full opportunity cost is p(θ)S, but here the fraction p(θ)(1− γ)S is

unaccounted for because the worker only receives a γ fraction of the surplus.

A similar logic as above holds: the worker’s private value looks at p(θ) =

M(u, v)/u, whereas the social value is M1(u, v)—the private value does not take

into account the negative externality imposed on the other workers. The private

value corresponds to p(θ)µ, and the externality term is κθ (it is the amount of

resources required to “undo” the externality). Under the Hosios condition, this in-

efficiency is offset by the inefficiency that the worker only recognizes the γ fraction

of the opportunity cost (the surplus it could have created by being unemployed).

As we can see, the Hosios condition achieves “offsetting one inefficiency by

another inefficiency” on the firm side as well as the worker side. It can “kill two

birds with one stone,” because both inefficiencies are symmetric: the firms and

the unemployed workers create similar externalities, and they are on the opposite

sides of the bargaining. Moreover, the direction of the total inefficiencies is aligned

when the Hosios conditions do not hold: when γ is too small, S is too large, which

implies (1− γ)S is too large, because (i) (1− γ) is too large and (ii) S is too large.

Thus, θ is too large in equilibrium.

3 The model with on-the-job search

In this section, we present our main model. The model now features on-the-job

search.
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3.1 Market equilibrium

The economy is populated by a unit mass of workers. All workers have the fol-

lowing linear preferences: ∫ ∞

0
e−rtctdt,

where r > 0 is, once again, the discount rate, and ct is the consumption at t. Work-

ers receive wages (and consume them) while working and enjoy h units of con-

sumption while unemployed.

Here, the new assumption is that the workers search both off and on the job.

That is, matches are heterogeneous, and an employed worker may meet with a

new job (new match). When the new job is better, the worker moves to the new

job. Thus, over time, a worker may climb up the job ladder.

Firms create vacancies at per-vacancy cost κ > 0. When firms meet with work-

ers, they draw permanent match quality, z ∈ [0, ∞), with pdf g(z) and cdf G(z).

We assume the match quality has a finite mean. Firms with match quality Atz

produce z units of output in each period, where At is the aggregate productivity.

The economy is subject to matching friction. We normalize the search efficiency

of unemployed workers to one. Employed workers have a search intensity of ζ ∈
[0, 1]. The total efficiency of the search on the worker side is

xt ≡ ut + ζ(1− ut).

We assume the matching is random. Let

f u
t ≡

ut

xt
, ft(z) ≡

ζnt(z)
xt

(6)

be the probability of a vacancy encountering unemployed workers and the prob-

ability density a vacancy encountering employed workers with match quality z

conditional on the meeting, respectively. Here, nt(z) denotes the measure of work-

ers employed at z.

Given the number of vacancies created (vt), the number of matches in the econ-

omy is given by the matching function M(xt, vt), where we assume this function

is increasing in both terms and exhibits constant returns to scale. We denote

θ ≡ vt

xt
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as the labor market tightness. The Poisson rate that an unemployed worker meet-

ing a vacancy and a vacancy meeting a worker is p(θt) ≡ M(1, θt) and q(θt) ≡
M(1/θt, 1), respectively. The meeting rate of workers employed in z is ζ p(θt). The

match separates at rate σ > 0.

We let Ut denote a worker’s value of being unemployed, Et(z, Ō) denote the

value of an employed worker with match quality z and the worker’s outside option

Ō, Jt(z, Ō) denote the value of a firm with match quality z and the worker’s outside

option Ō, and V denote the value of a vacancy. Define the joint match surplus to

be

St(z) ≡Wt(z, Ō) + Jt(z, Ō)−Ut −Vt, (7)

where St(z) is independent of the worker’s outside option and increasing in z,

which we confirm below.

The wages are determined by Nash bargaining, but the worker’s outside op-

tion potentially depends on the past history. When unemployed workers decide

to form a match, they engage in Nash bargaining with the worker’s bargaining

weight γ ∈ [0, 1]. The outside option for unemployed workers is the value of

unemployment, Ut.

When employed workers at firm z with outside option Ō meet with poachers

z′, the following takes place. When St(z) ≥ St(z′), workers stay and bargain with

outside option max{Ō, Ut + ωSt(z′)}, where ω ∈ [0, 1] is a parameter governing

the degree of offer-matching and St(z′) is the joint match surplus of job z′, which

we define below. When St(z) < St(z′), workers are poached and the outside option

of workers is given by Ut + ωSt(z). The offer-matching parameter ω is flexible

enough to nest many existing wage-setting protocols. Two important special cases

are the following:

1. Nash bargaining with no commitment (e.g., McCrary, 2022): ω = 0;

2. Sequential auction (e.g., Cahuc et al., 2006): ω = 1.4

We will highlight these two cases later on.

4A subtle point is that here we assume the wage renegotiation occurs continuously, as in the

standard DMP model, whereas in Cahuc et al. (2006), a negotiation occurs only when a new meeting

happens. This difference does not result in different outcomes in the steady state.
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The value function of the unemployed is

rUt = h + p(θt)
∫

g(z)max{Wt(z, Ut)−Ut, 0}dz + U̇t, (8)

where the “dot notation” represents the time derivative: U̇t ≡ ∂Ut/∂t. Value func-

tion of workers employed in firm z with an outside option Ō ∈ [U, U + ωS(z)] is

given by

rWt(z, Ō) = wt(z, Ō)

+ ζ p(θt)
∫ ∞

z
g(z′)

(
Wt(z′, Ut + ωSt(z))−Wt(z, Ō)

)
dz′

+ ζ p(θt)
∫ z

0
g(z′)

(
W(z, max{Ut + ωSt(z′), Ō})−W(z, Ō)

)
dz′(9)

+ σ(Ut −Wt(z, Ō)) + Ẇt(z, Ō).

The value of the filled job with productivity z and outside option Ō ∈ [U, U +

ωS(z)] is given by

rJt(z, Ō) = Atz− wt(z, Ō)

+ ζ p(θt)
∫ ∞

z
g(z′)

(
Vt − Jt(z′, Ō)

)
dz′

+ ζ p(θt)
∫ z

0
g(z′)

(
Jt(z, max{Ut + ωSt(z′), Ō})− Jt(z, Ō)

)
dz′

+ σ (Vt − Jt(z, Ō)) + J̇t(z, Ō).

(10)

Given the above bargaining protocol, the outside option Ō cannot exceed U +

ωS(z) for a match with productivity z along the equilibrium path. Thus we ig-

nore such a possibility. The value of vacancy is given by

Vt = −κ

+ f u
t q(θt)

∫ ∞

0
g(z)max{Jt(z, U)−Vt, 0}dz

+ q(θt)
∫ ∞

0
g(z)

∫ ∞

z
f (z′)max{Jt(z, U + ωSt(z′))−Vt, 0}dz′dz + V̇t,

(11)

where κ > 0 is the vacancy-posting cost. We assume free entry into vacancy post-

ing. This assumption implies zero value from vacancy posting:

Vt = 0. (12)
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The Nash bargaining with worker’s outside option Ō solves

max
wt(z,Ō)

(Wt(z, Ō)− Ō)
γ
(Jt(z, Ō)−Vt)

1−γ .

After imposing the free-entry condition (12), the solution to the bargaining prob-

lem yields

Wt(z, Ō) = Ō + γ(St(z)− (Ō−Ut)) (13)

and

Jt(z, Ō) = (1− γ)(St(z)− (Ō−Ut)). (14)

Plugging (8), (9), and (10) into (7) and using (13), we obtain the recursive ex-

pression for the job-match surplus:

(r + σ)St(z) = Atz− h

+ ζ p(θ)
∫ ∞

z
g(z′)

(
ωSt(z) + γ

[
St(z′)−ωSt(z)

]
− St(z)

)
dz′

− p(θt)
∫ ∞

zt

g(z′)γSt(z′)dz′ + Ṡt(z).

(15)

The reservation match quality zt, above which the match is formed, satisfies

St(zt) = 0. (16)

The expression (15) confirms our original presumption that the joint match surplus

is independent of the worker’s outside option Ō.

After imposing free-entry condition (12) and also (14) in (11), we obtain

κ = (1− γ)q(θt)

[
f u
t

∫
z

g(z)St(z)dz +
∫ ∞

0

∫ ∞

z
ft(z)g(z′)

[
St(z′)−ωSt(z)

]
dz′dz

]
.

(17)

We denote the mass of workers employed at match quality below z as Nt(z). Its

law of motion satisfies

Ṅt(z) = (G(z)− G(zt)) p(θt)ut − Nt(z)(1− G(z))ζ p(θt)− σNt(z), (18)

with a boundary condition Nt(zt) = 0. By its definition,

∂zNt(z) = nt(z), (19)
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where ∂zNt(z) ≡ ∂Nt(z)/∂z. The law of motion of unemployment over the time

interval dt is

dut = [−p(θt)(1− G(zt)) + σ(1− ut)] dt + dNt(zt), (20)

where dNt(zt) is the mass of workers endogenously separating over the time in-

terval dt.

We are now ready to define equilibrium.

Definition 1 Given {N0(z), u0}, the equilibrium consists of a sequence of the joint match

surplus {St(z)}, the employment distribution across the job-ladder, {Nt(z), nt(z), ft(z), f u
t },

and the unemployment rate, {ut}, market tightness, {θt}, and reservation match quality

{zt} such that (6), (7), (16), (17), (18), (19), and (20) hold. The steady-state equilibrium

is the one where all variables are constant over time.

3.2 Social planner’s problem

The social planner directly controls the offer-acceptance decisions of all workers

and thereby all worker flows subject to matching frictions as well as vacancy cre-

ation. Let IUE
t (z) be an indicator function that takes a value of 1 if an unemployed

worker meeting a job with match quality z accepts an offer. Likewise, let IEE
t (z, z′)

be an indicator function that takes a value of 1 if an employed worker with match

quality z meeting a job with match quality z′ accepts an offer. Finally, ςt denotes

the mass of workers for whom the planner resolves the match at time t.

The social planner’s problem is to choose {θt, nt(z), IUE
t (z), IEE

t (z, z′), ςt} to max-

imize∫ ∞

0
e−rt

[∫ ∞

0
Atznt(z)dz + h

(
1−

∫ ∞

0
nt(z)dz

)
− κθt

(
1−

∫ ∞

0
nt(z)dz +

∫ ∞

0
ζnt(z)dz

)]
dt

subject to

ṅt(z) =
(

1−
∫

nt(z′)dz′
)

p(θt)g(z)IUE
t (z) +

∫ ∞

0
p(θt)g(z)IEE

t (z′, z)ζnt(z′)dz′

−
∫ ∞

0
p(θt)g(z′)IEE

t (z, z′)ζnt(z)dz′ − σnt(z)− ςt. (21)

The first term in the square brackets in the objective function is the production by

active matches, the second term is the home production, and the third term is the
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vacancy-posting cost κvt. For the constraint, the change in the number of matches

with the match quality z is due to (i) matches created with workers moving from U

to E plus (ii) E to E movements from another z′ to z minus (iii) E to E movements

out of z (to another z′) and separation.

The current-value Hamiltonian for this problem is

H =
∫ ∞

0
Atznt(z)dz + h

(
1−

∫ ∞

0
nt(z)dz

)
− κθt

(
1−

∫ ∞

0
(1− ζ)nt(z)dz

)
+
∫ ∞

0
µt(z)

[(
1−

∫ ∞

0
nt(z′)dz′

)
p(θt)g(z)IUE

t (z) + ζ
∫ ∞

0
p(θt)g(z)IEE

t (z′, z)nt(z′)dz′

− ζ
∫ ∞

0
p(θt)g(z′)IEE

t (z, z′)dz′ − σnt(z)− ςt

]
dz,

where µt(z) is the costate variable that represents the shadow value of the con-

straint (21). Thus, µt(z) is the shadow value of creating one unit of match with

match quality z.

The optimality conditions for {IUE
t (z), IEE

t (z, z′)} are

IUE
t (z) =

1 µt(z) > 0

0 µt(z) ≤ 0
, IEE

t (z, z′) =

1 µt(z′) > µt(z)

0 µt(z′) ≤ µt(z)
.

The optimality condition for endogenous separation ςt implies µt(z) ≥ 0 for all z

with nt(z) > 0.

The first-order optimality condition on nt(z) is

(r + σ)µt(z) = Atz− h−
∫ ∞

zt

p(θt)g(z′)µt(z′)dz′ + ζ p(θt)
∫ ∞

z
g(z′)(µt(z′)− µt(z))dz′

+ κθt(1− ζ) + µ̇t(z), (22)

where we have already imposed the fact that µt(z) is increasing in z. The reserva-

tion match quality zt satisfies

µt(zt) = 0.

15



The first-order optimality condition for θt is

κ

(
1− (1− ζ)

∫ ∞

0
nt(z)dz

)
=(1− η(θt))q(θt)

∫ ∞

z
µt(z)

(
1−

∫ ∞

zt

nt(z′)dz′
)

g(z)dz

+ (1− η(θt))q(θt)ζ
∫ ∞

0

∫ ∞

0
µt(z)g(z)IEE

t (z′, z)nt(z′)dz′dz

− (1− η(θt))q(θt)ζ
∫ ∞

0

∫ ∞

0
µt(z)g(z′)IEE

t (z, z′)nt(z)dz′dz.

(23)

where η(θ) ≡ −θq′(θ)/q(θ).

We can rewrite (23) as

κ = (1− η(θt))q(θt)

[
f u
t

∫ ∞

zt

g(z′)µ(z′)dz′ +
∫ ∞

zt

∫ ∞

z
ft(z)g(z′)

(
µt(z′)− µt(z)

)
dz′dz

]
,

(24)

where f u
t and ft(z) are defined as (6). The left-hand side is the cost of posting one

vacancy, and the right-hand side is the marginal increase in the matching proba-

bility p′(θt) = (1− η(θt))q(θt) times the value of the match the vacancy creates.

With frequency f u, the vacancy meets an unemployed worker and generates value

µt(z′) with probability (density) g(z′) (when µt(z′) > 0). With frequency ft(z), it

meets with an employed worker with quality z and draws the new match quality

z′ with density g(z′). When µt(z′) > µt(z), the worker moves to the new job, and

the social value µt(z′)− µt(z) is generated.

3.3 Efficiency

Following the same steps as in Section 2, we consider two separate margins. The

first margin is the investment margin. In the planner’s problem, the equation for

this margin is (24):

κ = (1− η(θt))q(θt)

[
f u
t

∫
zt

g(z′)µ(z′)dz′ +
∫ ∞

zt

∫ ∞

z
ft(z)g(z′)

(
µt(z′)− µt(z)

)
dz′dz

]
.
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In equilibrium, condition (17) represents the firm’s incentive to invest in vacancy.

Restating here,

κ = (1− γ)q(θt)

[
f u
t

∫
zt

g(z′)S(z′)dz +
∫ ∞

zt

∫ ∞

z
ft(z)g(z′)

[
St(z′)−ωSt(z)

]
dz′dz

]
.

Let us compare equations (24) and (17). Suppose the Hosios condition (1) holds.

If f u
t and ft(z) are common and µt(z) = St(z), the equilibrium θt and the optimal

θt coincide when the wage-setting protocol follows the sequential auction, that is,

ω = 1. If the wage-setting rules are different, the efficiency of the equilibrium θ

is not guaranteed even in this situation. For example, with Nash bargaining, that

is, ω = 0, the value of equilibrium θ is too high compared to the social optimum.

Intuitively, this result is because of the “worker-stealing” externality: the poaching

firm does not internalize the loss of the poached firm.5 With the sequential auction,

the poaching firm pays for the loss (not to the poached firm, but to the worker) in

the form of higher wages. Note that from (18) and (20) and the definitions of f u

and ft(z) (i.e., (6)), the steady-state values of f u and f (z) are the same when θ is

the same. Thus, an important question for efficiency under the Hosios condition

(and sequential auction in particular) is whether µt(z) = St(z) holds.

To see how µt(z) and St(z) are determined, let us look at the valuation margin.

On the valuation margin, we rewrite the equation for the social planner (22) as:

(r + σ)µt(z)− µ̇t(z) = Atzt − h− p(θt)
∫

zt

g(z′)µt(z′)dz + ζ p(θt)
∫ ∞

z
g(z′)(µt(z′)− µt(z))dz′

+(1− η(θ))p(θ)

[
f u
t

∫ ∞

zt

g(z′)µt(z′)dz′ +
∫ ∞

zt

∫ ∞

z̃
ft(z̃)g(z′)

(
µt(z′)− µt(z̃)

)
dz′dz̃

]
︸ ︷︷ ︸

positive externality of not searching off the job

−ζ(1− η(θt))p(θ)

[
f u
t

∫ ∞

zt

g(z′)µt(z′)dz′ +
∫ ∞

zt

∫ ∞

z̃
ft(z̃)g(z′)

(
µt(z′)− µt(z̃)

)
dz′dz̃

]
︸ ︷︷ ︸

negative externality of searching on the job

.

(25)

5This externality is analogous to the business-stealing externality in the economic growth lit-

erature. Gautier et al. (2010) emphasize a similar externality that arises in their model with the

terminology of business-stealing externality.
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The first term Atz − h on the right-hand side is the static gain from moving one

unemployed worker to employment with the match quality z. The second term is

the opportunity cost of not being able to do an off-the-job search. This cost is offset

by the possibility of an on-the-job search, which is the last term in the first line. The

second and third lines are externalities. The second line is the positive externality

of not doing an off-the-job search, which raises the probability of a match for all

the other workers. The third line is the negative externality of an on-the-job search,

which lowers the probability of a match for all the other workers, as long as ζ > 0.

For the equilibrium, we rewrite (15) to facilitate with the comparison with (25):

(r + σ)St(z)− Ṡt(z) = Atz− h− p(θt)
∫

zt

g(z′)St(z′)dz′ + ζ p(θt)
∫ ∞

z
g(z′)

(
St(z′)− St(z)

)
dz′

+(1− γ)p(θt)
∫ ∞

zt

g(z′)St(z′)dz′︸ ︷︷ ︸
cost of not searching off the job that is unaccounted for

(26)

−ζ(1− γ)p(θt)
∫ ∞

z
g(z′)

(
St(z′)−ωSt(z)

)
dz′︸ ︷︷ ︸

benefit of searching on-the-job that is unaccounted for

.

The first line is analogous to the planner’s solution (25). The second line is the

opportunity cost of off-the-job search that is unaccounted for. By being employed,

a worker loses the opportunity for off-the-job search, but that opportunity cost

shows up only as a γ fraction, because the worker can receive only a γ fraction

of the surplus due to Nash bargaining. Similarly, the third line is the benefit of

on-the-job search that is unaccounted for.

Now let us compare equations (25) and (26) under the Hosios condition (1). The

first three terms, which govern the static gain and the private opportunity costs,

are identical. The final two terms (the second and the third line in the equations)

are different. First, let us compare the second-line terms:

(1− η(θt))p(θt)

[
f u
t

∫ ∞

zt

g(z′)µt(z′)dz′ +
∫ ∞

zt

∫ ∞

z̃
ft(z̃)g(z′)

(
µt(z′)− µt(z̃)

)
dz′dz̃

]
(27)

and

(1− γ)p(θt)
∫ ∞

zt

g(z′)St(z′)dz′. (28)
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The social planner’s solution reflects that two externalities are associated with

moving a worker out of unemployment. The first is that other unemployed work-

ers have a higher probability of finding a match. The second is that employed

workers have a higher probability of meeting with another job. The equilibrium

outcome does not take into account either of these externalities. Instead, the cor-

responding term (28) expresses the worker’s own opportunity cost that is unac-

counted for.

Second, the final terms

−ζ(1− η(θt))p(θt)

[
f u
t

∫ ∞

zt

g(z′)µt(z′)dz′+
∫ ∞

zt

∫ ∞

z̃
ft(z̃)g(z′)

(
µt(z′)− µt(z̃)

)
dz′dz̃

]
(29)

and

−ζ(1− γ)p(θt)
∫ ∞

z
g(z′)

(
St(z′)−ωSt(z)

)
dz′ (30)

are analogous, corresponding to workers becoming employed. For the social plan-

ner, the externality from the on-the-job search partially offsets the externality in the

previous term. For the equilibrium, once again, the gain from job-to-job transition

is only partially accounted for.

In the valuation margin, µt(z) = St(z) is difficult to achieve. First, for the com-

parison of (27) and (28), one situation that would make these terms equal is f u
t = 1

and ft(z) = 0. This scenario, of course, does not occur unless ζ = 0 (i.e., no on-the-

job search). Moreover, for the comparison of (29) and (30), f u
t = 1 and ft(z) = 0

do not yield the equivalence. For the terms (29) and (30), the opposite ( f u
t = 0 and

ft(z) = 1) brings the expression closer, but the difference remains. Here, a funda-

mental difference exists that is difficult to reconcile in this term. A worker’s on-the-

job search imposes externality to all other employed workers. The (unaccounted-

for) opportunity cost in equilibrium is fundamentally about that particular match.

Heterogeneity of z across workers is an essential feature of a job-ladder model, be-

cause no job-to-job transitions occur without such heterogeneity. This heterogene-

ity necessarily creates a disagreement between the externality to other matches and

the opportunity cost within the own match.

In the above intuition, we highlight the importance of two factors that are im-

pediments to efficiency. First, in equilibrium, moving a worker from unemploy-
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ment to employment imposes externalities both to the unemployed workers and

other employed workers. Second, because the employed workers are heteroge-

neous, offsetting the externalities to the other employed workers by proportionally

reducing the value of equilibrium surplus that is counted as the opportunity cost

is difficult.

To clarify these two factors further, in Appendix B, we analyze a model where

(i) the matching functions for the unemployed and the employed are segmented,

and (ii) for the employed, the matching functions for different values of z are seg-

mented. We find that the equilibrium outcome is efficient with the Hosios con-

dition and sequential auction (ω = 1).6 Both are needed for efficiency—just seg-

menting the unemployed market and the employed market is not sufficient. The

results is analogous to the efficiency result in Menzio and Shi (2011), who show the

efficiency of a job-ladder model with directed search. Our model features random

search, and for the efficiency, in addition to the segmentation, the Hosios condition

and sequential-auction mechanism are needed.

4 Analytical characterizations

The intuition that we highlighted in the previous section carries over to broader

range of models with a similar structure. In this section, we further exploit the

simplicity of the current model to derive further analytical results. All proofs are

contained in Appendix C.

The main result is Proposition 1 below. It shows that, under the Hosios condi-

tion and a wide range of wage-setting mechanisms, the equilibrium vacancies are

excessive compared with the social efficiency. This result underscores that the neg-

ative externalities an employed worker (especially the one with a high z) imposes

on other workers (both unemployed workers and the other employed workers) are

difficult to reconcile.

Proposition 1 is important particularly in the context of policy evaluations. It

implies assuming the Hosios condition is not “neutral” in a job-ladder model: it

automatically favors a policy that discourages vacancy posting. It is in contrast

6We thank Xincheng Qiu for suggesting this exercise.
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to the model without an on-the-job search, where the Hosios condition implies no

intervention is optimal absent other distortions. In the calibration of quantitative

DMP literature, the Hosios condition is often assumed (e.g., Shimer, 2005). In the

case of a job-ladder model, this calibration implies that policies that encourage or

discourage vacancy posting give rise to inefficiency even without other distortions.

4.1 Market equilibrium

The decentralized equilibrium admits characterization by a system of two linear

partial differential equations. Taking the derivative of (15) with respect to z, the

match surplus solves

[r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z))] ∂zSt(z)

= At + (1− γ)(1−ω)ζ p(θt)g(z)St(z) + ∂zṠt(z),

with a boundary condition St(zt) = 0. The reservation match quality zt satisfies

0 = Azt − h− γ(1− ξ)p(θt)
∫ ∞

zt

g(z′)St(z′)dz′.

The second partial differential equation is the evolution of employment distribu-

tion given by (18).

Evaluating these partial differential equations at the steady state, the steady-

state equilibrium can be characterized by two equations with two unknowns, which

are useful later.

Lemma 1 The steady-state equilibrium market tightness and reservation match quality,

{θ, z}, jointly solve

0 = Az− h− Aγ(1− ζ)p(θ)
∫ ∞

z

1
Γ(z̃; θ)

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)

 dz̃ (31)

and

κ = A(1− γ)q(θ)

[∫ ∞

z

σ(1− G(z))
σ + (1− G(z))ζ p(θ)

1
Γ(z, θ)

dz

+ (1−ω)
∫ ∞

z

σg(z)ζ p(θ)(1− G(z))
(σ + (1− G(z))ζ p(θ))2

∫ z

z

Γ(z, θ)
(ω−1)(1−γ)
(1−ω(1−γ))

Γ(z̃, θ)
γ

(1−ω(1−γ))

dz̃dz

]
, (32)
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where Γ(z̃; θ) ≡ r + σ + (1 − ω(1 − γ))ζ p(θ)(1 − G(z̃)). Moreover, (31) defines a

weakly increasing relationship between z and θ, which we write as zR(θ), and (32) defines

a strictly decreasing relationship between z and θ, which we write as zFE(θ).

Given {z, θ}, the rest of the equilibrium can be obtained as follows. The steady-

state match surplus is given by

S(z) = A
∫ z

z

Γ(z, θ)
(ω−1)(1−γ)
(1−ω(1−γ))

Γ(z̃, θ)
γ

(1−ω(1−γ))

dz̃ for z ≥ z,

the steady-state employment distribution is

N(z) =
(G(z)− G(z)) p(θ)u
σ + (1− G(z))ζ p(θ)

, (33)

and the steady state unemployment rate is

u =
σ

σ + (1− G(z))p(θ)
. (34)

4.2 Social planner’s problem

As in the decentralized equilibrium, the social value of a job satisfies the following

partial differential equation, which we obtain by taking the derivative of (22) with

respect to z:

[r + σ + ζ p(θt)] ∂zµt(z) = At + ∂zµ̇t(z),

with a boundary codnition µt(zt) = 0. The reservation match quality z solves

0 = Atzt − h− (1− ζ)p(θt)
∫ ∞

zt

g(z′)µt(z′)dz′ + κθt(1− ζ).

Evaluating these equations at the steady state, the efficient steady-state allocation

can be tractably characterized as follows.

Lemma 2 The efficient steady-state market tightness and reservation match quality {θSP, zSP}
jointly solve

0 = AzSP − h

−A(1− ζ)p(θSP)
∫ ∞

zSP

ση(θSP) + (1− G(z̃))ζ p(θSP)

σ + (1− G(z̃))ζ p(θSP)

1− G(z̃)
r + σ + ζ p(θSP)(1− G(z̃))

dz̃

(35)
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and

κ = A(1− η(θ))q(θSP)
∫ ∞

zSP

σ

σ + ζ p(θSP)(1− G(z̃))
1− G(z̃)

r + σ + ζ p(θSP)(1− G(z̃))
dz̃.

(36)

Moreover, there exists k < 0 such that if η′(θ) > k, (35) defines a weakly increasing

relationship between zSP and θ, which we write as zSP,R(θ), and (36) defines a strictly

decreasing relationship between zSP and θ, which we write as zFE,R(θ).

Given {zSP, θSP}, the social value of a job can be obtained as

µ(z) = A
∫ z

zSP

1
r + σ + ζ p(θSP)(1− G(z̃))

dz̃, (37)

and the employment distribution is given by (33) and (34).

4.3 Results

The main result of this section shows that, with worker bargaining power lower

than the matching-function elasticity with respect to vacancy, the vacancy creation

in the market economy is always excessive relative to the efficient level in the pres-

ence of on-the-job search.

Proposition 1 Suppose γ ≤ η(θSP) for all θ. Then, the steady-state equilibrium market

tightness θ in the market equilibrium is higher than the socially efficient level when ζ > 0.

An immediate corollary is that the equilibrium vacancy creation is always exces-

sive relative to the efficient level under the Hosios condition.

The logic underlying the proof can be graphically explained in Figure 1. The

downward-sloping red solid line plots the relationship zFE(θ) in the decentralized

equilibrium, derived from (32). The downward-sloping red dotted line plots the

corresponding relationship for the planner’s solution, denoted zFE,SP(θ), derived

from (36). These lines are downward sloping because a larger z implies a less

frequent match formation, and thus a lower return from posting vacancy. It can

be shown that the solid line (zFE(θ)) lies to the right of the solid line (zFE,SP(θ)) as

long as ζ > 0. Both equations (32) and (36) represent the optimal vacancy-posting

condition. For a given reservation match quality (z), the value of a vacancy is

higher in the decentralized economy than in the social optimum.
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θ

zFE(θ)

zFE,SP(θ)
zR(θ)

zR,SP(θ)

θSP θDE

Figure 1: Inefficiency with on-the-job search

The upward-sloping blue solid line represents the equilibrium relationship zR(θ),

derived from (31). The upward-sloping blue dotted line is the corresponding rela-

tionship for the social planner, zR,SP(θ), derived from (35). These lines are upward-

sloping because a higher frequency of match allows the match formation to be

more selective. Once again, the equilibrium relationship lies to the right of the so-

cial planner’s relationship. The decentralized equilibrium values a job more than

the planner, and therefore, they are more likely to form a match given θ. From the

graph, we can see the outcome is a higher market tightness in the decentralized

equilibrium than the efficient level, that is, θDE > θSP.

The natural next question is whether combinations of parameter values exist

such that the decentralized equilibrium is efficient. Such situations can relatively

easily be described in a special case with ζ = 1. Under ζ = 1 (the efficiency of

on-the-job search is the same as unemployed), the reservation match quality in the

decentralized equilibrium always coincides with the efficient level with z = h/A.

In such a situation, we can guarantee (the proof is omitted here) a worker bargain-

ing parameter γ exists such that the efficiency is achieved. It can also be shown

that, in such a case, γ is higher than what is prescribed by the Hosios condition.
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Parameter Description Value Target/Source

PANEL A. ASSIGNED PARAMETERS

r Discount rate 0.004 Annual interest rate 5%

η Elasticity of matching function 0.5 Standard

γ Worker bargaining power 0.5 Standard

ω Offer matching 1.0 Cahuc et al. (2006)

h Home production value 0.6 Normalization

A Aggregate productivity 1.0 Normalization

PANEL B. CALIBRATED PARAMETERS

σ Separation rate 0.024 EU rate 2.4%

α Pareto distribution shape parameter 5.2 UI elasticity of job-finding rate 0.37

zmin Pareto distribution location parameter 2.5 Job-acceptance rate 49.4%

κ Cost of vacancy creation 1.5 Market tightness 1

m Matching efficiency parameter 0.83 Unemployment rate 5.5%

ζ On-the-job search efficiency 0.25 EE rate 2.5%

Table 1: Parameter values

When ζ < 1, two parameters (γ, ω) have to ensure the two equilibrium vari-

ables (z, θ) are at the efficient level. Below, we numerically find such a combination

of (γ, ω) in the quantitative experiment.

5 Quantitative exploration

In this section, we quantitatively explore the difference between the efficient al-

location and the equilibrium outcome. We calibrate the economy in a standard

manner; that is, we try to stay as close as possible to the existing macroeconomic

literature. Knowing whether the difference between the efficient allocation and

equilibrium outcome is small or large is of interest because the policy implications

would be different. The magnitude of desired policy interventions, for example,

depends on the magnitude of distortions in the economy.
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5.1 Calibration

Table 1 summarizes our parameterization. We interpret one period as a month and

set the discount rate to 5% annually, r = 0.05/12. The exogenous separation rate is

set to 2.4% at monthly frequency, σ = 0.024. We assume the Cobb-Douglas match-

ing function, M(u, v) = muηv1−η with η = 0.5, and the bargaining power is such

that γ = η (i.e., the Hosios condition), which are standard calibrations in the litera-

ture (e.g., Engbom, 2019). We measure units of vacancy so that θ ≡ v/u = 1 in the

steady state. We assume the productivity distribution is given by the Pareto dis-

tribution: G(z) = 1− (z/zmin)
−α, which is consistent with a notion of a balanced

growth path in Martellini and Menzio (2020). The flow value of unemployment is

normalized to h = 0.6, and the aggregate productivity is normalized to A = 1.7 We

set the offer-matching parameter to ω = 1, which corresponds to the sequential-

auction protocol of Cahuc et al. (2006) and is widely used as a benchmark in the

subsequent literature.

We then choose five parameters {m, α, zmin, κ, ζ} to jointly match the following

five moments: the steady-state unemployment rate of 5.5%; the monthly employment-

to-employment transition rate of 2.5%; the job-acceptance rate of unemployed of

0.494, as reported in Faberman et al. (2022); and the partial-equilibrium elastic-

ity of the job-finding rate with respect to the unemployment benefit, h, of 0.37,

which corresponds to median estimates in the literature as surveyed by Schmieder

and Von Wachter (2016). We compute the partial-equilibrium elasticity of the job-

finding rate with respect to the unemployment benefit by simulating a model with

a small change in h and computing the percentage change in the job-finding rate,

holding the market tightness θ fixed.

Although all parameters are jointly calibrated, we provide a heuristic argument

for how each moment identifies each parameter. First, the matching-efficiency pa-

rameter m is identified from the steady-state unemployment rate. The efficiency

of on-the-job search, ζ, is inferred from the employment-to-employment transition

7With a Pareto match-quality distribution and perfect offer matching (ω = 1), zmin, κ, and h

are not separately identified, because any combination of (zmin, h, κ) with the same zmin/h and κ/h

result in the same labor market allocation. Therefore, the choice of h merely amounts to normaliza-

tion.
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Equilibrium Efficient

Market tightness 1.00 0.78

Reservation match quality 2.865 2.889

Consumption 3.7725 3.7751

UE rate 0.412 0.349

EE rate 0.025 0.023

Unemployment rate 5.5% 6.4%

Table 2: Comparison between equilibrium vs. efficient allocation

Note: The table shows the aggregate variable in the decentralized equilibrium and
in the efficient allocation.

rate. The lower bound of the productivity distribution, zmin, is identified from the

job-acceptance rate of the unemployed. The cost of vacancy creation, κ, is cho-

sen to ensure our normalization of θ = 1. The elasticity of the job-finding rate

with respect to the unemployment benefit identifies the Pareto-distribution shape

parameter, α, because it controls the mass of workers near the reservation match

quality.

5.2 Results: Decentralized equilibrium vs. efficient allocation

Now, we compare the outcomes of the decentralized equilibrium and the efficient

allocation. Table 2 compares the aggregate variables. The equilibrium allocation

has too many vacancies; θ is too high. As a result, the unemployment rate is too

low and the aggregate productivity (the average z among the employed) is too

high. The resulting consumption is lower in the equilibrium allocation, although

the difference (about 0.07%) is small. The unemployment rate is 0.9 percentage

points higher in the efficient allocation. The difference in the unemployment rate,

therefore, is economically significant.

The discrepancy in the aggregate variables masks the underlying discrepancy

in the distribution across job ladders. The top-left panel of Figure 2 compares the

density function of z across the job ladder in the decentralized equilibrium with

that in the planner’s solution. The figure shows two features. First, because θ is

larger in equilibrium, the distribution at the top is thicker for the market equilib-
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Figure 2: Employment distribution and match surplus: Equilibrium vs. planner

Note: The top-left panel compares the density of employment across the job ladder in the decentral-
ized equilibrium and in the efficient allocation, n(z). The top-right panel compares match surplus
in the decentralized equilibrium, S(z), and the planner’s valuation of a match, µ(z). The bottom-
left panel compares terms (27) and (28). The bottom-right panel compares terms (29) and (30).

rium. Second, at the bottom, the social planner is pickier in forming a match; thus,

the bottom part of the distribution is more extended in the market equilibrium. All

in all, the job-ladder in the market equilibrium features more dispersion in z. In

the market equilibrium, too much inequality in earning exists.

The result of too many productive jobs in the decentralized equilibrium is in

contrast to models with ex-ante job heterogeneity, such as Acemoglu (2001), where

too few “good jobs” tend to exist in equilibrium compared with the efficient allo-

cation.

In Section 3.3, we established that the valuation margin causes the discrepancy

between the equilibrium allocation and the optimal allocation (in the case of the

Hosios condition and sequential auction). To visualize the discrepancy, the top-

right panel of Figure 2 compares the surplus in the decentralized equilibrium (S(z);

solid line in the left panel) with the planner’s valuation (µ(z); dashed line in the left

28



panel). Consistent with our earlier discussion, the planner systematically places a

lower match value for each z.

To further investigate the difference between S(z) and µ(z), in the bottom two

panels in Figure 2, we plot the final two terms of the valuation margin, that is, term

(27) versus term (28) and term (29) versus term (30). For (27) and (28) (the bottom-

left panel), the equilibrium value is significantly larger. For (29) versus (30) (the

bottom-right panel), note first that (30) is a function of z and (29) is independent

of z. In equilibrium, a worker with high z has small job-to-job gains, and thus, the

“missing private gain” due to the initial Nash bargaining is not large (in absolute

value). By contrast, because of the random-search assumption, the externality one

person imposes due to on-the-job search is the same regardless of z. For workers

with large z, therefore, the effect of the negative externality they impose on others

is significant.

In sum, the value of employment in equilibrium is excessively high for two

reasons: (i) The negative externality an unemployed worker imposes on others is

relatively small compared with the effect that in equilibrium, the value of unem-

ployed search is undervalued; and (ii) for a high-z employed, the negative exter-

nality that they impose on others by their on-the-job search is large (in absolute

value) relative to the effect that in equilibrium, on-the-job search for these workers

is privately undervalued.

5.3 Steady-state comparative statics

This section conducts several comparative statics in terms of important parame-

ters. We ask two questions. First, how does the existence of on-the-job search

matter? We vary ζ from 0 (no on-the-job search) to 1 (on-the-job search is as effi-

cient as off-the-job search) to examine this question. Second, how does the wage

matching by the poaching firm matter? We have seen in Section 3.3 that when

ω = 0, the investment margin suffers from the worker-stealing externality, and the

perfect offer matching (sequential auction) ω = 1 alleviates this issue.

For the first question, Figure 3 varies the degree of on-the-job search ζ. The

other parameters are kept constant at the values in the baseline. Because we im-

pose the Hosios condition, the market equilibrium is efficient when ζ = 0 (no
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Figure 3: Varying the on-the-job search parameter ζ: equilibrium vs. planner

on-the-job search). What is striking here is that the labor market tightness in the

market equilibrium significantly departs from the optimal outcome even with a

small amount of on-the-job search; for example, ζ = 0.1.

For the second question, Figure 4 varies the degree of offer matching ω. We

have seen our benchmark, ω = 1, achieves optimal investment in vacancy when

valuation is correct. Therefore, it is not surprising that the consumption tends to be

farther away from the efficient outcome when ω is lower. Although the labor mar-

ket tightness increases with ω, the reservation match quality z also increases. The

latter effect dominates in shaping the unemployment rate. The difference in the

equilibrium unemployment rate between ω = 0 and ω = 1 is almost 2 percentage

points, and thus, the worker-stealing externality is economically significant.

Reservation match quality increases with ω because the workers become choosier
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Figure 4: Varying the offer matching parameter ω: equilibrium vs. planner

with a higher θ. But why does θ increase? This result seems counterintuitive given

that a higher ω implies a poaching firm has to pay a higher wage, discouraging the

vacancy posting—θ should fall with ω for a given S(z). However, S(z) is not given.

The valuation-margin equation (15) in fact reveals S(z) increases with ω. This re-

sult holds because workers are forward looking: the workers’ surplus (thus, the

current match surplus) includes the future possibility of receiving a higher wage

from the poaching firm. This increase in S(z) (for given θ and z) provides a higher

motivation for vacancy posting. In our calibration, the latter effect dominates.

Finally, we ask whether a pair of bargaining parameters, (γ, ω), exists such

that the steady-state allocation is efficient. The answer turns out to be yes. Table

3 shows the values of worker bargaining power, γ, and the offer-matching pa-

rameter, ω, that induce the same allocation (same θ and z) in the steady state and
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Calibration Efficient

Worker bargaining power, γ 0.50 0.57

Offer matching, ω 1.00 0.98

Table 3: Efficient Bargaining Parameters

Note: The table shows the bargaining parameters used in our calibration and the
ones that achieve the efficient allocation.

contrast them with the calibration. We find that worker bargaining power γ that

is higher than the Hosios condition and offer-matching parameter ω that is lower

than the sequential auction achieves the efficient allocation.

5.4 Transition dynamics

So far, our focus has been on the steady state. We now consider the response of the

economy to the productivity shock. This experiment is important in evaluating

how the efficiency properties interact with various phases of the business cycle.

We consider a one-time unanticipated shock (“MIT shock”) to the aggregate

productivity, At, that increases by 1% at t = 0, which decays with rate ρA:

d ln At = −ρA ln(At/A)dt.

We set ρA = 0.04, which corresponds to the autocorrelation of 0.96 at the monthly

frequency. We compare the response of the social planner’s solution with that of

the decentralized equilibrium, starting from the steady state described earlier. We

solve the first-order approximation of transition dynamics around the steady state

in sequence space, following the approach of Auclert et al. (2021). We describe the

details of algorithms in Appendix D.

The top-left panel of Figure 5 shows the path of aggregate productivity. The

top-right panel shows the unemployment rate goes down more in the decentral-

ized equilibrium than in the planner’s solution. Given the steady-state unemploy-

ment rate was already lower in the equilibrium than in the planner’s solution, the

positive productivity shock exacerbates the gap in the unemployment rate. The

bottom two panels show this difference is driven by a larger initial rise in market

tightness and a persistent larger fall in reservation match quality. Both of these
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Aggregate Productivity, A Unemployment Rate, u

Market tightness, θ Reservation Match Quality,  z

Figure 5: Response to productivity shock: Equilibrium and planner solution

Note: The figure plots the response of the decentralized equilibrium and the social planner’s so-
lution to a 1% initial increase in aggregate productivity at t = 0. The solid line represents the
decentralized equilibrium, and the dashed line represents the social planner’s solution.

effects are driven by the fact that a positive productivity shock induces the further

over-valuation of the match in the equilibrium allocation relative to the planner’s

allocation. We make this point precise by analyzing how the wedge between the

match surplus and the social value of a match changes in response to the changes

in productivity below in Section 6.1.

6 Decentralization

In this section, we implement the efficient allocation through taxes. This exercise

is of direct policy relevance, because knowing how much (and what kind of) taxes

should be imposed and how they depend on the economic situation is useful. Ex-

pressing the magnitude of inefficiencies through “wedges,” or implicit taxes, as in

Chari et al. (2007), is also useful.
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6.1 Optimal taxes

The efficient allocation is implementable in various ways. Here, we focus on two

policy instruments, output tax and entry (vacancy-posting) tax. Suppose the gov-

ernment can impose an output tax τ(z) on a match so that the output net of tax

is Az(1− τ(z)). Also, suppose the government imposes entry tax τe so that the

vacancy-posting cost that the firms face is given by (1 + τe)κ. The government

finances these fiscal instruments through a lump-sum tax on workers. The equilib-

rium definition remains unchanged, where we replace Az with Az(1− τ(z)) and

κ with (1 + τe)κ.

The following lemma shows these two instruments not only implement effi-

cient allocation but also ensure all jobs are valued the same as in the planner’s

solution.

Lemma 3 There exist output taxes {τ(z)} and an entry tax τe such that the decentralized

equilibrium implements efficient allocation with S(z) = µ(z) for all z.

We further derive the expressions for optimal output taxes and the entry tax in

Appendix C.4.

Although efficient allocation can be implemented in other ways, we focus on

the implementation through output tax and entry tax for two reasons.8 The first is

theoretical clarity. As we discussed earlier, the inefficiency can be decomposed into

two margins: the valuation margin and the investment margin. The two policy

instruments correct the inefficiency in each margin. The output tax ensures the

equilibrium match surplus coincides with the social value of a match. The entry tax

ensures the equilibrium vacancy creation coincides with the efficient level, given

the surplus is valued efficiently.

The second reason is the robustness with respect to other margins of ineffi-

ciency. For example, if the separation rate depends on the endogenous effort of

the match, as in Balke and Lamadon (2022), for example, ensuring the match sur-

plus coincides with the socially efficient level is necessary for the decentralized

equilibrium to be efficient. In this case, output tax and entry tax still implement

8We show in Appendix E that a combination of the entry tax and the unemployment insurance

also implements the efficient allocation.
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the efficient allocation, whereas other policy instruments, such as unemployment

insurance, do not. We make this point precise in Appendix F.

The following proposition characterizes the properties of the optimal output

tax and entry tax.

Proposition 2 Assume γ ≤ η(θSP) and ζ > 0. Then, the following holds:

1. The steady-state optimal output tax is strictly positive, τ(z) > 0 for all z, and

satisfies limz→∞ τ(z) = 0.

2. The entry tax is weakly positive τE ≥ 0. It is zero τE = 0 when the Hosios condition

holds, γ = η(θ), and offer-matching is perfect, ω = 1.

The proposition shows output tax and entry taxes are always positive as long as

the workers’ bargaining power is lower than the elasticity of the matching function

and on-the-job searches occur. The entry tax is zero whenever the Hosios condi-

tion holds and the offer-matching is perfect, in which case, the investment margin

is efficient. Even in such a case, the output tax is strictly positive, because the valu-

ation margin is still inefficient. The tax rate is asymptotically zero as z→ ∞. In the

top right panels of Figure 2, the gaps between the social planner’s solution and the

market equilibrium become asymptotically constant as z → ∞. Thus, compared

with z, the gap becomes smaller and smaller as z increases.

The next question we ask is whether these policies should systematically re-

spond to changes in the underlying environment. To isolate the role of on-the-job

search, we assume the Hosios condition holds: γ = η(θ) for all θ. Under this con-

dition, the optimal taxes are zero without an on-the-job search. With on-the-job

search, the output tax is given by

τ(z) =
1
z

∫ z

zSP

{
ω(1− γ)ζ p(θSP)(1− G(z̃))
r + σ + ζ p(θSP)(1− G(z̃))

+
∫ z̃

zSP

(1− γ)(1−ω)ζ p(θSP)g(z̃)
r + σ + ζ p(θSP)(1− G(z′))

dz′
}

dz̃,

which is strictly increasing in labor market tightness, θSP, and strictly decreasing

in the reservation match quality, zSP. This result implies that, in response to booms

in the labor market (where the labor market is tight and reservation match quality

is low), the output tax should rise.
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Proposition 3 Suppose the Hosios condition holds, γ = η(θ) for all θ, and ζ is suffi-

ciently close to 1. Then, the steady-state output tax, τ(z), is strictly increasing in the

aggregate productivity A.

What the above proposition illustrates is that the inefficiency along the valuation

margin is more severe when the aggregate productivity is high. An increase in

productivity exacerbates the overvaluation of jobs in the decentralized equilib-

rium relative to the planner. This overvaluation tends to lead to excessive va-

cancy creation and inefficiently low reservation match quality. This observation

also explains our finding in Section 5.4 that the equilibrium unemployment rate

exhibits excessive volatility. The response of the entry tax is generally ambigu-

ous, but when the offer-matching is perfect, ω = 1, it is invariant to the aggregate

productivity.

6.2 Quantitative results

We illustrate the optimal output tax and entry tax that restore efficiency. Figure

6 plots the optimal steady-state output tax rate, τ(z), under our baseline param-

eterization. Because we assume the Hosios condition holds and offer matching

is perfect, the optimal output tax is strictly positive and the optimal entry tax is

zero, as shown in Proposition 2. Consistent with Proposition 2, the output tax rate

decreases with z when z is sufficiently large.

The natural next question is how the policy should respond to the productivity

shock. Figure 7 shows the optimal output and entry tax in response to the produc-

tivity shock. The optimal output tax increases sharply after the shock and reverts

to the original level quickly. This result implies inefficiency along the valuation

margin is larger in response to the positive productivity shock. By contrast, the

entry tax does not respond. Once again, this result is due to our assumptions of

the Hosios condition and perfect offer matching.
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Figure 6: Optimal steady-state output tax, τ(z)

Note: The figure plots the optimal steady-state output tax, τ(z), against match
productivity, z.

Output Tax Entry Tax

Figure 7: Optimal tax response to productivity shock

Note: The figure plots the response of the decentralized equilibrium and the social
planner’s solution to a 1% initial increase in aggregate productivity at t = 0, as in
the left-top panel of Figure 5. The solid line represents the social planner’s solution,
and the dashed line represents the decentralized equilibrium.
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7 Conclusion

This paper analyzes the efficiency of market equilibrium in a DMP-style job-ladder

model. We identify two margins where inefficiencies can arise: the investment

margin and the valuation margin. In the presence of an on-the-job search, the Ho-

sios condition does not ensure the efficiency of market equilibrium. Even when we

impose a wage-setting protocol that makes the investment margin undistorted, the

valuation margin is still distorted. We show that, for a wide range of wage-setting

protocols, too many vacancies are posted in market equilibrium under the Hosios

condition. These results have important implications on the policy evaluations

using the job-ladder models.

The quantitative exercise focuses on the situation where the economy is cali-

brated as in the standard macroeconomic literature, and the Hosios condition is

satsified. It reveals that even with a small amount of on-the-job search, the opti-

mal unemployment rate and the equilibrium unemployment rate can differ signifi-

cantly. Thus, the inefficiencies highlighted in the earlier sections are quantitatively

important. We also examine how the efficient allocations can be decentralized by

output taxes and an entry tax.

The intuitions on inefficiencies would carry over to more complex models with

various other factors. When we think about further complex models, an important

factor is how the labor markets for different workers are segmented. The segmen-

tation can be in different dimensions—here, we focused on the employment status

(unemployed vs. employed) and the match quality, but the actual labor market

can be segmented across various other dimensions, such as gender, race, educa-

tion, experience, and geography. Our paper shows understanding the degree of

segmentation in the economy is an important input in considering desirable poli-

cies under a frictional labor market.
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Online Appendix for
“Efficiency in Job-Ladder Models”

A Pissarides (1985) model

In this Appendix, we spell out the entire Pissarides (1985) model and derive the

Hosios condition by comparing the social planner’s solution and the market out-

come.

A.1 Social planner’s problem

The social planner’s problem is

max
nt,θt

∫ ∞

0
e−rt[znt + h(1− nt)− κθt(1− nt)]dt

subject to

ṅt = p(θt) (1− nt)− σnt.

The current-value Hamiltonian for this problem can be written as

H = znt + h (1− nt)− κθt (1− nt) + µt (p(θt) (1− nt)− σnt) .

Thus first-order conditions are

κ(1− nt) = p′(θt)µt(1− nt) (38)

and

z− h + κθt − p(θt)µt − (r + σ)µt + µ̇t = 0. (39)

From (38), noting p′(θ) = (1− η(θ))q(θ),

κ = (1− η(θ))q(θ)µt.

This equation corresponds to (2) in the main text. From (39) in the steady state

where µ̇t = 0,

(r + σ)µt = z− h− (p(θt)µt − κθt)

holds. This equation corresponds to (4) in the main text.
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A.2 Market equilibrium

In the market equilibrium, the Hamilton-Jacobi-Bellman (HJB) equation for an un-

employed worker is

rUt = h + p(θt)(Wt −Ut) + U̇t, (40)

where Ut is the value of an unemployed worker and Wt is the value of employed

worker. The HJB equation for an employed worker is

rWt = wt − σ(Wt −Ut) + Ẇt, (41)

where wt is the wage at time t. On the firm side, the HJB equation for a matched

job is

rJt = z− wt − σ(Jt −Vt) + J̇t, (42)

where Jt is the value of a matched job and Vt is the value of a vacancy. The value

of vacancy satisfies

rVt = −κ + qt(Jt −Vt) + V̇t. (43)

We assume anyone can post a vacancy (free entry), and therefore, the value of

vacancy is driven down to zero in an equilibrium where the vacancy posting is

strictly positive (we focus on such an equilibrium):

Vt = 0. (44)

The wages are determined by Nash bargaining, which implies

Wt = γSt + Ut (45)

and

Jt = (1− γ)St + Vt, (46)

where St ≡ Wt + Jt −Ut − Vt is the joint surplus from a match, and γ is workers’

baragining power. Thus, an employed worker and a matched firm share the sur-

plus with the fractions γ and (1− γ), in addition to their outside options. Using

(44) and (46) in (43), we obtain

κ = (1− γ)q(θt)St.
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This equation corresponds to (3) in the main text. Adding up (40), (41), and (42)

and using (44) and (45) (also imposing the steady-state condition Ṡt = 0), we obtain

(r + σ)St = z− h− p(θt)γSt,

which corresponds to (5) in the main text.

B Segmented market

We modify our baseline model by assuming the labor market is segmented by

workers’ employment status as well as the match quality of the current jobs if

workers are employed. We denote the market tightness that unemployed workers

face as θu, and the market tightness that employed workers with match quality z

face as θe(z). Free entry of firms is assumed in each of the segmented markets.

The value of being unemployed is given by

rUt = h + p(θu
t )
∫

g(z)max{Wt(z, Ut)−Ut, 0}dz + U̇t.

The value function of workers employed with match quality z and an outside op-

tion Ō ∈ [U, U + ωS(z)] is given by

rWt(z, Ō) = wt(z, Ō)

+ ζ p(θe
t (z))

∫ ∞

z
g(z′)

(
Wt(z′, Ut + ωSt(z))−Wt(z, Ō)

)
dz′

+ ζ p(θe
t (z))

∫ z

0
g(z′)

(
W(z, max{Ut + ωSt(z′), Ō})−W(z, Ō)

)
dz′

+ σ(Ut −Wt(z, Ō)) + Ẇt(z, Ō).

The value of filled job with productivity z and outside option Ō ∈ [U, U + ωS(z)]

is given by

rJt(z, Ō) = Atz− wt(z, Ō)

+ ζ p(θe
t (z))

∫ ∞

z
g(z′)

(
Vt − Jt(z′, Ō)

)
dz′

+ ζ p(θe
t (z))

∫ z

0
g(z′)

(
Jt(z, max{Ut + ωSt(z′), Ō})− Jt(z, Ō)

)
dz′

+ σ (Vt − Jt(z, Ō)) + J̇t(z, Ō).
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The value of vacancy in the market for unemployed workers is given by

Vu = −κ + q(θu
t )
∫ ∞

0
g(z)max{Jt(z, U)−Vt, 0}dz + V̇u,

and the value of vacancy in the market for employed workers with match quality

z is given by

Ve(z) = −κ + q(θe
t (z))

∫ ∞

z
f (z′)max{Jt(z′, U + ωSt(z))−Vt, 0}dz′ + V̇e(z).

The free-entry condition is

Vt = max{Vu, max
z

Ve(z)} = 0.

With Nash bargaining, the surplus from a match is

(r + σ)St(z) = Atz− h

+ ζ p(θe(z))
∫ ∞

z
g(z′)

(
ωSt(z) + γ

[
St(z′)−ωSt(z)

]
− St(z)

)
dz′

− p(θu
t )
∫ ∞

zt

g(z′)γSt(z′)dz′ + Ṡt(z)

(47)

for z ≥ zt, where zt satisfies

S(zt) = 0.

The matches with z < zt are not formed.

The free-entry conditions are (assuming all markets have strictly positive va-

cancy posting)

κ = (1− γ)q(θu
t )
∫

z
g(z)St(z)dz (48)

and

κ = (1− γ)q(θe
t (z))

∫ ∞

z
g(z′)

[
St(z′)−ωSt(z)

]
dz′. (49)

Now we turn to the social planner’s problem. The social planner’s problem is

to choose {θu
t , θe

t (z), nt(z), IUE
t (z), IEE

t (z, z′), ςt} to maximize∫ ∞

0
e−rt

[∫ ∞

0
Atznt(z)dz + h

(
1−

∫ ∞

0
nt(z)dz

)
− κθu

t

(
1−

∫ ∞

0
nt(z)dz

)
− κ

∫ ∞

0
θe

t (z)ζnt(z)dz
]

dt
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subject to

ṅt(z) =
(

1−
∫

nt(z′)dz′
)

p(θu
t )g(z)IUE

t (z) +
∫ ∞

0
p(θe

t (z
′))g(z)IEE

t (z′, z)ζnt(z′)dz′

−
∫ ∞

0
p(θe

t (z))g(z′)IEE
t (z, z′)ζnt(z)dz′ − σnt(z)− ςt.

The current-value Hamiltonian for this problem is

H =
∫ ∞

0
Atznt(z)dz + h

(
1−

∫ ∞

0
nt(z)dz

)
− κθu

t

(
1−

∫ ∞

0
nt(z)dz

)
− κ

∫ ∞

0
θe

t (z)ζnt(z)dz

+
∫ ∞

0
µt(z)

[(
1−

∫ ∞

0
nt(z′)dz′

)
p(θu

t )g(z)IUE
t (z) + ζ

∫ ∞

0
p(θe

t (z
′))g(z)IEE

t (z′, z)nt(z′)dz′

− ζ
∫ ∞

0
p(θt(z))g(z′)nt(z)IEE

t (z, z′)dz′ − σnt(z)− ςt

]
dz,

where µt(z) is the costate variable that represents the shadow value of the con-

straint (21). Thus, µt(z) is the shadow value of creating one unit of match with

match quality z.

The optimality condition for {IUE
t (z), IEE

t (z, z′)} is

IUE
t (z) =

1 µt(z) > 0

0 µt(z) ≤ 0
,

and

IEE
t (z, z′) =

1 µt(z′) > µt(z)

0 µt(z′) ≤ µt(z)
.

The optimality condition for endogenous separation ςt implies µt(z) ≥ 0 for all z

with nt(z) > 0.

The first-order optimality condition on nt(z) is

(r + σ)µt(z) = Atz− h−
∫ ∞

zt

p(θu
t )g(z′)µt(z′)dz′ + ζ p(θe

t (z))
∫ ∞

z
g(z′)(µt(z′)− µt(z))dz′

+ κθu
t − κζθe

t (z) + µ̇t(z),

(50)
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where we have already imposed the fact that µt(z) is increasing in z. The reserva-

tion match quality zt satisfies

µt(zt) = 0.

The first-order optimality condition for θu
t is

κ = (1− η(θu
t ))q(θ

u
t )
∫ ∞

z
µt(z′)g(z′)dz′ (51)

The first-order condition with respect to θe
t (z) is

κ = (1− η(θe
t (z)))q(θ

e
t (z))

∫ ∞

0
µt(z′)g(z′)IEE

t (z, z′)dz′

− (1− η(θe
t (z)))q(θ

e
t (z))

∫ ∞

0
g(z′)IEE

t (z, z′)dz′µt(z),
(52)

which we can rewrite as

κ = (1− η(θe
t (z)))q(θ

e
t (z))

∫ ∞

z
g(z′)

[
µt(z′)− µt(z)

]
dz′.

Using free-entry condiitons, we can rewrite (50) as

(r+σ)µt(z) = Atz− h− η(θu
t )p(θu

t )
∫ ∞

zt

g(z′)µt(z′)dz′+ ζη(θe
t (z))p(θe

t (z))
∫ ∞

z
g(z′)(µt(z′)−µt(z))dz′.

(53)

Comparing (47), (48), and (49) with (53), (51), and (52), we can see that the social

planner’s problem is equivalent to the decentralized equilibrium as long as Hosios

condition holds, η(θ) = γ for all θ, and offer-matching is perefect, ω = 1. We

summarize the results as follows.

Proposition 4 Consider the environment with segmented labor markets described above.

The decentralized equilibrium is efficient if the Hosios condition holds, η(θ) = γ for all θ,

and the offer-matching is perfect, ω = 1.
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C Proofs

C.1 Proof of Lemma 1

In the steady state, the match surplus S(z) satisfies

(r + σ)S(z) = Az− h

+ ζ p(θ)
∫ ∞

z
g(z′)

(
(ω− 1)S(z) + γ

[
S(z′)−ωS(z)

])
dz′

− p(θ)
∫ ∞

z
g(z′)γS(z′)dz′.

(54)

Taking a derivative with respect to z, we have

[r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z))] S′(z) + ζ p(θ)g(z)(ω− 1)(1− γ)S(z) = A.

With a boundary condition S(z) = 0, solving this ODE, we obtain

S(z; z, θ) =


A
∫ z

z
[r+σ+(1−ω(1−γ))ζ p(θ)(1−G(z))]

(ω−1)(1−γ)
(1−ω(1−γ))

[r+σ+(1−ω(1−γ))ζ p(θ)(1−G(z̃))]
γ

(1−ω(1−γ))
dz̃. for z ≥ z

0 for z < z.

Evaluating (54) at z = z yields

0 = Az− h− γ(1− ξ)p(θ)
∫ ∞

z
g(z′)S(z′; z, θ)dz′.

Applying integration by parts, we have

∫ ∞

z
g(z′)S(z′; z, θ)dz′ = A

∫ ∞

z

1
Γ(z̃; θ)

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)

 dz̃,

where

Γ(z; θ) ≡ r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z)).

Plugging it back, we have

0 = Az− h− Aγ(1− ζ)p(θ)
∫ ∞

z

1
Γ(z̃; θ)

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)

 dz̃

= HR(z, θ).
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The solution to the above equation can be used to define the mapping zR(θ). Its

derivative is

dzR(θ)

dθ
= −

∂HR(z,θ)
∂θ

∂HR(z,θ)
∂z

.

Clearly, the denominator is positive, that is, ∂HR(z, θ)/∂z > 0. To sign the numer-

ator,

∂HR(z, θ)

∂θ
= Aγ(1− ζ)p′(θ)

∫ ∞

z

1
Γ(z̃; θ)

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)

 dz̃

−Aγ(1− ζ)p′(θ)
∫ ∞

z

(1−ω(1− γ))ζ p(θ)(1− G(z̃))
Γ(z̃; θ)2

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

(
γ

(1−ω(1− γ))

)
− G(z̃)

 dz̃

≥ Aγ(1− ζ)p′(θ)
∫ ∞

z

1
Γ(z̃; θ)

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)

 dz̃

− Aγ(1− ζ)p′(θ)
∫ ∞

z

1
Γ(z̃; θ)

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)

 dz̃

= 0.

Therefore, zR(θ) is weakly increasing.

Let P(z) denote the mass of workers employed with match quality below z or

unemployed, where P(z) corresponds to the unemployment rate. Its law of motion

in the steady state is

0 = −(1− G(z))p(θ)P(z)− (P(z)− P(z))(1− G(z))ζ p(θ) + σ(1− P(z)).

Solving for P(z), we have

P(z) =


σ−(1−ζ)(1−G(z))p(θ)P(z)

σ+(1−G(z))ζ p(θ) for z ≥ z
σ

p(θ)(1−G(z))+σ
for z < z.

Define the probability that a vacancy meets with a worker already employed with
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match quality below z or unemployed is

F`(z) ≡ P(z) + ζ(P(z)− P(z))
P(z) + ζ(1− P(z))

=


σ

σ+(1−G(z))ζ p(θ) for z ≥ z
σ

σ+(1−G(z))ζ p(θ) for z < z
≡ F`(z; θ, z).

The associated density function is

f (z) =
σg(z)ζ p(θ)

(σ + (1− G(z))ζ p(θ))2 .

Using F`(z; θ, z), the free-entry condition in the steady state can be written as

κ = (1− γ)q(θ)
∫ ∞

0

∫ ∞

z′
g(z)

[
S(z; z, θ)−ωS(z′; z, θ)

]
dzdF`(z′; θ, z). (55)

This defines a mapping zFE(θ).

Taking derivative,

dzFE(θ)

dθ
= −

∂
∂θ

[
q(θ)

∫ ∞
0

∫ ∞
z′ g(z) [S(z; z, θ)−ωS(z′; z, θ)] dzdF`(z′; θ, z)

]
q(θ)

∫ ∞
0

∫ ∞
z′ g(z)

[
∂S(z;z,θ)

∂z −ω
∂S(z′;z,θ)

∂z

]
dzdF`(z′; θ, z)

. (56)

We would like to sign the above object. Note the denominator of (56) is negative

because

∂2S(z; z, θ)

∂z∂z
= −A(1−ω)(1−γ)ζ p(θ)g(z)

[r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z))]
(ω−1)(1−γ)
(1−ω(1−γ))

−1

[r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z))]
γ

(1−ω(1−γ))

≤ 0,

and as a result,

q(θ)
∫ ∞

0

∫ ∞

z′
g(z)

[
∂S(z; z, θ)

∂z
−ω

∂S(z′; z, θ)

∂z

]
dzdF`(z′; θ, z)

≤ q(θ)F`(z; θ, z)
∫ ∞

0
g(z)

∂S(z; z, θ)

∂z
dz < 0.

The numerator of (56) can be decomposed into (i) the effect through q(θ), (ii) the

effect through F`(z′; θ, z), and (iii) the effect through S(z; z, θ). Note the first two
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are negative because q′(θ) < 0 and F`(z′; θ′, z) first-order stochastically dominates

F`(z′; θ, z) for θ′ > θ. To sign the third effect, note

∂S(z; z, θ)

∂θ
= AB1(z) + AB2(z),

where

B1(z) = −η(θ)
(1−ω)(1− γ)ζ p(θ)(1− G(z))

r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z))
S(z)

and

B2(z) = −η(θ)
∫ z

z

γζ p(θ)(1− G(z̃))
r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z̃))

[r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z))]
(ω−1)(1−γ)
(1−ω(1−γ))

[r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z̃))]
γ

(1−ω(1−γ))

dz̃.

Then,∫ ∞

z′
B1(z)g(z)dz−ω

∫ ∞

z′
B1(z′)g(z)dz < −η(θ)

(1−ω)(1− γ)ζ p(θ)(1− G(z′))
r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z′))

×
[∫ ∞

z′
S(z)g(z)dz−ω

∫ ∞

z′
S(z′)g(z)dz

]

< 0

and ∫ ∞

z′
B2(z)g(z)dz−ω

∫ ∞

z′
B2(z′)g(z)dz < 0

because B2(z) is strictly decreasing. Therefore, the numerator is strictly negative.

Putting all together, we have

dzFE(θ)

dθ
< 0.

Now, we seek to rewrite (55). We can rewrite the integral as follows:∫ ∞

z

∫ ∞

z′
g(z)

[
S(z)−ωS(z′)

]
dzdF`(z′) =

∫ ∞

z
F`(z)g(z)S(z)dz−ω

∫ ∞

z
(1− G(z))S(z) f (z)dz.
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Using integration by parts,∫ ∞

z
F`(z)g(z)S(z)dz = −

[
F`(z)(1− G(z))S(z)

]∞

z
+ A

∫ ∞

z
f (z)(1− G(z))S(z)dz

+A
∫ ∞

z
F`(z)(1− G(z))S′(z)dz

= A
∫ ∞

z
f (z)(1− G(z))

∫ z

z

Γ(z, θ)
(ω−1)(1−γ)
(1−ω(1−γ))

Γ(z̃, θ)
γ

(1−ω(1−γ))

dz̃dz + A
∫ ∞

z
F`(z)(1− G(z))

1
Γ(z, θ)

dz.

Substituting the above expressions back and using the expressions for F`(z) and

f (z), we have∫ ∞

0

∫ ∞

z′
g(z)

[
S(z)−ωS(z′)

]
dzdF`(z′) = A

∫ ∞

z

σ(1− G(z))
σ + (1− G(z))ζ p(θ)

1
Γ(z, θ)

dz

+ A(1−ω)
∫ ∞

z

σg(z)ζ p(θ)(1− G(z))
(σ + (1− G(z))ζ p(θ))2

∫ z

z

Γ(z, θ)
(ω−1)(1−γ)
(1−ω(1−γ))

Γ(z̃, θ)
γ

(1−ω(1−γ))

dz̃dz.

Now, (55) can be rewritten as follows:

κ = (1− γ)q(θ)A

[∫ ∞

z

σ(1− G(z))
σ + (1− G(z))ζ p(θ)

1
Γ(z, θ)

dz

+ (1−ω)
∫ ∞

z

σg(z)ζ p(θ)(1− G(z))
(σ + (1− G(z))ζ p(θ))2

∫ z

z

Γ(z, θ)
(ω−1)(1−γ)
(1−ω(1−γ))

Γ(z̃, θ)
γ

(1−ω(1−γ))

dz̃dz

]
.

C.2 Proof of Lemma 2

Note F`(z; θ) can be characterized in a same way as Lemma 1. We omit superscript

SP for notational simplicity.

We start from equation (25) evaluated at the steady state:

(r + σ)µ(z) = Az− h

− p(θ)
∫ ∞

z
g(z′)µ(z′)dz + ζ p(θ)

∫ ∞

z
g(z′)(µ(z′)− µ(z))dz′

+ (1− ζ)(1− η(θ))p(θ)

[∫ ∞

0

∫ ∞

z′
g(z̃)

(
µ(z̃)− µ(z′)

)
dz̃dF`(z′; θ, z)

]
. (57)
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Taking derivative with respect to z,

[r + σ + ζ p(θ)(1− G(z))] µ′(z) = A.

Solving for µ(z) with a boundary condition µ(z) = 0 gives

µ(z; z, θ) =

{
A
∫ z

z
1

r+σ+ζ p(θ)(1−G(z̃))dz̃. for z ≥ z

0 for z < z

Evaluating (57) at z = z gives

0 = Az− h

− (1− ζ)p(θ)
∫ ∞

z
g(z′)µ(z′; z, θ)dz (58)

+ (1− ζ)(1− η(θ))p(θ)

[∫ ∞

0

∫ ∞

z′
g(z̃)

(
µ(z̃; z, θ)− µ(z′; z, θ)

)
dz̃dF`(z′; θ, z)

]
.

Now, we seek to simplify the above expression. We rewrite the second line

using integration by parts:∫ ∞

z
g(z′)µ(z′; z, θ)dz = A

∫ ∞

z
(1− G(z̃))

1
r + σ + γζ p(θ)(1− G(z̃))

dz̃, (59)

We rewrite the last term as∫ ∞

0

∫ ∞

z′
g(z̃)

(
µ(z̃)− µ(z′; z, θ)

)
dz̃dF`(z′)

=
∫ ∞

z
F`(z′)g(z′)µ(z̃; z, θ)dz̃−

∫ ∞

z
(1− G(z′))µ(z′; z, θ) f (z′)dz′

= A
∫ ∞

z
F`(z̃)(1− G(z̃))

1
r + σ + ζ p(θ)(1− G(z̃))

dz̃

= A
∫ ∞

z

σ

σ + ζ p(θ)(1− G(z̃))
1− G(z̃)

r + σ + ζ p(θ)(1− G(z̃))
dz̃, (60)

where the second line changes the order of integration, and the third line uses

integration by parts. Plugging (59) and (60) into (58), we obtain

0 = Az− h− A(1− ζ)p(θ)
∫ ∞

z

ση(θ) + (1− G(z̃))ζ p(θ)
σ + (1− G(z̃))ζ p(θ)

1− G(z̃)
r + σ + ζ p(θ)(1− G(z̃))

dz̃

≡ HR(z, θ).
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The solution to the above equation gives a mapping zR(θ), and its derivative is

given by

dzR(θ)

dθ
= −

∂HR(z,θ)
∂θ

∂HR(z,θ)
∂z

.

Clearly, the denominator is positive, that is, ∂HR(z,θ)
∂z > 0. To sign the numerator,

∂HR(z, θ)

∂θ
= A(1− ζ)p(θ)

∫ ∞

z

1− G(z̃)
(σ + (1− G(z̃))ζ p(θ))2(r + σ + ζ p(θ)(1− G(z̃)))2

×
[

ση(θ) (ση(θ) + (1− G(z̃))ζ p(θ)) (r + σ + ζ p(θ)(1− G(z̃)))

+ ση′(θ) (σ + (1− G(z̃))ζ p(θ)) (r + σ + ζ p(θ)(1− G(z̃)))

+ (1− G(z̃))ζη(θ)p(θ) (σ + (1− G(z̃))ζ p(θ)) (r + σ(1− η(θ)))

]
dz̃.

This is weakly positive if η′(θ) ≥ kR, where

kR ≡ max
z̃
−η(θ) (ση(θ) + (1− G(z̃))ζ p(θ))

(σ + (1− G(z̃))ζ p(θ))
− (1− G(z̃))ζη(θ)p(θ)(r + σ(1− η(θ)))

σ (r + σ + ζ p(θ)(1− G(z̃)))

< 0.

Therefore, zR(θ) is weakly increasing if η′(θ) ≥ kR.

We can rewrite (24) to obtain:

κ = (1− η(θ))q(θ)

[∫ ∞

0

∫ ∞

z′
g(z̃)

(
µ(z̃; z, θ)− µ(z′; z, θ)

)
dz̃dF`(z′; θ, z)

]
.

Substituting (60), we have

κ = A(1− η(θ))q(θ)
∫ ∞

z

σ

σ + ζ p(θ)(1− G(z̃))
1− G(z̃)

r + σ + ζ p(θ)(1− G(z̃))
dz̃

≡ HFE(z, θ).
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This defines a mapping zFE(θ). To sign this,

dzFE(θ)

dθ
= −

∂HFE(z,θ)
∂θ

∂HFE(z,θ)
∂z

.

Clearly, ∂HFE(z,θ)
∂z < 0, and the denominator is negative. To sign the numerator,

∂HFE(z, θ)

∂θ

= −Aη′(θ)q(θ)
∫ ∞

z

σ

σ + ζ p(θ)(1− G(z̃))
1− G(z̃)

r + σ + ζ p(θ)(1− G(z̃))
dz̃

+ (1− η(θ))q′(θ)
∫ ∞

z

σ

σ + ζ p(θ)(1− G(z̃))
1− G(z̃)

r + σ + ζ p(θ)(1− G(z̃))
dz̃

− (1− η(θ))q(θ)
∫ ∞

z

σ(1− G(z̃))ζ p′(θ)(1− G(z̃))
(σ + ζ p(θ)(1− G(z̃)))

1
(r + σ + ζ p(θ)(1− G(z̃)))

×
(

1
σ + ζ p(θ)(1− G(z̃))

+
1

r + σ + ζ p(θ)(1− G(z̃))

)
dz̃.

This is strictly negative if η′(θ) > kFE, where

kFE ≡ −(1− η(θ))η(θ)

− 1∫ ∞
z

σ
σ+ζ p(θ)(1−G(z̃))

1−G(z̃)
r+σ+ζ p(θ)(1−G(z̃))dz̃

×

(1− η(θ))
∫ ∞

z

σ(1− G(z̃))ζ p′(θ)(1− G(z̃))
(σ + ζ p(θ)(1− G(z̃)))(r + σ + ζ p(θ)(1− G(z̃)))

×
(

1
σ + ζ p(θ)(1− G(z̃))

+
1

r + σ + ζ p(θ)(1− G(z̃))

)
dz̃

< 0.

Therefore, if η′(θ) > kFE, zFE(θ) is strictly decreasing. Setting k ≡ max{kFE, kR} <
0 completes the proof.

C.3 Proof of Proposition 1

We first show zR(θ) ≤ zR,SP(θ) for all θ. Let

HR(z, θ) ≡ Az− h− Aγ(1− ξ)p(θ)
∫ ∞

z

1
Γ(z̃; θ)

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)

 dz̃
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and

HR,SP(z, θ) ≡ Az− h− A(1− ζ)p(θ)
∫ ∞

z

ση(θ) + (1− G(z̃))ζ p(θ)
σ + (1− G(z̃))ζ p(θ)

1− G(z̃)
r + σ + ζ p(θ)(1− G(z̃))

dz̃.

Because zR(θ) and zR,SP(θ) are the solutions to HR(z, θ) = 0, and HR,SP(z, θ) = 0

and both HR and HR,SP are increasing in z, HR(z, θ) > HR,SP(z, θ) for all (z, θ) is

sufficient for zR(θ) ≤ zR,SP(θ). Note that HR(z, θ) > HR,SP(z, θ) holds if

ση(θ) + (1− G(z̃))ζ p(θ)
σ + (1− G(z̃))ζ p(θ)

1− G(z̃)
r + σ + ζ p(θ)(1− G(z̃))

− γ

Γ(z̃; θ)

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)

 ≥ 0

for all z̃.

To show the above inequality,

ση(θ) + (1− G(z̃))ζ p(θ)
σ + (1− G(z̃))ζ p(θ)

1− G(z̃)
r + σ + ζ p(θ)(1− G(z̃))

− γ

Γ(z̃; θ)

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)



≥ (1− G(z̃))
(

ση(θ) + (1− G(z̃))ζ p(θ)
σ + (1− G(z̃))ζ p(θ)

1
r + σ + ζ p(θ)(1− G(z̃))

− γ

r + σ + γζ p(θ)(1− G(z̃))

)

= (1− G(z̃))
(η(θ)− γ)σ (r + σ + (1− G(z̃))ζ p(θ)) + (1− G(z̃))ζ p(θ)(r + σ)(1− γ)

(r + σ + ζ p(θ)(1− G(z̃)))(r + σ + γζ p(θ)(1− G(z̃)))(r + σ + γζ p(θ)(1− G(z̃)))
,

which is strictly positive whenever η(θ) ≥ γ. Therefore zR(θ) ≤ zR,SP(θ) for all θ.

Next, we show zFE(θ) ≥ zFE,SP(θ) for all θ. They are given by the solutions to

HFE(z, θ) = 0 and HFE,SP(z, θ) = 0, respectively, where

HFE(z, θ) = A(1− γ)q(θ)

[∫ ∞

z

σ(1− G(z))
σ + (1− G(z))ζ p(θ)

1
Γ(z, θ)

dz

+ (1−ω)
∫ ∞

z

σg(z)ζ p(θ)(1− G(z))
(σ + (1− G(z))ζ p(θ))2

∫ z

z

Γ(z, θ)
(ω−1)(1−γ)
(1−ω(1−γ))

Γ(z̃, θ)
γ

(1−ω(1−γ))

dz̃dz

]
− κ
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and

HFE,SP(z, θ) = A(1− η(θ))q(θ)
∫ ∞

z

σ

σ + ζ p(θ)(1− G(z̃))
1− G(z̃)

r + σ + ζ p(θ)(1− G(z̃))
dz̃− κ.

Because HFE(z, θ) and HFE,SP(z, θ) are both increasing in z, showing HFE(z, θ) >

HFE,SP(z, θ) for all (z, θ) is sufficient for zFE(θ) ≥ zFE,SP(θ). To show this,

HFE(z, θ)− HFE,SP(z, θ)

= A(1− γ)q(θ)

[∫ ∞

z

σ(1− G(z))
σ + (1− G(z))ζ p(θ)

(
1

Γ(z, θ)
− 1

r + σ + ζ p(θ)(1− G(z̃))

)
dz

+ (1−ω)
∫ ∞

z

σg(z)ζ p(θ)(1− G(z))
(σ + (1− G(z))ζ p(θ))2

∫ z

z

Γ(z, θ)
(ω−1)(1−γ)
(1−ω(1−γ))

Γ(z̃, θ)
γ

(1−ω(1−γ))

dz̃dz

]

+ A(η(θ)− γ)q(θ)
∫ ∞

z

σ

σ + ζ p(θ)(1− G(z̃))
1− G(z̃)

r + σ + ζ p(θ)(1− G(z̃))
dz̃.

The right-hand side is strictly positive whenever η(θ) ≥ γ.

Putting all together, we have shown θ is strictly higher in the decentralized

equilibrium than the efficient level, as in Figure 1.

C.4 Proof of Lemma 3

We state the following lemma, which characterizes the taxes that implement the

efficient allocation. The following lemma immediately implies Lemma 3.

Lemma 4 The efficient steady-state allocation can be implemented by a combination of

output tax {τ(z)} and entry tax τe that satisfy

τ(z) =
1
z

∫ z

zSP

{
ω(1− γ)ζ p(θSP)(1− G(z̃))
r + σ + ζ p(θSP)(1− G(z̃))

+ ζ p(θSP)g(z̃)
∫ z̃

zSP

(1− γ)(1−ω)

r + σ + ζ p(θSP)(1− G(z′))
dz′
}

dz̃

+
1
z
(1− ζ)p(θSP)

∫ ∞

zSP

(1− G(z̃))
r + σ + γζ p(θSP)(1− G(z̃))

{
(η(θSP)− γ)σ + ζ p(θSP)(1− G(z̃))

σ + ζ p(θSP)(1− G(z̃))

}
dz̃
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and

1 + τe =
1− γ

1− η(θSP)

1 + (1−ω)

∫ ∞
zSP

σg(z)ζ p(θSP)(1−G(z′))
(σ+(1−G(z′))ζ p(θSP))2

∫ z′

zSP
1

r+σ+ζ p(θSP)(1−G(z̃))dz̃dz′∫ ∞
zSP

σ(1−G(z′))
σ+ζ p(θSP)(1−G(z̃))

1
r+σ+ζ p(θSP)(1−G(z̃))dz̃

 .

In such an equilibrium, S(z) = µ(z) for all z. Moreover, there exists γ̄ ≥ η(θSP) such

that for γ < γ̄, the output tax and the entry tax are both positive, τ(z) ≥ 0 for all z and

τe ≥ 0.

Proof. In the decentralized equilibrium with taxes, the match surplus St(z) solves

(r + σ)St(z) = Atz(1− τt(z))− h

+ ζ p(θt)
∫ ∞

z
g(z′)

(
(ω− 1)S(z) + γ

[
St(z′)−ωSt(z)

])
dz′

− p(θt)
∫ ∞

zt

g(z′)γSt(z′)dz′ + Ṡt(z). (61)

Evaluating this equation at the steady state and taking the derivative with respect

to z, we have

[r + σ + (1−ω(1− γ))ζ p(θ)(1− G(z))] S′(z) + ζ p(θ)g(z)(ω− 1)(1− γ)S(z)

= A(1− τ(z))− τ′(z)Az.

To ensure S(z) = µ(z) for all z, the output taxes have to satisfy

Aτ(z) + Azτ′(z) = ω(1− γ)ζ p(θ)(1− G(z))µ′(z) + (1− γ)(1−ω)ζ p(θ)g(z)µ(z).

Using (37), we obtain the candidate solutions to the above ODE:

zτ(z) =
∫ z

zSP

{
ω(1− γ)ζ p(θSP)(1− G(z̃))
r + σ + ζ p(θSP)(1− G(z̃))

(62)

+ (1− γ)(1−ω)ζ p(θSP)g(z̃)
∫ z̃

zSP

1
r + σ + ζ p(θSP)(1− G(z′))

dz′
}

dz̃ + C,

where C is a constant determined so that S(zSP) = µ(zSP) = 0. At zSP, the output

taxes solve

0 = AzSP − Azτ(zSP)− h− γ(1− ξ)p(θSP)
∫ ∞

zSP
g(z′)µ(z′)dz′.
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Using (58), we can solve for τ(zSP) as follows:

zSPτ(zSP) = (1− ζ)p(θSP)
∫ ∞

zSP

(1− G(z̃))
r + σ + γζ p(θSP)(1− G(z̃))

{
(η(θSP)− γ)σ + ζ p(θSP)(1− G(z̃))

σ + ζ p(θSP)(1− G(z̃))

}
.

Plugging C = zSPτ(zSP) into (62), we obtain the output taxes that ensure S(z) =

µ(z) for all z:

zτ(z) =
∫ z

zSP

{
ω(1− γ)ζ p(θSP)(1− G(z̃))
r + σ + ζ p(θSP)(1− G(z̃))

+ (1− γ)(1−ω)ζ p(θSP)g(z̃)
∫ z̃

zSP

1
r + σ + ζ p(θSP)(1− G(z′))

dz′
}

dz̃

+ (1− ζ)p(θSP)
∫ ∞

zSP

(1− G(z̃))
r + σ + γζ p(θSP)(1− G(z̃))

{
(η(θSP)− γ)σ + ζ p(θSP)(1− G(z̃))

σ + ζ p(θSP)(1− G(z̃))

}
.

Now, we look for the entry tax that ensures the efficient level of vacancy cre-

ation. The free-entry condition with taxes, after plugging in S(z) = µ(z), is given

by

κ(1 + τe
t ) = (1− γ)q(θt)

[
f u
t

∫
zt

g(z)St(z)dz +
∫ ∞

0

∫ ∞

z′
ft(z′)g(z)

[
St(z)−ωSt(z′)

]
dz′dz

]
.

(63)

The efficient level of vacancy creation solves (24). Using the fact that the output

taxes ensure St(z) = µt(z) and imposing a steady state in (63), for the vacancy

creation to coincide with (24), the entry tax τe needs to be set so that

1 + τe =
(1− γ)

[
f u ∫

zSP g(z)µ(z)dz +
∫ ∞

0

∫ ∞
z′ f (z′)g(z) [µ(z)−ωµ(z′)] dz′dz

]
(1− η(θSP))

[
f u
∫

zSP g(z)µ(z)dz +
∫ ∞

0

∫ ∞
z′ f (z′)g(z) [µ(z)− µ(z′)] dz′dz

] .

(64)

Note∫ ∞

0

∫ ∞

z′
g(z̃)

(
µ(z̃)−ωµ(z′; z, θ)

)
dz̃dF`(z′)

= A
∫ ∞

z

σ(1− G(z′))
σ + ζ p(θ)(1− G(z̃))

1
r + σ + ζ p(θSP)(1− G(z̃))

dz̃

+ (1−ω)
∫ ∞

z

σg(z)ζ p(θ)(1− G(z′))
(σ + (1− G(z′))ζ p(θ))2 A

∫ z′

zSP

1
r + σ + ζ p(θSP)(1− G(z̃))

dz̃dz′.
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Plug the above expression into (64) to obtain

1 + τe =
1− γ

1− η(θSP)

1 + (1−ω)

∫ ∞
zSP

σg(z)ζ p(θSP)(1−G(z′))
(σ+(1−G(z′))ζ p(θSP))2

∫ z′

zSP
1

r+σ+ζ p(θSP)(1−G(z̃))dz̃dz′∫ ∞
zSP

σ(1−G(z′))
σ+ζ p(θSP)(1−G(z̃))

1
r+σ+ζ p(θSP)(1−G(z̃))dz̃

 .

C.5 Proof of Proposition 2

From the expression in Lemma 4, it is immediate to see τ(z) > 0 when γ ≤ η(θSP).

Moreover, the second line of the expression for τ(z) is strictly decreasing in z and

goes to zero as z → ∞. It is sufficient to show the first line of the expression goes

to zero as z→ ∞. Applying L’Hôpital’s rule,

lim
z→∞

τ(z) = lim
z→∞

ζ p(θSP)g(z)
∫ z

zSP

(1− γ)(1−ω)

r + σ + ζ p(θSP)(1− G(z′))
dz′

≤ lim
z→∞

ζ p(θSP)g(z)
(1− γ)(1−ω)

r + σ
(z− zSP)

= 0,

where the last equality follows from the assumption that the mean of z is finite,

and thus, limz→∞ g(z)z = 0.

C.6 Proof of Proposition 3

Because the output tax, τ(z), is strictly increasing in θSP and strictly decreasing in

zSP, it is sufficient to show θSP is increasing and zSP is decreasing in A. When ζ

is sufficiently close to 1, (35) implies zSP is indeed decreasing in A. To show θSP

is increasing in A, we look at the right-hand side of (36), which is increasing in A,

decreasing in θ, and decreasing in zSP under the Hosios condition η(θ) = γ for all

θ. Therefore, θSP is increasing in A. The second part of the statement follows from

the expression in Lemma 4.
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D Computational algorithms for transition dynamics

We describe the computational algorithms for the transition dynamics. Through-

out, we focus on one-time unanticipated shocks starting from the steady state. We

describe the transition dynamics for the decentralized equilibrium, and we allow

for the presence of taxes. The transition dynamics for the planner’s problem can

be obtained in the same manner. The transition dynamics for the decentralized

equilibrium with taxes are characterized by {St(z), zt, θt, Nt(z), ut}, which jointly

solve (16), (18), (20), (61), and (63).

We solve the first-order approximation of the transition dynamics around the

steady state in a sequence space, following the approach of Auclert et al. (2021). We

discretize time with the time interval ∆, and the truncated horizon of the transition

dynamics with finite period T.

We first solve the joint match surplus backward in time using (61), starting

from the terminal condition dST(z) = 0, in response to small changes in aggregate

productivity and market tightness at the terminal period, {dAT, dθT}. This gives

the following derivatives:

dST−s(z)
dAT

,
dST−s(z)

dθT
.

We then represent the first-order response of the match surplus as a function of an

arbitrary sequence of {As, θs}s as follows:

dS(z) = J S,θ(z)dθ+ J S,A(z)dA, (65)

where dS(z) ≡ [dSt(z)]t, dθ ≡ [dθt]t, and dA ≡ [dAt]t are all T/∆ × 1 vectors,

and J S,X(z) is a T/∆× T/∆ Jacobian matrix of match surplus with productivity

z, S(z) with respect to X. Each element of Jacobian can be obtained from a single

backward iteration mentioned above as

J S,X
t,t+s(z) =

{ dST−s(z)
dXT

for s ≥ 0

0 for s < 0
,

for X = θ and A, which is the core insight of Auclert et al. (2021).
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Second, we represent the response of reservation match quality as

dz =
1

S′(z)
dS(z)

=
1

S′(z)

[
J S,θ(z)dθ+ J S,θ(z)dA

]
(66)

which follows from total differentiation of St(zt) = 0.

The third step is to compute the derivatives of the employment distribution

with respect to the aggregate productivity, market tightness, and reservation match

quality at time 0 to obtain the following objects:

∂ut

∂A0
,

∂ut

∂θ0
,

∂ut

∂z0
,

∂Nt(z)
∂A0

,
∂Nt(z)

∂θ0
,

∂Nt(z)
∂z0

.

The first-order response of the distribution as a function of an arbitrary sequence

of {As, θs}s can be expressed as follows.

du = J u,θdθ+ J u,AdA + J u,zdz, (67)

dN(z) = J N,θ(z)dθ+ J N,A(z)dA + J N,z(z)dz, (68)

where the Jacobian matrix can be obtained as

J u,X
t+s,t =

{
dus
dX0

for s ≥ 0

0 for s < 0
,

J N,X
t+s,t(z) =

{ dNs(z)
dX0

for s ≥ 0

0 for s < 0
,

for X = θ, A, and z.

Because the free-entry condition, (63), is a function of {ut, St(z), Nt(z), θt, zt},
we can write it as H̃FE(ut, St(z), Nt(z), θt, zt) = κ. The linearized free-entry condi-

tion is

∂H̃FE

∂ut
dut +

∂H̃FE

∂θt
dθt +

∂H̃FE

∂zt
dzt +

∫
∂H̃FE

∂St(z′)
dSt(z′)dz′ +

∫
∂H̃FE

∂Nt(z′)
dNt(z′)dz′ = 0.

Substituting (65), (67), and (68) into the above equation, we can write the linearized

free entry condition as,

HFE,θdθ+HFE,AdA +HFE,zdz = 0, (69)
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where HFE,θ
t,s = ∂H̃FE

∂ut
J u,θ

t,s , HFE,A
t,s = ∂H̃FE

∂ut
J u,A

t,s +
∫

∂H̃FE

∂St(z′)
J S,A

t,s (z′)dz′, and HFE,z
t,s =

∂H̃FE

∂ut
J u,z

t,s +
∫

∂H̃FE

∂St(z′)
J S,z

t,s (z′)dz′ +
∫

∂H̃FE

∂Nt(z′)
J N,z

t,s (z′)dz′.

Stacking (66) and (69), the first-order response of dz, dθ solves[
HFE,θ HFE,z

1
S′(z)J

S,θ(z) I

] [
dθ

dz

]
= −

[
HFE,A

1
S′(z)J

S,A(z)

]
dA,

where I is T/∆ × T/∆ identity matrix. We can solve for dθ, dz by inverting the

matrix on the left-hand side. Given dθ, dz, the rest of the objects can be obtained

using (65), (67), and (68).

E Implementation of efficient allocation through un-

employment insurance and entry tax

We consider an alternative implementation of efficient allocation through unem-

ployment insurance and entry tax. Unemployment insurance provides b units of

consumption goods for unemployed workers so that the flow value of being un-

employed is now given by h + b. The entry tax is given by τe and the cost of entry

inclusive of tax is (1 + τe)κ. These two policy instruments are sufficient to imple-

ment efficient allocation.

Proposition 5 There exists a pair of unemployment insurance b and entry tax τe that

implement the efficient allocation in the steady state. Moreover, there exists γ̄ ≥ η(θ)

such that for γ < γ̄, the unemployment insurance and the entry tax are both positive,

b > 0 and τe > 0.

Proof. In the steady state of the decentralized equilibrium with the above policy

instruments, (z, θ) solve

0 = Az− h + b− Aγ(1− ζ)p(θ)
∫ ∞

z

1
Γ(z̃; θ)

 Γ(z̃; θ)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)

 dz̃
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and

κ(1 + τe) = A(1− γ)q(θ)

[∫ ∞

z

σ(1− G(z))
σ + (1− G(z))ζ p(θ)

1
Γ(z, θ)

dz

+ (1−ω)
∫ ∞

z

σg(z)ζ p(θ)(1− G(z))
(σ + (1− G(z))ζ p(θ))2

∫ z

z

Γ(z, θ)
(ω−1)(1−γ)
(1−ω(1−γ))

Γ(z̃, θ)
γ

(1−ω(1−γ))

dz̃dz

]
.

We compare the above two conditions with those for the efficient allocation:

0 = AzSP − h− A(1− ζ)p(θSP)
∫ ∞

zSP

ση(θSP) + (1− G(z̃))ζ p(θSP)

σ + (1− G(z̃))ζ p(θSP)

1− G(z̃)
r + σ + ζ p(θSP)(1− G(z̃))

dz̃

and

κ = A(1− η(θ))q(θSP)
∫ ∞

zSP

σ

σ + ζ p(θSP)(1− G(z̃))
1− G(z̃)

r + σ + ζ p(θSP)(1− G(z̃))
dz̃.

Therefore, we can obtain the equivalence by setting

b = Aγ(1− ζ)p(θSP)
∫ ∞

zSP

1
Γ(z̃; θSP)

Γ(z̃; θSP)
(1−ω)(1−γ)
(1−ω(1−γ))

(r + σ)
(1−ω)(1−γ)
1−ω(1−γ)

− G(z̃)

 dz̃

− A(1− ζ)p(θSP)
∫ ∞

zSP

ση(θSP) + (1− G(z̃))ζ p(θSP)

σ + (1− G(z̃))ζ p(θSP)

1− G(z̃)
r + σ + ζ p(θSP)(1− G(z̃))

dz̃

and

1 + τe = (1− γ)

[∫ ∞

zSP

σ(1− G(z))
σ + (1− G(z))ζ p(θSP)

1
Γ(z, θSP)

dz

+ (1−ω)
∫ ∞

z

σg(z)ζ p(θSP)(1− G(z))
(σ + (1− G(z))ζ p(θSP))2

∫ z

z

Γ(z, θSP)
(ω−1)(1−γ)
(1−ω(1−γ))

Γ(z̃, θSP)
γ

(1−ω(1−γ))

dz̃dz

]

× 1

(1− η(θSP))
∫ ∞

zSP
σ

σ+ζ p(θSP)(1−G(z̃))
1−G(z̃)

r+σ+ζ p(θSP)(1−G(z̃))dz̃
.
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The proof of Proposition 1 already shows that when γ ≤ η(θSP),

b ≥ 0, τe ≥ 0.

By continuity in γ, there exists γ̄ > η(θSP) such that for all γ ≤ γ̄, h ≥ 0, and

τe > 0 hold.

Because the steady-state allocation can be essentially summarized by the two

aggregates, (z, θ), it should not be surprising that the two instruments can de-

centralize the efficient allocation. The second part of the proposition shows the

optimal policy features a positive entry tax and positive unemployment insurance

as long as worker bargaining power is not too high.

F Extension with endogenous effort

Consider an extension of the baseline model with taxes to an environment with

endogenous effort choice that determines the separation rate. In particular, we

assume workers can choose the level of effort, e, which determines the separation

rate of a match, σ(e). The separation rate is decreasing and concave in effort. The

unit cost of effort is ι. The equilibrium joint match surplus in this environment is

given by

rSt(z) = max
e

Atz(1− τt(z))− h− ιe− σ(e)St(z)

+ ζ p(θ)
∫ ∞

z
g(z′)

(
ωSt(z) + γ

[
St(z′)−ωSt(z)

]
− St(z)

)
dz′

− p(θt)
∫ ∞

zt

g(z′)γSt(z′)dz′ + Ṡt(z).

The optimal choice of effort of the job with match quality z satisfies

ι = σ′(e)St(z).

We denote the solution to the above expression as et(z). The rest of the equilibrium

conditions are the same as the baseline model except that the separation rate σ is

replaced with σ(e(z)) for each match quality z.
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Likewise, the valuation of the job in the planner’s solution is given by

rµt(z) = max
e

Atz− h− ιe− σ(e)µt(z)

−
∫ ∞

zt

p(θt)g(z′)µt(z′)dz′ + ζ p(θt)
∫ ∞

z
g(z′)(µt(z′)− µt(z))dz′

+ κθt(1− ζ) + µ̇t(z).

The optimal choice of effort of the job with match quality z satisfies

ι = σ′(e)µt(z).

We denote the solution to the above expression as eSP
t (z).

The output tax τ(z) that ensures µt(z) = St(z) will also ensure the effort choices

are efficient et(z) = eSP
t . By contrast, because unemployment insurance or entry

tax alone does not ensure µt(z) = St(z), the effort choices will not be efficient.

25


	Introduction
	Revisiting the basic intuition of the Hosios condition
	The model with on-the-job search
	Market equilibrium
	Social planner's problem
	Efficiency

	Analytical characterizations
	Market equilibrium
	Social planner's problem
	Results

	Quantitative exploration
	Calibration
	Results: Decentralized equilibrium vs. efficient allocation
	Steady-state comparative statics
	Transition dynamics

	Decentralization
	Optimal taxes
	Quantitative results

	Conclusion
	P1985 model
	Social planner's problem
	Market equilibrium

	Segmented market
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Lemma 3
	Proof of Proposition 2
	Proof of Proposition 3

	Computational algorithms for transition dynamics
	Implementation of efficient allocation through unemployment insurance and entry tax
	Extension with endogenous effort

